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ABSTRACT

Rigid origami is a class of origami whose entire surface remains
rigid during folding except at crease lines. Rigid origami finds
applications in manufacturing and packaging, such as map fold-
ing and solar panel packing. Advances in material science and
robotics engineering also enable the realization of self-folding
rigid origami and have fueled the interests in computational
origami, in particular the issues of foldability, i.e., finding folding
steps from a flat sheet of crease patterns to desired folded state.
For example, recent computational methods allow rapid simula-
tion of folding process of certain rigid origamis. However, these
methods can fail even when the input crease pattern is extremely
simple. This paper attempts to address this problem by modeling
rigid origami as a kinematic system with closure constraints and
solve the foldability problem through a randomized method. Our
experimental results show that the proposed method successfully
fold several types of rigid origamis that the existing methods fail
to fold.

1 Introduction

Paper folding, also known as origami, has many practical ap-
plications and rich mathematical properties beyond its artistic
forms. In robotics, origami is used by researchers as a mean
to gain deeper understanding of motion control and planning al-
gorithms. Examples include robot manipulator performing fine-
motor tasks of folding origami [1], carton [2] or cloth [3]. How-
ever, it is not until recently, the ideas of active materials and
self-folding sheets promote the passive role of origami in these

robotics systems to a more active one. Advances in material
science and robotics engineering accelerate the development of
self-folding origami that fold either by reacting to various stimuli
such as light [4], heat and magnetic fields [5] or via the micro-
thick folding actuators [6]. Their applications include surgical
instruments for minimally invasive surgery, where there is a need
for very small devices (≈1 mm) that can be deployed inside the
body to manipulate tissue [7]. An example of a self-folding
origami is illustrated in Fig. 1.

Designing self-folding origami that can resume or approximate a
single or multiple target shapes requires careful foldability anal-
ysis of the target shapes. That is, given a crease pattern, can this
pattern be folded into a desired 2d or 3d shape? The foldability
problem can usually be addressed in two steps. First, does there
exist an angle assignment of the crease pattern that maps an un-
folded sheet to the target shape? Second, if such a mapping does
exist, what is the folding process, i.e., a sequence of angle as-
signments, that brings the crease pattern from the unfolded state
continuously to the folded state. In this paper, we will focus on
the second part of the foldability problem.

Due to limitations in the current design, most self-folding
origamis are rigid. Rigid origami, a subclass of origami, can
be considered as a type of mechanical linkage that uses flat rigid
sheets joined by hinges. Rigid origami has many practical uses,
ranging from folding maps and airbags to packing large solar
panel arrays for space satellites and folding space telescope. To
address the foldability issues of rigid origami, researchers have
attempted to simulate or plan the folding motion [8–12]. These
existing methods, however, are known to be restricted. For ex-
ample, the work by Miyazaki et al. [10] only allows bending,
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FIGURE 1. A multi-field responsive origami structure [5] actively
folds from an initially flat sheet to complex three-dimensional shapes
in response to different applied fields.

folding-up, and tucking-in motions. Balkcom’s method [1] can-
not guarantee the correct mountain-valley assignment for each
crease. The well-known Rigid Origami Simulator by Tachi [12]
may produce motion with self-intersection and can be trapped in
a local minimum.

This paper attempts to address the drawbacks in existing meth-
ods by modeling rigid origami as a kinematic system with closure
constraints and solve the foldability problem through a random-
ized method. We observe that many rigid origamis display no-
ticeable differences in their folding motions in the early stage and
in the rest of the folding process, based on this observation, our
method iteratively expands the search by adaptively adjusting the
randomness and the desire of moving closer to the goal. Our ex-
perimental results show that the proposed method successfully
fold several types of rigid origamis that the existing methods fail
to fold.

2 Rigid Origami Model

2.1 Crease Pattern

In this paper, we use crease pattern to represent the rigid origami
model. A crease pattern is a straight-edged graph embedded in
the plane as shown in Fig. 2. An edge of this graph correspond
to the location of a crease line in an unfolded sheet of paper. A
crease can be either mountain folded or valley folded. A moun-
tain fold forms a convex crease at top with the paper beside the
crease folded down. On the other hand, a valley fold forms a con-
cave crease with both sides folded up. An example of mountain
and valley folds is shown in Fig. 3.

2.2 Vertices in Crease Pattern

Vertices in the crease pattern can be categorized into two groups:
real vertices and virtual vertices. Vertices on the boundary of
the paper are considered as virtual vertices and they will not act
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FIGURE 2. An example of multi-vertex crease pattern. Mountain
creases are shown as solid lines in red, valley creases are show as dashed
lines in blue.

Valley

Mountain Mountain

FIGURE 3. A crease can be folded as either a mountain fold (in red)
or a valley fold (in blue).

as vertices for the purpose of our results. All other vertices on
the paper are considered as real vertices. For example, vertices
v1 and v2 in Fig 2 are real vertices and all the other vertices are
virtual vertices.

2.3 Crease Lines and Faces

We use l(i, j) to denote a crease line that connects real vertex vi
and vertex v j which can be either real or virtual, and we use ρ(i, j)
to denote the folding angle of l(i, j). We use F(i, j,...) to refer the

face that is on the left of
−−→
l(i, j) (e.g., F(1,3,..) is refer to F(1,3,4,5) in

Fig 2).

For real vertex vi, we sort the crease lines l(i, jt ) in the order of

the plane angle α(i, j) which is the angle between x-axis and
−−→
l(i, j).

We use ci to denote the number of crease lines that are connected
to vi. For instance, in Fig 2, for real vertex v1, c1 = 5, the sorted
crease lines are {l(1,3), l(1,5), l(1,2), l(1,11), l(1,12)}.

2.4 Configuration

We use the folding angles of all crease lines as variables to rep-
resent the configuration of an origami model. More specifically,
we define a configuration C = {ρ(i1, j1),ρ(i2, j2), · · · ,ρ(in, jn)} for
an origami with n crease lines, where ρ(ik, jk) is the dihedral angle
of two faces that connected by the crease line l(ik, jk) on the folded
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shape. In this paper, ρ is bounded in [-π , π] for origami, other-
wise adjacent faces will penetrate each other during the folding
process. In the real world, the range of ρ is further limited by the
material (e.g., π/2 for DE material in [5]). By given the limita-
tion, we are able to simulate the maximum foldable shape when
folding are done with real material, an example of using DE ma-
terial is shown in Fig.7(k), flat-folded shape with ideal paper is
shown in Fig.7(j) for comparison. Given a crease pattern, the
shape of the folded origami can be determined by the configura-
tion C .

3 Related Work

Origami, the art of paper folding, found its root in Japan around
the 17th century and became popular worldwide near the mid-
1900s. However, not until 1990s, researchers become increas-
ingly interested in its rich mathematical properties. In the rest of
this section, we will discuss related work on generating origami
folding motion.

Planning and simulating origami motion. In 1996, Miyazaki et
al. [10] simulates origami folding by a sequence of simple fold-
ing steps, including bending, folding up, and tucking in. It is
easy to reconstruct an animation from a sheet of paper to the fi-
nal model. However, the simplicity of folding steps limits the
types of origami models that could be represented in the sys-
tem. Consequently, this method is not suitable for many com-
plex origami models whose folding process cannot be repre-
sented as simple folding steps such as the Miura pattern shown
in Fig. 6(g). Song et al. [13] presented a probabilistic-roadmap-
method (PRM) based framework for studying folding motion.
However, their kinematic representation of origami is a tree-
structure model whose folding angle of each crease line is in-
dependent of other crease lines. Although tree-structure model
greatly simplifies the folding map that can be easily defined
along the path from base to each face, this model is not appli-
cable to represent the majority of the origami, such as the one
shown in Fig. 6(g), due to their closure constraints. Balkcom [1]
proposed a simulation method based on the ideas of virtual cut-
ting and combination of forward and inverse kinematics using a
rigid origami model. Although this approach is computational
efficient, it cannot guarantee the correct mountain-valley assign-
ment for each crease, i.e., a mountain fold can become a valley
fold or vice versa. More recently, Tachi [12] proposed an interac-
tive simulator for rigid origami model (known as Rigid Origami
Simulator (ROS)) which generates folding motion of origami by
calculating the trajectory by projection to the constrained space
based on rigid origami model, global self-intersection avoidance
and stacking order problems are not considered in his work. Per-
haps the work closest to our approach proposed in this paper is by
An et al. [6]. They proposed a new type of self-reconfiguration

system called self-folding sheet. They first construct the corre-
sponding folded state for a given crease pattern and angle assign-
ment then continuously unfold the paper using local repulsive
energies (via a modification of ROS [12]). By reversing the un-
folding sequence, they obtained the path starting from a flat sheet
and ending with the desired folded state.

Planning under closure constraints. Although there exists little
work on origami motion planning, there have been many meth-
ods proposed to plan motion for articulated robots under closed-
chain constraints [14–17]. Interestingly, we see many similar
ideas used in both closed-chain systems and origami folding.
For example, gradient decent was used by [12] for rigid origami
simulation and by [14] for generating valid configuration of a
closed-chain system. Another example is inverse kinematics,
which plays the central role both in Balkcom’s simulator [1] and
in constructing the so-called kinematic roadmap [16,18] for cap-
turing the topology of free configuration space. Tang et al. [19]
proposed an efficient sampling-based planner for spatially con-
strained systems. By sampling in the reachable distance space
in which all configurations lie in the set of constraint-satisfying
subspaces and using a local planner, they can significantly reduce
the computation time for finding a path.

4 Randomized Rigid Origami Folding

Before we discuss our planning method in more detail, we would
like to point out that, even for simple crease patterns (such as
those contains only a single real vertex shown in Fig. 6), the
folding trajectory is often nonlinear. Fig. 4(a) shows a plot of the
folding angles for each crease from a flat sheet to a completely
folded Miura origami (Fig. 6(g)).

Similar to the problem faced in systems with closure constraints,
traditional motion planners that perform local planning using lin-
ear interpolation usually fail to connect two seemingly nearby
configurations. Moreover, we observe that, for rigid origami,
whose folding angles are highly constrained by each other, its
folding pathway has very distinct characteristics between the
early folding stage and the rest of the folding process. That is,
there are abundant valid configurations when the origami is still
flat, however, once the folding process started, the folding path-
way quickly becomes very narrow and highly non-linear due to
the closure constraints. This difference can be observed from the
smoothness of the trajectories shown in Fig. 4(a) and Fig. 4(b).
The former is much smoother than the latter. As we will see later
in this section, these observations play important roles in design-
ing our randomized folding algorithm.

In the rest of this section, we will first discuss the necessary con-
ditions for a configuration to be foldable and feasible in Sec-
tion 4.1. Then, we will briefly talk about how to fold the crease
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FIGURE 4. (a) Trajectories of folding angles of 12 crease lines for Miura crease pattern shown in Fig. 6(g). Path was found by the proposed method.
(b) The first 50 steps of the folding trajectories.

pattern from a valid angle assignment using a folding map in
Section 4.2. Finally, we describe our randomized rigid origami
folding method in Section 4.3.

4.1 Foldable and Feasible Configurations

Given a configuration C = {ρ(i1, j1),ρ(i2, j2), · · · ,ρ(in, jn)}, we can
classify C according to its foldability and feasibility. First, let vi
be a real vertex in a foldable multi-vertex crease pattern and let
Bi be the 4× 4 matrix which translates a point in ℜ3 by vi. For
crease line l(i, j), let A(i, j) be the matrix in homogeneous coordi-
nates which rotates the xy-plane by plane angle α(i, j) (the angle
needed to rotate in CCW that can make positive x-axis overlap
with the crease line

−−→
l(i, j)), and let C(i, j) be the matrix in homo-

geneous coordinates which rotates by folding angle ρ(i, j) in the
yz-plane. Then the folding matrix for the crease line l(i, j) around
vi will be χ((i, j),i) = BiA(i, j)C(i, j)A

−1
(i, j)B

−1
i . If we pick F(i, jci ,...)

(where ci is the number of crease lines around vi) as F0 which
will be fixed it in the xy-plane during folding and multiply the
folding matrices though all crease lines that are around vi in or-
der of their plane angles α(i, j), then

ci

∏
t=1

χ((i, jt ),i) = I (1)

These necessary conditions of foldability for multi-vertex rigid
origami were first discovered by Balcastro and Hull in 2002 [11].
Let us take the multi-vertex crease pattern shown in Fig. 2 as

an example to illustrate Eq. (1). For real vertex v1 and v2 the
following equations should hold respectively.

χ((1,3),1)χ((1,5),1)χ((1,2),1)χ((1,11),1)χ((1,12),1) = I
χ((2,1),2)χ((2,6),2)χ((2,7),2)χ((2,8),2)χ((2,10),2) = I

There are several properties that the folded paper should have:

1. unstretchable,

2. flat (planar) for all faces,

3. free of self-intersection,

A foldable configuration C f oldable only guarantees the first two
properties. In order to have a valid configuration C that satisfy
all three of these properties, we need to check if C is free of
self-intersection. In order to do so, we will need a folding map
for each face. A folding map is a function that map a point in
ℜ2 to the corresponding point of folded state for a given foldable
configuration C f oldable in ℜ3. With the folding map for all faces,
we can fold the paper to the foldable configuration C f oldable and
perform collision detection to check the feasibility of C f oldable.

4.2 Folding Map

Let F0 be an arbitrary face that will be fixed in the xy-plane during
the entire folding process, and given another face F(ip, jp,...), let
γ be any vertex-avoiding path starting from a point in F0 and
ending at a point in F(ip, jp,...) by cross some crease lines. We
say that a path is vertex-avoiding if it does not intersect with
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FIGURE 5. A multi-vertex crease pattern with two vertex-avoiding
paths.

any vertices. Let the crease lines that γ crossed be, in order,
l(i1, j1), ..., l(ip, jp). Then the folding map for (x,y) ∈ F(ip, jp,...) is:

f (x,y) = f (x,y,0,1) =
p

∏
k=1

χ((ik, jk),ik)(x,y,0,1) (2)

Note that the folding map is independent of the path γ . This
means no matter which path we choose, the folding map remains
the same. This property was first proved in [11]. Thus, we can
pick an arbitrary path γ from F0 to F(ip, jp,...) and compute the
production of rotation matrices as the folding map for F(ip, jp,...).

Let us take Fig.5 as an example to illustrate Eq. (2). We
first pick an arbitrary face, say F(1,3,4,5) as F0. Suppose
that we find two paths γ1 and γ2 from F0 to F(1,11,12)
shown as dashed curve in magenta and solid curve in
green, respectively, in Fig.5. The folding map for F(1,11,12)
can be χ((1,5),1)χ((1,2),1)χ((1,11),1) if we follow the path γ1
or χ((1,5),1)χ((2,6),2)χ((2,7),2)χ((2,8),2)χ((2,10),2)χ((1,11),1) if γ2 was
chosen. We can pick either γ1 or γ2 for computing the folding
map for face F(1,11,12) since the results will be the same if the
given configuration is foldable.

By using the folding map computed from a given configuration,
we can instantaneously fold a crease pattern to a desired folded
shape (could be either flat or non-flat). The problem of how we
can find the intermediate configurations remains.

4.3 Folding via Randomized Search

Finding a path in a highly constrained high-dimensional config-
uration space is always challenging. We propose to repetitively
sample a configuration Cτ randomly near the best configuration
known to us C4 so far, and use a non-linear optimization ap-
proach to find a valid configuration locally around Cτ . Our ap-
proach only expands the closest configuration to the goal and
uses an adaptive weight adjustment to balance between random-
ness and the desire to move towards to the goal. Details of the

proposed method are described in Algorithm 1. Note that, in Al-
gorithm 1, W0, W1, W2 and D are user defined parameters, and
weight is bounded in [0,1]. In this paper, unless noted otherwise,
we consistently set these parameters to: D = 0.02, W0 = 0.8,
W1 = 0.2, and W2 = 0.01. See detailed discussion in Section 5
on the values of these parameters.

Algorithm 1 Randomized Rigid Origami Folding
Input: Start configuration S, goal configuration G
Output: Foldable and feasible path from S to G

1: weight←W0
2: C4← S
3: while G not reached do
4: Crand ← a random configuration
5:

−→
dir← (1−weight) ·Crand +weight ·G

6: Cτ ← C4+D ·
−→
dir

7: C ← FINDFOLDABLE(Cτ ) . Section 4.3.1
8: if IsValid(C ) and C is closer to G then . Section 4.3.2
9: C4← C

10: weight← weight +W1
11: else
12: weight← weight−W2
13: end if
14: end while

Algorithm 1 first initializes the planner by setting the weight to
W0, and set the closest configuration C4 to S. In each step, Algo-
rithm 1 samples a random configuration Crand and find a direc-
tion
−→
dir by linearly combining Crand and G with corresponding

weights, 1−weight and weight, respectively. Then, a new con-
figuration Cτ is created by moving C4 forward distance D along
−→
dir. However, even if D is a tiny number, the target configura-
tion Cτ is usually unfoldable. Thus, we introduced the function
FINDFOLDABLE for finding a foldable configuration C around
Cτ . If C is feasibly and it is closer to the goal G than C4, Algo-
rithm 1 replaces C4 by C . We use Euclidean distance to measure
how far away two configurations are, however, other metric (e.g.,
1-norm distance or infinity norm distance) can also be used. Al-
gorithm 1 repeats this process until G is reached. The value of
weight will be adjusted adaptively during the process.

4.3.1 Finding Foldable Configuration Non-linear opti-
mization (NLOPT) is used to find a foldable configuration in
function FINDFOLDABLE. Given a configuration Cτ , FIND-
FOLDABLE pushes Cτ to a foldable configuration C near Cτ by
minimize the objective function shown in Eq. (3).

F(C ) =
nv

∑
i=1
|

ci

∏
k=1

χ((i, jk), i)− I| , (3)
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where nv is the number of real vertices, ci is the number of crease
lines incident to the real vertex vi, and, finally, (i, jk) is the k-th
crease lines around vi.

More specifically, for a given real vertex vi, we want the produc-
tion of rotation matrices of crease lines around vi to be as close
to an identity matrix as possible. Since, in a foldable configura-
tion, each real vertex in the crease pattern should be an identity
matrix shown in Eq. (1). Special treatment for the stationary face
F0, which is fixed in the xy-plane, is required. The folding map
of F0 shown in (2) should always be an identity matrix regard-
less which closed vertex-avoiding loop γ is used for computing
the folding map, otherwise F0 will no longer stay in the xy-plane.
Note that, NLOPT might still return an unfoldable configuration
due to that maximum iteration has been exceeded or no foldable
configuration exists around the configuration Cτ . These unfold-
able configurations can be filtered out by performing the fold-
ability check on the returned configuration.

4.3.2 Detecting Invalid Configuration A foldable con-
figuration might still be an invalid configuration due to self-
intersection. Thus a collision checking is applied after the config-
uration C is returned by FINDFOLDABLE. Local intersection is
avoided by bounding the folding angle in [−π,π] for each crease
line. Global intersection is avoided by applying collision detec-
tion between faces of the origami. In our implementation, we
checking collision on all pairs of faces and we say an origami has
self-intersection if penetration is detected while face overlapping
is considered as valid.

5 Experiment Results

5.1 Environment Setup

We implemented the proposed method in C++ using GNU NLopt
library. Triangulated crease patterns used in our experiments are
shown in Fig. 6 and their folded states are shown in Fig. 7. De-
gree of freedom (DOF) of the origami ranges from 2 (L pattern)
to 34 (Sailboat pattern). All the experiment data are collected on
a workstation with 2.30GHz Intel Xeon E5-2630 CPU and 32GB
memory. Unless stated otherwise, the parameters in Algorithm 1
are set to: D = 0.02, W0 = 0.8, W1 = 0.2, W2 = 0.01. The maxi-
mum iterations for NLOPT is 1000 and the maximum number of
samples is 100000. Every data point reported in the tables and
plots in this section is an average over 10 runs.

While the source code will be made available after the current
work is published, we provide an interactive web-based tool
at: http://masc.cs.gmu.edu/jsobj/origami.html We also
strongly encourage the reader to review the submitted videos
for better visualization of the folding process. Two folding se-

(a) L (b) L2 (c) Fly1

(d) Fly2 (e) Box1 (f) Waterbomb

(g) Miura (h) Diamond (i) Sailboat

(j) Box2

FIGURE 6. Crease patterns used in our experiments. Mountain
creases are shown as solid lines in red, valley creases are show as dashed
lines in blue.

quences produced by the proposed method are shown in Figs. 8
and 9.

5.2 Running Time

The proposed method is able to fold all the crease patterns in
Fig. 6. Experimental results are shown in Table 1, which includes
running time in seconds, number of configurations sampled by
the planner, number of valid configurations, and the number of
configurations sampled and tested by NLOPT to find foldable
configurations (labeled as “Tested” in the table). Note that the
total number of valid configurations is also the number of in-
termediate states connecting start and goal configurations, and
the number of tested configurations is much greater than that of
sampled configurations. In general, the running time is strongly
correlated to the number of tested configurations by NLOPT and
the DOF of the origami.

Because our planner is parameterized by expanding distance D
and goal-bias weights Wi, we study how the values of D and
weights affect the performance of our algorithm. Results ob-
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(a) L (b) L2 (c) Fly1

(d) Fly2 (e) Box1 (f) Waterbomb

(g) Box2 (h) Diamond (i) Sailboat

(j) Miura (k) Miura (DE)∗

FIGURE 7. Folded states of crease patterns shown in Fig. 6. Note
that some of the models do not fold completely for the sake of better
visualization.∗Folding with DE material, which has a maximum folding
angle of π/2.

tained by varying D are shown in Fig. 10(a). Notice that the
y-axis of Fig. 10(a) is the relative running time, which is de-
fined as TD

Tbase
, where TD is the running time of a given value of D

and Tbase is the baseline running time reported in Table 1 when
D = 0.02. We observe that larger D helps to find a path more
efficiently as expected. However, if D becomes too large, the
computational efficiency will drop on models whose folding tra-
jectories are highly non-linear such Box2 and Miura. Note we
assume that D is always small enough so the subpath from the
best known configuration C4 to a new valid configuration C is
always valid. The assumption is relaxed by checking if we can
find a valid configuration from the midpoint of C4 and C (via
NLOPT and the self-collision detector discussed earlier).

To show the role played by goal-bias weights in the proposed
planner, we conducted experiments over various static weights
W . We disabled the adaptive weight adjustment in lines 10 and
12 of Algorithm 1 in order to to highlight the influence of a given

FIGURE 8. Folding process of L2 pattern shown in Fig. 6(b)

FIGURE 9. Folding process of Miura pattern shown in Fig. 6(g)

weight, i.e., W0 =W and W1 =W2 = 0. Results are shown in the
plot in Fig. 10(b). Note that the relative running time on y-axis
is in logarithmic scale, and the relative running time, which is
defined as TW

Tbase
, where TW is the running time of a static weight

W and Tbase is the baseline running time reported in Table 1 us-
ing adaptive weight adjustment. We can see when W is zero,
i.e., without given any bias to the goal, our planner has difficulty
of finding a path within the given number of samples due to the
sparsity of high dimensional space. When W = 1, i.e., the plan-
ner always expand the search to the goal, it can be easily trapped
at a dead-end. Overall, static weights between 0.4 and 0.8 give
the best performance. However, if we compare the results with
static weights to the baseline results shown in Table 1, we can
conclude that adaptively adjusting weight (i.e., via lines 10 and
12 of Algorithm 1) does provide much better performance.
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FIGURE 10. (a) Relative running time over various expansion distance D. The relative running time is defined as TD
Tbase

, where TD is the running time
of a given value of D and Tbase is the baseline running time reported in Table 1 when D = 0.02. (b) Relative running time over various static weight
W . The relative running time is defined as TW

Tbase
, where TW is the running time of a static weight W and Tbase is the baseline running time reported in

Table 1 using adaptive weight adjustment.

TABLE 1. Running Time

Model DOF Time (s) Sampled Valid Tested

L 2 0.004 110 110 156

L2 4 8.317 40323 787 2047635

L22 4 0.010 331 331 407

Box1 6 0.101 250 250 15181

Diamond 6 0.514 1074 390 65033

Waterbomb 8 0.613 731 359 54046

Fly1 8 0.631 605 421 53613

Box2 9 1.463 864 358 126885

Fly2 11 2.425 864 460 127064

Miura 12 13.564 1813 677 511050

Sailboat 34 83.923 6103 1970 1396032
(Note: L22 is L2 with an intermediate state defined by user)

5.3 Reverse Search

An et al. [6] find folding path by continuously unfolding the
model from the folded state. Since the flatten model has more
flexibility which makes path planning hard or even not able to
fold the origami to desired state from an unfolded sheet of paper.

Reverse search can be beneficial especially if certain folding or-
der is required, such as the L2 shown in Fig. 6(b). Reverse search

provides a strong heuristic towards to the goal (unfolded state)
and dramatically reduces the search space which can not only
improve the efficiency but also increase the chance to find a path.
To test this observation, we conducted experiments using reverse
search and the results are shown in Table 2. As we can see, for
most of the models, the running time remains almost identical or
even slower, however, reverse search does have a huge improve-
ment on models that has implicit folding orders such as L2 and
Sailboat.

Let us take another view to exam the idea of reverse search using
Fig. 4(a) (Miura origami). As we can see from Fig. 4(a), the
trajectories of folding angles are quite smooth especially for the
portion between the middle part and the goal. However, if we
zoom in to the first 50 steps of the trajectories shown in Fig. 4(b),
we can see that there are quite a lot of turbulences at the very
beginning. This indicates that the paper has greater flexibility
when it is almost flat. It is exactly this difference between the
beginning and the end of the folding process that motivates An
et al. [6] to obtain the folding path by unfolding because existing
folding tools, such as [12], often get lost at the beginning of the
folding process. Using randomized search and adaptive weight
adjustment, our proposed method is able to find these implicit
patterns in Miura origami just after 100 steps without given any
hint on the relationships of the creases.
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TABLE 2. Running Time using Reverse Search

Model Time (s) Speedup(x) Sampled Valid Tested

L 0.006 0.667 108 108 149

L2 1.936 4.296 6123 473 352462

L22 0.019 0.526 439 439 488

Box1 0.167 0.605 291 291 17790

Diamond 0.203 2.532 374 371 24517

Waterbomb 0.444 1.381 346 346 25725

Fly1 0.549 1.149 464 338 40694

Box2 1.805 0.811 772 408 112541

Fly2 1.440 1.684 489 452 73134

Miura 11.231 1.208 1577 638 457353

Sailboat 27.099 3.097 2703 1542 460593
(Note: L22 is L2 with an intermediate state defined by user)

5.4 Taking Symmetry into Consideration

Some of the crease patterns are highly symmetric, for example,
the Miura crease pattern. The trajectories of the folding angles
found by the proposed method shown in Fig. 4(a) also confirms
the symmetry property: 12 trajectories are overlapped into only
four, and there is also vertical symmetry (corresponding moun-
tain creases and valley creases have the same folding angle, but
with opposite sign), the DOF of the Miura crease pattern can be
further reduced to 2. Thus, if we take symmetry into consider-
ation, the DOF of the origami can be reduced significantly. As
shown in Table 3, the running time of finding a path gains more
than four times speedup when our planner considers symmetry.
Although we do not detect symmetry automatically, we believe
this can be approximated by checking whether the initial trajec-
tories overlap.

TABLE 3. Running Time using Symmetry

Model
DOF

Speedup (x)
before after

Diamond 6 2 15.05

Fly1 8 3 4.69

Waterbomb 8 2 14.67

Fly2 11 4 11.12

Miura 12 2 13.98

5.5 Compare to Existing Works

Although there have been several existing works on simulating or
planning motion of rigid origami [1, 6, 10], most of these works
are only applicable to specific type of rigid origami. Tachi’s
Rigid Origami Simulator (ROS) [12] provides the most general
solution so far and is the only publicly available software the we
are aware of. Consequently, we have tested ROS extensively us-
ing the crease patterns shown in Fig. 6. However, we found that
it is difficult to provide a meaningful comparison to our meth-
ods due to that both approaches focus on different objectives.
The main objective of this paper is to find folding path from one
configuration to another while ROS focused on folding a crease
patten as much as possible. In addition, even for a very simple
crease pattern, such as L2 shown in Fig. 6(b), ROS usually failed
to find a valid folding path due to self-intersection. In many situ-
ations, the gradient approach causes ROS to be trapped in a local
minimum due to its inability to find the implicit folding order
induced by the crease pattern. Moreover, ROS does not support
user defined criteria of the folding process, such as user defined
intermediate states that should be reached in order (as phases
for active-materials), maximum acceleration of folding speed for
a partially crease (maximum toque that can be applied to that
crease), etc.

6 Conclusions

In this paper, we proposed a randomized approach for planning
the motion of rigid origami. We used a nonlinear optimization
method to find a valid configuration around a given sample con-
figuration. An adaptive bias that attracts the search process to
the goal was also introduced to speed up the search process. The
experimental results shows that our planner could efficiently and
effectively find valid path for various types of rigid origami that
existing tools fail to fold.

The proposed randomized rigid origami folding method is de-
signed to assist the foldability analysis of self-folding origami.
Self-folding origami using active-materials usually have many
kinematic and dynamic constraints, such as maximum folding
angles, and may often requires multiple folding phases in order
to fold itself to the desired state, see details in [5]. User de-
fined motion criteria can be easily introduced into the proposed
framework. For example, our method supports multi-phase fold-
ing by given a sequence of valid intermediate configurations
{C1,C2, ...,Cn}.

Limitations and Future Work Even through our preliminary
results are encouraging, our method still has much room for im-
provement. For example, results of L22 in Tables 1 and 2 is ob-
tained by folding a two phase origami model via an intermediate
state defined by user. (That is, L22 and L2 have the same crease
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pattern and angle assignment but L22 folds via a given intermedi-
ate state.) We can see that by explicitly specifying the folding or-
der, the search space could be reduced significantly and provides
over 800 times speedup comparing to knowing nothing about the
folding order (130 times speedup if search in reverse order). The
next step of our work will focus on analyzing the folding order
of a given crease pattern.
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