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Abstract— Self-folding robot is usually modeled as rigid
origami, a class of origami whose entire surface remains rigid
during folding except at crease lines. In this work, we focus
on finding valid folding motion that brings the origami from
the unfolded state continuously to the folded state. Although
recent computational methods allow rapid simulation of folding
process of certain rigid origamis, these methods can fail even
when the input crease pattern is extremely simple but with im-
plicit folding orders. Moreover, due to the rigidity requirement,
the probability of generating a valid configuration via uniform
sampling is zero, which greatly hinders the applicability of
traditional sampling-based motion planners. We propose a
novel sampling strategy that samples in the discrete domain.
Our experimental results show that the proposed method
could efficiently generate valid configurations. Using those
configurations, the planners successfully fold several types of
rigid origamis that the existing methods fail to fold and could
discover multiple folding paths in different homotopic for Multi-
DOF origamis.
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Fig. 1. Folding sequence (from (a) to (h)) of a rigid sailboat origami
produced by the proposed planner which samples in the discretized config-
uration space of the sailboat.

I. INTRODUCTION

In recent year, we have witnessed the acceleration in the
development of self-folding origami or self-folding machines
[1] due to the advances in robotics engineering and material
science. These self-folding origami can fold itself into a
desired shape via the micro-thick folding actuators [2] or
by reacting to various stimuli such as light [3], heat and
magnetic fields [4]. Although the development is still in its
early stage, there have already been many applications, such
as surgical instruments for minimally invasive surgery, where
there is a need for very small devices that can be deployed
inside the body to manipulate tissue [5].
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Designing self-folding origami that can resume or approx-
imate a single or multiple target shapes requires careful
foldability analysis. In this paper, we focus on the question:
what is the folding process, i.e., a sequence of angle assign-
ments, that brings the crease pattern from the unfolded state
continuously to the folded state?

The challenges of planning motions for rigid origami stem
from two main sources: the high dimensionality in the search
space and highly constrained kinematic system resulted from
the rigidity requirement. Consequently, we have experienced
great difficulty in applying traditional sampling-based meth-
ods such as PRM [6] and RRT [7] directly. This is due
to the fact that the valid configurations of many origami
usually form a manifold in lower dimensional space, thus
the probability of generating a valid configuration is zero
via uniform sampling. This phenomenon can be observed
from Waterbomb and Miura origami in Fig. 2, where the
valid configurations form 1D curves in the projected 2D
configuration spaces.

In this paper, we propose a sampling-based motion planner
that generates configurations using only a small set of
folding angles, such as those found in the initial and final
configurations and some commonly used angles such as
π
2 and π. Given the simplicity of the proposed method, it
provides many advantages comparing with a strategy that
samples from the continuous space [8], [9]. First, our method
can find more valid configurations in shorter sampling time.
Second, our method can quickly discover implicit folding
order that provides critical information to guide the folding
process of many origami, such as the sailboat in Fig. 1. It
should be noted that, finding the implicit folding order, that
requires the crease lines to be folded in a very specific order,
can be viewed as the notorious “narrow passage problem”
in sampling-based motion planners. Finally, contrary to the
existing methods that only report a single folding path,
our method can provide multiple folding paths in different
homotopic classes (see Fig. 6).

II. RELATED WORKS

Although there has been many works on computational
origami in the past few decades, few of them focused on
planning and simulating origami motion. In this section, we
will review some of these works. Song et al. [8] presented a
PRM based framework for studying folding motion. How-
ever, their kinematic representation of origami is a tree-
structure model whose folding angle of each crease line is
independent of other crease lines. Although tree-structure
model greatly simplifies the folding map that can be easily



(a) Waterbomb 5% DT (b) Waterbomb 0.1% DT

(c) Miura 5% DT (d) Miura 0.1% DT

Fig. 2. Random sample one million configurations uniformly for a
Waterbomb crease pattern (top) and a Miura crease pattern (bottom)
under different deformation tolerances (DT). The crease patterns of these
origami can be found in Fig. 3. Red: has self-intersection, invalid. Yellow:
deformation is larger than tolerance, invalid. Magenta: within deformation
tolerance but actual folding angles are different from assigned ones, invalid.
Blue: valid.

defined along the path from base to each face, this model
is not applicable to represent the majority of the origami,
due to their closure constraints. Balkcom [10] proposed a
simulation method based on the ideas of virtual cutting and
combination of forward and inverse kinematics using a rigid
origami model. Although this approach is computational
efficient, it cannot guarantee the correct mountain-valley
assignment for each crease. Recently, Tachi [11] proposed
an interactive simulator for rigid origami model (known as
Rigid Origami Simulator (ROS)) which generates folding
motion of origami by calculating the trajectory by projection
to the constrained space based on rigid origami model, global
self-intersection avoidance and stacking order problems are
not considered in his work. An et al. [2] proposed a new
type of self-reconfiguration system called self-folding sheet.
They first construct the corresponding folded state for a given
crease pattern and angle assignment then continuously unfold
the paper using local repulsive energies. More recently, Xi
and Lien [9] proposed an randomized search algorithm via
nonlinear optimization (FROCC) to find the intermediate
folding steps which guarantees the rigid foldability and self-
intersection free.

III. PRELIMINARIES: RIGID ORIGAMI MODEL

A. Crease Pattern

We use a crease pattern to represent the rigid origami model.
A crease pattern is a straight-edged graph embedded in the
plane. An edge of this graph correspond to the location of a
crease line in an unfolded sheet. A crease line can be either
mountain folded or valley folded. A mountain fold forms a

convex crease at top with both sides folded down. On the
other hand, a valley fold forms a concave crease. Examples
of crease pattern are shown in Fig. 3.

B. Configuration

We use the folding angles of crease lines to represent the
configuration of an origami model. For an origami with
n crease lines, its configuration is represented as C =
[ρ1, ρ2, · · · , ρn]T where ρi is the folding angle of the i-th
crease line.

C. Folding Map

Folding map [12] is function that defined on each face which
maps a point in that face from <2 (on the crease pattern
plane) to the corresponding point of folded state in <3. For a
given foldable configuration C, we can compute the folding
map, and with the folding map, the crease pattern can be
folded to the 3D shape represented by the configuration
C instantaneously [9]. However, the intermediate motion
remains unknown.

D. Valid Configurations

Given a configuration C, C can be classified according to its
foldability and feasibility.

Foldability For a vertex v in the crease pattern, we use Cv =
[ρv1 , ρv2 , · · · , ρvk ]T to denote a configuration of v where ρvj
is the folding angles of the j-th crease line incident to v. It
is obvious that Cv is a subset of C. The necessary condition
for guaranteeing foldability requires every vertex v in the
crease pattern to satisfy the closure constraint [12]

F (v, Cv) =
k∏
i=1

χ(ρi) = I (1)

where χ(ρi) is a folding matrix for folding the i-th crease
line by ρi. Due to page limit, please refer to [9] for details
about the folding matrix χ.

During the folding process, [9] tries to minimize the ob-
jective function |F (v, Cv)− I| to find a valid configuration.
However, computing the error between the mapping function
and identity matrix usually does not give us a quantitative
measure of how much an invalid configuration deviates from
the manifold of foldable configurations [13]. Thus, in this
paper, we propose two new metrics: deformation and angle
inconsistency (discussed below). With these new metrics, we
say that a configuration is rigid foldable if both deformation
and angle inconsistency of the folded shape are under user
specified tolerances.

Deformation A rigid foldable configuration should be de-
formation free. Deformation is measured on every edge
including virtual edges and it is defined as (||efolded|| −
||eorg||)/||eorg||. If the maximum deformation of a shape



folded by apply the folding map of a configuration C is larger
than a user given deformation tolerance, we say that C is
non-foldable.

Angle inconsistency We measure the folding angles of
each crease line on the folded shape and compare it to the
assigned angle in the configuration. The angle inconsistency
is defined as |ρfolded − ρassigned|. In most of the cases,
angle inconsistency is caused by deformation which means
the configuration is non-foldable. However, sometimes we
noticed that there are huge differences between two angles
even though the folded shape is deformation free. Vertices
shared by faces have multiple folding maps, whose coordi-
nates may be override later depends on the order of applying
the folding maps. For a configuration C, if a vertex was
mapped to different positions and its final position happen
to be valid and deformation free, angle inconsistency can be
used to find out those vertices, and C will be regarded as
invalid.

Feasibility There are several properties that a rigid origami
should have during folding: (1) unstretchable, (2) flat (planar)
for all faces, and (3) free of self intersection. However, a
foldable configuration only guarantees the first two proper-
ties. Collision detection needs to be applied on the folded
shape to determine the feasibility.

Finally, we classify a configuration into one the following 4
categories according to deformation and angle inconsistency
tolerances:

1) Invalid: deformation is larger than tolerance.
2) Self-intersected: deformation is within the tolerance

but self-intersection occurs.
3) Inconsistent: deformation is within the tolerance but

folding angle is inconsistent.
4) Valid: otherwise.

IV. FOLDING MULTI-DOF RIGID ORIGAMI

We say an origami is Multi-DOF if there exists a con-
figuration that under which one or more crease lines can
be folded/unfolded independently, i.e. its rigidity can be
maintained without folding other crease lines.

A. Sampling In Discrete Domain

Traditional sampling strategies have difficult to effectively
generate valid samples in the configuration space for rigid
origami with closure constraints even in lower dimensional
space. Some crease patterns have been shown to be 1-
DOF mechanism such as the Miura crease pattern [14]
which means the valid configurations form a curve in the
configuration space, thus the probability of a random con-
figuration to be valid is zero. Although we could tolerant
certain amount of deformation, the configuration space is
still mostly occupied by “obstacles” as shown in Fig. 2,
only 0.044% of the configuration space is valid under 0.1%
deformation tolerance for the Miura crease pattern with

number of crease lines reduced to 2 by taking symmetry into
consideration [13]. And situation will become even worse in
higher dimensional configuration space.

To address this problem, instead of sampling in the continues
domain with zero probability to generate a valid configura-
tion, we propose the idea of sampling in the discrete domain.
For a crease line with target folding angle ρ, we only sample
the folding angle from its important angle set: {0, π, ρ}
which are corresponding to the flat state, the fully folded state
and its target state. The total number of unique configurations
for the origami with n crease lines is 3n. For 1-DOF origami,
usually it has only two continuous foldable configurations in
the discrete domain which represent the initial state and the
target state. And for Multi-DOF origami we expect to find
more valid and continuous foldable configurations.

B. Connecting Two Valid Configurations

Given two valid configurations, it is usually unknown
whether a rigid foldable and collision free path exist or
not due to closure constraints which usually result in highly
nonlinear path. In order to connect two configurations, we
employ two connection methods: linear connection and non-
linear connection.

Linear connection An intuitive but turns out the most
efficient way to connects two valid configurations is by
linearly interpolating the intermediate configurations. Two
configurations are rigid foldable to each other if all inter-
polated intermediate configurations are rigid foldable and
collision free.

Nonlinear connection If linear connection failed to connect
two configurations which means the path has to be nonlinear
or even does not exist. We use a randomized search method
proposed in [9] to connect two valid configurations, which
could find a nonlinear, rigid foldable and collision free path.
A folding path for the Waterbomb crease pattern found by
[9] is shown in Fig. 6(c), from which we can see that the
entire path is nonlinear.

C. Path Planning

We propose a folding path planner for a Multi-DOF origami
under the Lazy-PRM framework [15]. First, we sample
configurations in the discrete domain by adding valid con-
figurations to the roadmap. We then connect all pairs of the
configurations initially and add the edges to the roadmap.
Then a graph query is answered to find a path from start
node to target node. Connectivity checking will be applied
only on the consecutive nodes in the path. If two nodes
cannot be connected, i.e., they are not continuous foldable
to each other, their corresponding edge is removed from the
roadmap and a new path is extracted. We repeat this process
until all edges that connect consecutive nodes in the path
are validated. Finally, the rigid foldable and self-intersection
free path is obtained by combining all the path segments.



(a) L2 (b) Waterbomb (c) Miura (d) Sailboat

(e) L2 (f) Waterbomb (g) Miura (h) Sailboat

(i) Target shapes

Fig. 3. Top: Crease patterns used in our experiments. Mountain creases
are shown as solid lines in red, valley creases are show as dashed lines
in blue. Middle: Crease patterns with crease lines in groups. crease lines
in the same group are shown in the same color. Bottom: Target shapes of
above crease patterns.

V. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup

We implemented the proposed method in C++, which will
be opened to the public after this work is published. All data
reported in this paper were collected on a MacBook Pro with
a 2.9 GHz Intel Core i7 CPU and 16GB Memory running
Mac OS X Yosemite. Crease patterns used in the experiments
are shown in Fig. 3 with their target shapes. In the following
experiments, without notice we use 1% as the deformation
tolerance, 0.0174 rad (≈1◦) as folding angle inconsistency
tolerance. A configuration is regarded as valid if it falls into
the “Valid” category.

B. Visualization of the Configuration Space

We observed that some crease lines will have almost the same
folding angles during entire folding process. For example, in
the folding path of the Waterbomb crease pattern as shown
in Fig. 6(c), 8 trajectories of folding angles overlapped into
2 groups. This is due to those crease lines are symmetric to
each other in the crease pattern. By assuming corresponding
crease lines have the same motion in the folding process, we
can gather them into groups. As shown in Fig. 3, crease lines
in the same group are displayed in the same color. By using
symmetry property of the crease pattern, dimensionality of
the configuration space could be reduced significantly [13],
and visualization of the configuration space become possible.

Configuration spaces of Waterbomb and Miura crease pat-
terns under different deformation tolerances are shown in
Fig. 2, from which we can see that the majority of the
configuration space is invalid since configurations that do

not satisfy closure constraints will generate large deformation
which makes the origami become unfoldable. Also we can
see from Fig. 2 that there are curves that connect the initial
state [0, 0]T and some extreme states (one or more crease
lines/groups are fully folded). For the Waterbomb crease pat-
tern, we can clearly see that there are two extreme states, the
one with the configuration [π,−π/2]T represents the target
shape of the Waterbomb crease pattern as shown in Fig. 3(i),
another one with the configuration [π/2,−π]T happens to
represent the bi-stable state [16] of the Waterbomb crease
pattern.

C. Continuous V.S. Discrete Sampling Strategy

In order to evaluate our method, we conduct an experiment
on the crease patterns shown in Fig. 3. The number of crease
lines n in the crease pattern we used are from 2 to 12
shown in Table I, which equal to the dimensionality of the
configuration space.

We uniformly sample one million random configurations in
the configurations space and compare the number of valid
samples and their running time.

Sampling in continuous domain As we can see from
Table I, even in lower dimensional space (e.g., 2D) it can
generate only a few valid configurations, for Waterbomb and
Miura crease pattern in 2D, the valid configurations are only
about 1.02% and 0.13% respectively. With the increase of
dimensionality, it failed to find any valid configuration even
though the origami is Multi-DOF due to closure constraints.

Sampling in discrete domain For the proposed method,
folding angles are sampled only from each crease line’s
important angle set: {0, π, ρ} as Discrete3. For comparison
we also sampled from another angle set: {0, π/2, π, ρ} as
Discrete4. From Table I we can see that, this strategy finds
several intermediate configurations efficiently since we can
filter out duplicated configurations in constant time using
a hashtable, and effectively as we will see later those
intermediate configurations are very important.

TABLE I
COMPARISON BETWEEN SAMPLING STRATEGIES

Model n
Continuous Discrete3 Discrete4

Valid Time Valid Time Valid Time
Waterbomb∗ 2 10161 12.10 5 0.35 6 0.42

Miura∗ 2 1305 17.48 3 0.36 3 0.43
L2 4 1 10.31 5 0.45 6 0.52

Sailboat∗ 6 0 33.70 48 0.57 118 0.74
Waterbomb 8 0 10.97 71 0.73 114 0.89

Miura 12 0 17.35 7 0.94 7 7.13
Running time is measured in second. ∗ indicates that symmetry property is used.

In this experiment we show that sampling in discrete domain
is a powerful strategy to generate valid samples for rigid
origami with closure constraints. This strategy works even
when the sampling domain is small (in our case only three
values) and enables us to discover foldable states while
sampling in continuous domain was not able to find any.
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Fig. 4. Folding paths of L2 crease pattern. (a) Linear connection with one
intermediate state. (b) Nonlinear connection.

D. Linear Connection V.S. Nonlinear Connection

Let us look at the L2 crease pattern shown in Fig. 3(a) first.
L2 crease pattern has 4 crease lines, two vertical crease lines
in the middle are both mountain creases which need to be
fold first since the horizontal ones have opposite folding
angles (π/2 and −π/2). L2 has two folding steps hidden
in the crease pattern, we say it has implicit folding orders.
Using the proposed method, we are able to discover one
valid intermediate state, which makes the connections from
start to the intermediate state and from the intermediate
state to goal both become linear, though the entire folding
process is nonlinear. Folding path found by the proposed
method are shown in Fig. 4(a). In this case, FROCC was
also able to find the folding path as shown in Fig. 4(b).
Both paths look identical to each other except the path
find by nonlinear connection has a little turbulence. If no
deformation is allowed in the system, the only valid folding
path has to be Fig. 4(a) exactly. The total running time
for proposed method to find the path is 11.784 ms. While
FROCC costs 209.747 ms which is about 18x slower than
the proposed method.

E. Alternative Paths for Multi-DOF Origami

Fig. 5. Continuous foldable shapes folded from Waterbomb crease pattern.

For 1-DOF origamis such as the Miura crease pattern shown
in Fig. 3(c), sampling in the discrete domain may not
help since typically they have only two continuous foldable
configurations which represent the initial state and goal state
and nonlinear connection has to be used to connect those two
configurations. However, for Multi-DOF origamis, at least
one valid intermediate configuration can be sampled using
the proposed method, and we can expect much more. Here
we use the Waterbomb crease pattern shown in Fig. 3(b)
as an example. The Waterbomb crease pattern has 8 crease
lines: 4 mountain creases and 4 valley creases, and it is a
Multi-DOF origami. Previous methods like ROS or FROCC
could find at most one folding path even though the origami

is a Multi-DOF system and has many folding paths. The
folding path found by FROCC for the Waterbomb crease
pattern is shown in Fig. 6(c), and the folding process is
shown in Fig. 6(a). Using the proposed method, we found
71 valid configurations on the Waterbomb crease pattern. In
Fig. 5, we show 5 continuous foldable shapes in which 3
three of them represent intermediate states. Via intermediate
configurations, we found alternative folding path for the
Waterbomb crease pattern, folding path and folding process
are shown in Fig. 6(b) and Fig. 6(d) respectively. As we can
see from Fig. 6(b), the origami folds to goal state via an
intermediate state and one of the path segments is linear.

(a) Folding path found by FROCC

(b) Alternative path found by the proposed method
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(c) Folding angle trajectories of (a)
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(d) Folding angle trajectories of (b)

Fig. 6. Valid states and folding process of a Waterbomb crease pattern.

F. Global Connectivity

Local Minima and Self-Intersection Avoidance Previous
methods like ROS or FROCC could find only one folding
path even though the origami is a Multi-DOF system. And
they can easily be trapped at local minima or lead to self-
intersection and would not able to fold any further. An
interesting example is to use FROCC to fold sailboat crease
pattern as shown in Fig. 3(d) without specified intermediate
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Fig. 7. Folding paths of the sailboat crease pattern.



configurations, it folds the origami to the very end but it can
not fold any further due to self-intersection. Its folding path
is shown in Fig. 7(a). On contrast, sampling in the discrete
domain gives us many valid intermediate configurations
which enables us to capture the global connectivity of the
configuration space. And we can easily fold the origami
from flat sheet to target shape without being trapped at
local minima and could avoid self-intersection regions. The
folding path found by the proposed method is shown in
Fig. 7(b) from which we can see that the origami fold from
start to goal via 3 intermediate states.
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Fig. 8. Connectivity graph of the Waterbomb crease pattern. Each node
represents a valid configuration in which Node 0 shown in red represents
the initial state (flat sheet) and Node 70 shown in blue represents the target
state. Two node are connected by an edge if they are continuous foldable
to each other. Nonlinear connected edges are bold.

Connectivity of the Configuration Space With the sampled
valid configurations by the proposed method, we could cap-
ture the connectivity of the configuration space by checking
the connectivity of all pairs of configurations. A visualization
of the connectivity of the Waterbomb crease pattern is shown
in Fig. 8. Interesting readers can refer to [17] and our tech-
nical report [18] for detailed discussion about connectivity
of the configuration space.

VI. CONCLUSION

Instead of uniformly sampling in the continuous domain
that has zero probability of generating a valid configuration
for rigid origami with closure constraints, in this paper,
we proposed a novel method that samples in the discrete
domain: folding angle of a crease line is sampled from the
finite angle set of that crease line. Our experimental results
show that the proposed method is effective and efficient to
generate important intermediate configurations for origamis,
in particular for those Multi-DOF with closure constraints.
With these valid intermediate configurations, the proposed
motion planner has the following advantages: (1) Globally
nonlinear path could be replaced by the combination of linear
path segments and nonlinear ones, which significantly speed

up the path finding process, (2) Multiple folding paths could
be found for Multi-DOF origamis, and (3) Local minima and
self-intersection regions could be avoided.
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