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Abstract

While techniques that segment shapes into visually
meaningful parts have generated impressive results, these
techniques also have only focused on relatively simple
shapes, such as those composed of a single object either
without holes or with few simple holes. In many applica-
tions, shapes created from images can contain many over-
lapping objects and holes. These holes may come from sen-
sor noise, may have important parts of the shape or may
be arbitrarily complex. These complexities that appear in
real-world 2D shapes can pose grand challenges to the ex-
isting part segmentation methods. In this paper, we propose
a new decomposition method, called Dual-space Decompo-
sition that handles complex 2D shapes by recognizing the
importance of holes and classifying holes as either topolog-
ical noise or structurally important features. Our method
creates a nearly convex decomposition of a given shape by
segmenting both the polygon itself and its complementary.
We compare our results to segmentation produced by non-
expert human subjects. Based on two evaluation methods,
we show that this new decomposition method creates statis-
tically similar to those produced by human subjects.

1. Introduction

Decomposing two-dimensional (2D) shapes into func-
tional and visually meaningful parts is a fundamental pro-
cess in human vision [12, 15, 4, 5, 1, 30]. Many segmen-
tation and decomposition techniques have been proposed to
mimic this process computationally [6, 16, 31, 2]. While
these techniques (usually known as part segmentation) gen-
erate impressive results, they also have only focused on rel-
atively simple shapes, such as those composed of a single
object either without holes [30] or with few simple holes
[22, 25, 29]. Even when holes are explicitly considered, ex-
isting techniques usually decompose the shape so that no
holes are left [22, 25, 29]. In many situations, shapes are
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(a) Human (b) DUDE

Figure 1. Examples of decompositions from human and dual-space
decomposition (DUDE).

created from images (e.g., silhouettes) of overlapping ob-
jects and can also contain many undesired holes due to sen-
sor noise. In other cases, these holes can be important part
of the shape and arbitrary complex. These complex shapes,
such as those shown in Figures 1, 6, and 7 pose grand chal-
lenges to the existing part segmentation methods.

Another major limitation in the existing part segmenta-
tion methods is the lack of well-defined criteria and bench-
mark for quality comparisons. Unlike image segmentation,
comparison between part segmentation methods is usually
done visually and evaluated based on the size of the fi-
nal decompositions, i.e. smaller decomposition is better.
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The most widely used MPEG 7 image set [21] consists of
only shapes with single boundary. This limitation is further
hindered by the lack of public domain implementations of
many existing methods.

To address the aforementioned issues, in this paper, we
propose a new decomposition method, called Dual-space
Decomposition (or simply DUDE). DUDE is designed to
handle complex 2D shapes that may be composed of over-
lapping objects with significant number of holes. DUDE
accomplishes this by recognizing the importance of these
holes by classifying holes as either topological noise and
structurally important features. DUDE is developed based
on the idea of nearly convex parts. Strategies that decom-
pose shapes into nearly convex components have been pro-
posed recently in the communities such as computer vision,
pattern recognition and graphics [22, 33, 25, 29]. In order
to recognize the importance features from the external and
hole boundaries, DUDE creates the nearly convex decom-
position of the shapes by segmenting both positive and neg-
ative regions of the shape (the polygon itself and its com-
plementary).

In this paper, we propose an efficient dual-space method
to decompose a non-convex polygon into several approxi-
mate convex parts, similar to human decomposition result
which will be explained in following sections. Our method
is designed to handle shapes with complex holes. To quanti-
tatively evaluate DUDE, we take an initial step to collected
more than 3800 segmentation from 142 non-expert using 72
polygons (shown in Figure 6). Using two statistics-based
evaluation methods described in Section 5, we show that
DUDE generates segmentation closer to man-made segmen-
tation than existing methods.

2. Related Work
Polygon decomposition has been extensively studied

theoretically and experimentally in areas including com-
puter graphics, computational geometry [19], computer vi-
sion and pattern recognition.

In computational geometry, researchers are traditionally
interested in creating decompositions subject to some op-
timization criteria, such as a minimum number of convex
components [7, 13, 18, 8, 20]. Most of these problems
are shown to be NP-hard [23, 18, 24]. More recently, sev-
eral methods have been proposed to partition at salient fea-
tures of a polygon. Tănase and Veltkamp [32] decompose
a polygon based on the events that occur during the con-
struction of a straight-line skeleton. Dey et al. [11] par-
tition a polygon into collections of Delaunay triangles of
points sampled from the polygon boundary. Lien and Am-
ato [22] partition a polygon into approximately convex com-
ponents. Their method reveals significant shape structures
by recursively resolving the most concave features until the
concavity of every component is below some user speci-

fied threshold. Wan [33] extends [22] to incorporate both
concavity and curvatures and prevent over segmentation by
avoid cuts inside pockets. Liu et al. [26] proposed the idea
of α-decomposition that use persistence analysis of features
obtained from the continuous convolution [3] between the
polygon and a disc.

In pattern recognition and computer vision, shape de-
composition is usually a step toward shape recognition. For
instance, Siddiqi and Kimia [30] use curvature and region
information to identify limbs and necks of a polygon and
use them to perform decomposition. Recently, Liu et al.
[25, 34] and Ren et al. [29] have been proposed to im-
prove [22] to create fewer and more natural nearly convex
shapes. Both methods [25, 29] use mutex pairs to enforce
the concavity constraint. Points p1 and p2 form a mutex
pair if their straight line connection is not completely in-
side the given shape. Their focus is on separating all mu-
tex pairs with concavity-based weights larger than a user-
specified threshold. Liu et al. [25] used linear program-
ming to compute decomposition with minimum cost. Short
cut rule is the only rule considered for evaluating the cost of
a cut. Ren et al. [29] applied a dynamic subgradient-based
branch-and-bound search strategy to get minimum number
of cuts. Other than short cut rule, [29] also took minima
rule into consideration which is that a cut resolving at po-
sitions with greater negative curvatures is preferred. Simi-
larly, Juengling and Mitchell [17] formulate decomposition
of a polygon as an optimization problem and applies dy-
namic programming to find the optimal subset of cuts from
all possible cuts. The objective functions used for optimiza-
tion favors short cuts that create dihedral angles close to π.
Mi and DeCarlo [27] propose to decompose shape into el-
liptical regions glued by a hyperbolic patches.

An important requirement in shape decomposition is its
robustness to boundary noise. Several of these methods re-
quire pre-processing (e.g., model simplification [17, 32]) or
post-processing (e.g., merging over-partitioned components
[11, 27]) due to boundary noise. Other methods [22, 25, 29]
are designed to tolerate these noise. However, as far as we
know, no existing approaches focused on handling topologi-
cal noise that appear quite commonly in polygons generated
from images with significant noise and overlapping objects.

3. Concavity
Concavity and the process of measuring it play the key

role in our method (DUDE). To ease the concavity mea-
suring process, we represent 2D shapes using polygons.
Let us first define some notations used throughout the pa-
per. A polygon P is represented by a set of n boundaries
{P0, P1, . . . , Pn−1}, where P0 is the external boundary and
Pk>0 are boundaries of holes. Each boundary consists of
an ordered set of vertices {pi} which defines a set of edges.
Each edge starts at vertex pi as ei = pipi+1 and has two

2



β0
β1

β2

β3

x

a

b

c d

e
f

y

u
v

Figure 2. Bridges β0, β1, β2, and β3 and a concave feature x. The
end points of β3, u and v, are the antipodal vertices of the hole.
Bridges β0 and β1 are the children of β2.

associated vectors: the vector −→vi = −−−−→pi pi+1 and the out-
ward normal −→ni . Because DUDE performs decomposition
in both areas enclosed by P and, P , the complement of P ,
it is worth noting that P can be obtained by reversing the
ordering of {pi}. In many cases, polygons are usually ex-
tracted from images by detecting the silhouettes, thus usu-
ally containing many geometric and topological noises.

Because DUDE relies heavily on the measure of concav-
ity, let us now define the concept of bridge and pocket.

Definition 1. A bridge β of a given polygon P is a segment
β = vu connecting two points v and u on the boundary
∂P of P from the space exterior to P . More specifically, a
segment vu is a bridge of P if and only if v, u ∈ ∂P and the
open set of vu is in the complement P of P , i.e. vu◦ ⊂ P .

Therefore, a bridge cannot enter P or intersect the
boundary of P except at its end points. Examples of bridge
are shown in Fig. 2. Note that, unlike bridges defined [22],
this definition of bridge can be inside the convex hull of P .

Definition 2. A pocket ρ of a bridge β = vu is a subset
of the boundary ∂P connecting v and u so that the region
enclosed by β and ρ is completely in P .

Intuitively, when traversing the boundary of P , a bridge
can be viewed as a short cut over its pocket. For example,
the pocket of the bridge β0 in Fig. 2 is a polyline between
vertices b and c via x.

The relationship between the bridge and pocket gives us
an intuitive way to define concavity. For example, in the
simplest case, the concavity of vertices in the pocket is sim-
ply the straight line distances to the bridge. A complete
definition of concavity will be provided in Section 4 for the
cases that the pocket is embedded in other pockets.

4. Dual Space Decomposition of Polygons
In dual-space decomposition (DUDE), the input polygon

P is decomposed based on the decomposition of the com-
plementP ofP (dual-space). Algorithm 1 outlines the idea.
The algorithm starts by determining the bridges and pockets
from the convex hull CH(P ) of P . Algorithm 1 then pro-
ceeds by decomposing the regions Pi enclosed between the
bridge βi and pocket ρi pair. The cuts generated by these
recursively calls DUAL-DECOMP(Pi, τ ) are, by definition,

bridges of P . Concavity is then measured, important con-
cave features are identified using the bridges from CH(P )
and the cuts for Pi. Finally, P is decomposed using these
concave features. In the rest of this section, we will dis-
cuss each of these steps in detail. Figure 3 illustrates P is
decomposed to find concave features of P .

Algorithm 1 Dual-Space Decomposition
1: procedure DUAL-DECOMP(P , τ )
2: Compute convex hull CH(P ) of P
3: Determine bridges β = ∂CH(P ) \ ∂P
4: Determine pockets ρ from β
5: for all Pi enclosed by ρi ∈ ρ and βi ∈ β do
6: κ = κ∪DUAL-DECOMP(Pi, τ )
7: Measure concavity using β ∪ κ . see Section 4.1
8: c = FEATURES(β ∪ κ, τ ) . see Section 4.2
9: return CUT(P , c) . see Section 4.3

4.1. Bridge Hierarchy

Figure 3. Decomposed P .

The bridges β are ob-
tained from two sources:
(1) the convex hull bound-
ary (line 3 in Algorithm 1)
and (2) the decomposition of
the pockets (line 5 in Algo-
rithm 1). First, we note that
these bridges form a hierar-
chy. More specifically, we
say that a bridge β is the par-
ent of β′ if the pocket ρ of β
is contained in the pocket ρ′ of β′. For example, in Fig. 2,
bridges β0 and β1 are both kids of β2. It is not difficult to
show that this relationship of all bridges can be uniquely
determined. That is, when two pockets overlap, one must
enclose the other one. As a consequence, we can state the
following theorem.

Theorem 3. The hierarchical relationship of bridges deter-
mined in Algorithm 1 must form a tree structure.

As a result, each vertex of P has a unique path to the con-
vex hull boundary of P . The length of this path determines
the concavity of the vertex.

Note that a hole boundary is a pocket associated with
only bridges from the decomposition. When a hole is nearly
convex, there is no bridge associated with the hole. There-
fore, a pseudo bridge is created by connecting the antipodal
pair, i.e., two farthest apart vertices, of the hole (see β3 in
Figure 2). When a hole is decomposed by DUDE, bridges
are formed from the cuts. Given k bridges, we can form k
bridge hierarchies by using each cut as the root. We choose
the hierarchy with lowest depth to measure the concavity of
vertices in the hole.
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Our objective in measuring the concavity is to identify
pockets that have large intolerable concavity. Intuitively, the
concavity of a pocket is the largest concavity of its vertices.

Definition 4. For a pocket ρ without children, we define:

concavity(ρ) = max
v′∈ρ

(dist(v′, β)) . (1)

Otherwise, concavity(ρ) is defined as:

max
ρ′∈C(ρ)

(concavity(ρ′) + dist(β′, β)) , (2)

where C(ρ) is the children of ρ, β′ is the bridge of ρ′, and
dist(x, y) is the shortest Euclidean distance between ob-
jects x′ and y.

We say that ρ an intolerable pocket if concavity(ρ) is
greater than τ . Finally, we would like to point out that this
hierarchical definition of concavity provides better accuracy
and efficiency over the traditional concavity measurement
computed directly between vertices and the bridge using ei-
ther the (fast but inaccurate) straight-line distance or the (ac-
curate but slow) shortest-path distance [22].

4.2. Detect Intolerable Concave Features

Given an intolerable pocket ρ either from the external
boundary or a hole boundary of P and the complement
polygon P enclosed by ρ and its associated bridge, we can
determine the intolerable concave features of ρ by finding
the smallest CH ′ approximation of the convex hullCH(P )
of P such that the distance from CH ′ to CH(P ) is smaller
than τ . Using the idea similar to the variational shape ap-
proximation [10], we then obtain an optimal approximation
CH ′i of CH(P ) with i vertices in iteration i. We start from
two vertices, i.e. i = 2, in the approximation and iteratively
add a vertex to the approximation to obtain a better approx-
imation until the two-way Hausdorff distance between CH ′i
of CH(P ) is less than τ . The vertices in CH ′i are the in-
tolerable concave features. An example of the intolerable
concave features is shown in Figure 4(a).

Because the complement polygon P of ρ must be nearly
convex (otherwise P is decomposed), it is provable that all
the intolerable concave vertices of ρ must be on the convex
hull CH(P ) of P [14]. In addition, by determining the
smallest approximation ofCH(P ) with bounded Hausdorff
distance, the method above provides the minimum number
of intolerable concave features .

4.3. Decompose at Intolerable Concave Features

In this section, we describe how the intolerable concave
features of a given polygon P are connected into cuts that
segment P into nearly convex components. Our method
starts off by determining the resolvers of each concave fea-
ture. A resolver of a concave feature v is a set of diagonals

(a) (b)

Figure 4. (a) Polygon with identified concave features. Size of
the circle indicates the significance of the feature. (b) Simplified
polygon using the concave features.

of P that can locally reduce the concavity of v to τ or less.
Once all resolvers from P are identified and evaluated, our
method then proceeds to determine a set of resolvers that
maximizes the total scores subject to the constraints that no
conflicting resolvers are selected.

In the rest of this section, we will discuss how a resolver
is defined and identified in Section 4.3.1. We then address
the optimization problem by solving 0-1 integer linear pro-
gramming in Section 4.3.2.

4.3.1 Resolvers of Intolerable Concave Features

A resolver of an intolerable concave feature v consists of a
set of diagonals incident to v. We say that a diagonal d is
valid for a given concave feature v if (1) d is in the interior
of P and (2) the end points of d belong to different pockets.

Given a polygon P , valid diagonals are determined us-
ing the Constrained Delaunay Triangulation (CDT) of both
P and the simplified polygon P̃ . The simplified polygon P̃
is composed of intolerable concave features and the vertices
between two consecutive bridges. Essentially, P̃ is P with
all pocket vertices replaced by the intolerable concave fea-
tures. An example of P̃ is shown in Figure 4(b). To find
all valid diagonals, we first compute the CDTP̃ of P̃ . Let
DP̃ ⊂ CDTP̃ be a set of valid diagonals incident to concave
feature ofP . We then compute the CDTP using the edges of
P and the diagonals in DP̃ as constraints. Let DP ⊂ CDTP
be a set of valid diagonals incident to concave feature of P .
The valid diagonals DP̃ ∪ DP are candidates for resolvers.

We say that a set of valid diagonalsD can locally resolve
a concave feature v if the local residual concavities at v are
all less than τ . These local residual concavities at v due
to D can be computed using only D and the edges of P̃
incident to v. Then, a resolver R of v is simply a minimum
set of valid diagonals that can resolve v. An example of
resolvers for vertices v and x is shown in Fig. 5.

The resolvers from a vertex v are mutually exclusive be-
cause a single resolver, by definition, can resolve v. As a
consequence, no two resolvers of v should be selected in
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Figure 5. Resolvers of vertices x and v. The resolvers of vertex v
include {vx, vz} and {vy}. The resolver {vx, vz} conflicts with
the resolver {vy} and all resolves of x.

the final decomposition. To ease our discussion, we define
the complement Ri of a resolver Ri be a set of mutually
exclusive (conflicting) resolvers. For example, in Fig. 5, the
complement of resolver {vy} (for vertex v) is the resolver
{vx, vz}. See the caption of Fig. 5.

4.3.2 Final Cut Selection

Cut selection in dual decomposition is an optimization
problem that maximizes the total score of the selected cuts
subject to the constraints that no conflicting resolvers are
selected and each concave feature requires a resolver. We
will now show that this optimization problem can be solved
using 0-1 integer linear programming.

Let R be a resolver and R be the conflicting resolvers
of R. The score S(R) of a resolver R is a function of (1)
the number of features resolved by R, (2) the concavity of
resolved features and (3) the total length ofR. Our goal is to
select a subset K of all resolvers R so that

∑
R∈K S(R) is

maximized subject to the following constraints (1) ||K|| ≤
n and (2)K∩Ri is empty for allRi ∈ K. To formulate this
problem as a 0-1 integer linear programming, we let R be
a vector of all resolvers and x be a 0-1 vector of size ||R||.
Then the final cuts are obtained by solving the following
linear programming problem:

maximize S(RTx) (3)

subject to
∑
xi∈x

xi ≤ n , (4)

and xi + xj ∈ {0, 1}, ∀(Rj ∈ Ri) , (5)

where n is the number of intolerable concave features.

5. Experimental Results and Evaluation
We have implemented DUDE in C++. To evaluate

DUDE, we use 72 shapes shown in Fig. 6. To provide a
baseline for comparison, we collected 3818 segmentation
from 142 human subjects. Many shapes are from the widely
used MPEG7 database. All the images from MPEG7 con-
tain only a single boundary. To test the polygons with many
holes, we add synthesized noise to MPEG7 images and use
silhouette images, such as trees, human crowd, and bikes. In

Figure 6. Shapes used in our experiments

all experiments, the value of concavity tolerance τ is fixed
for both DUDE , MNCD [29] and ACD [22]. The segmen-
tation collected from human, DUDE, MNCD and ACD are
then compared using two statistics-based evaluation meth-
ods (detailed in Section 5.2). The average running time for
DUDE is less than 2 seconds on a regular laptop. Example
output can be found in Figures 7 and 8. Complete human
segmentation results and collecting software tools are avail-
able to the public at http://masc.cs.gmu.edu.

5.1. Collect Human Segmentation

We used Amazon Mechanical Turk to collect human seg-
mentation. Non-expert users were asked to draw lines to
segment the displayed polygon into meaningful parts via a
web-based interface. Several good and bad examples were
shown before the user starts. Constraints were added to pre-
vent user making segments outside or intersecting with the
polygon or other existing cuts. There were in total 142 peo-
ple participated, and we obtained 3818 valid segmentation.
On average, each user spent around 90 seconds to segment
a polygon, and made about 8.12 cuts for a polygon. To vi-
sualize the segmentation, we overlay user created segments,
each of which is drawn translucent therefore the most fre-
quently picked segments are darker. Examples of human
segmentation can be found in Figures 7 and 8.

5.2. Evaluate Part Segmentation

Although few works focusing on evaluating part segmen-
tation, evaluating image segmentation has been widely in-
vestigated (see a survey in [9]). In this section, we propose
two statistical methods. One is based on Rand Index (RI)
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(a) Human (b) DUDE

Figure 7. Differences between human segmentation and DUDE.

(a) Human (b) DUDE (c) ACD

Figure 8. Decomposition results of the aggregated human cuts,
DUDE and ACD.

[28] and the other one is called Cluster Coverage (CC).
To perform RI evaluation, we first obtained the repre-

sentative human segments via k-means clustering for each
polygon. Here k is determined by the mean number of cuts

created by human for a given polygon.
Next, we overlay the decomposition with a 200 × 200

regular grid tightly bounding the polygon P . A cell is con-
sidered as valid if it has more than half of its area inside
P . For a given segmentation, each component in the seg-
mentation is assigned a unique index and the cells enclosed
by this component are assigned the same index number. RI
evaluation of two segmentations (of the same polygon) is
measured by the likelihood that each pair of cells is in the
same component of two segmentations [28]. More specifi-
cally, let S1 and S2 be two segmentations, and s1i and s2i be
the indices of cell i in S1 and S2, respectively. Then their
RI is defined as:

RI(S1, S2) =

(
2
N

)−1 ∑
i,j,i<j

[CijPij+(1−Cij)(1−Pij)] ,

where N is the number of cells inside the original polygon,
Cij = 1 if s1i = s1j , Pij = 1 if s2i = s2j , CijPij = 1 if
cell i and cell j have the same index in both S1 and S2, and,
finally, (1 − Cij)(1 − Pij) = 1 indicates the cell i and j
have different indices.

A major drawback of the RI-based evaluation is that
the size of the representative cuts can affect the RI value
dramatically. Therefore, we propose another evaluation
method called Cluster Coverage. A Cluster Coverage (CC)
value between a segmentation S and clusters C of segmen-
tation created by the human subjects is determined in the
following way:

CC(S,C) =
∑k
i Wifi∑k
i Wi

,

where Wi is the number of elements in Ci and fi is an indi-
cator function that returns one if ∃Sj ∈ Ci.

The RI and CC values in Table 1 are obtained from
the evaluations between segmentations created by a given
method and the representative human segmentations over
all the polygons shown in Fig. 6. Therefore, for both RI and
CC evaluations, higher score indicates higher similarity to
the representative human segmentations. Human vs. Hu-
man comparison is used as the baseline for our comparison.
From Table 1, we see that the average RI value of DUDE is
only slightly below that of Human, while higher than those
from MNCD and ACD. This means DUDE provides seg-
mentations closer to the aggregated human segmentations.
The average CC value of Human is only slightly below that
of DUDE while the standard deviation of DUDE is slightly
higher. The CC evaluation again confirms that DUDE pro-
vides segmentation closer to the aggregated human segmen-
tation than MNCD and ACD.

5.3. Compare with CSD and MNCD

Both CSD [25] and MNCD [29] generate candidate cuts
and mutex pairs using Reeb graphs from multiple rotations.
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Table 1. Mean values of Rand Index (RI) and Cluster Coverage
(CC) and their standard deviations SDVRI and SDVCC .

Method Human DUDE MNCD ACD
RI 0.73 0.68 0.46 0.39

SDVRI 0.12 0.21 0.17 0.36
CC 0.67 0.77 0.73 0.40

SDVCC 0.094 0.15 0.26 0.38

Figure 9. Decomposition result of MNCD and DUDE. From left
to right: MNCD (τ = 0.1), DUDE (τ = 0.1), DUDE (τ = 0.01).

The major difference between DUDE and these methods
is that DUDE can handle holes (that appear frequently in
shapes of many overlapping objects) much more naturally.
Figure 9 shows the difference between the decompositions
of MNCD and DUDE. Consequently, as we have also seen
from Table 1, DUDE can generate more similar results than
MNCD compared to human segmentations. The reasons
of lower RI and CC scores may also be coming from the
fact that there are insufficient optimal candidate cuts in their
methods that are generated from intersection of scanning
lines and polygon boundary. Moreover, for polygon with
complex holes, MNCD requires parameters to balance be-
tween the visual naturalness and the number of cuts (while
DUDE requires only the value τ ). The naturalness may be
sensitive to the local noise. Finding good values for these
parameters is usually not easy.

6. Conclusion and Discussion

In this paper, we proposed a new method: Dual-space
Decomposition (DUDE) to do 2D shape decomposition,
which has applications in region/part-based recognition,
skeleton-extraction (Fig. 10), etc. DUDE is designed to seg-
ment shape composed overlapping objects with a significant
number of holes. Using two evaluation methods: Rand In-
dex and Cluster Coverage, we show that segmentation cre-
ated by DUDE is statistically more similar to the man-made
segmentation than those created by other methods.

Since DUDE is developed purely based on the geometric
properties, its ability to segment meaningful part is limited.
For example, our data shows that people are good at seg-
menting shapes composed of humans and animals. When a
figure contains human shape and other non-human objects,
people prefer to separate human from the models.

Although there has been many methods recently pro-
posed in segmenting 3D shapes, 2D part segmentation has
its own difficulty because 2D shapes tend to overlap thus

(a) Human (b) DUDE (c) ACD

Figure 10. Skeleton extracted from different methods

create ambiguity. When (either human or non-human)
shapes overlap, people also tend to segment each individ-
ual object or human from the group, even when the cut is
long (e.g., the crowd shape in Figure 7). Moreover, dif-
ferent people also assign the overlapping area to different
parts. More people tend to assign the overlapping area to an
object if it has larger ratio of non-overlapping parts in the
whole shape rather than other objects that share this over-
lapping area. For example, in the bike polygon in Figure 7,
when the frame has overlapping area with wheel, more peo-
ple tend to assign the area to wheel instead of frame.
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