
Exact and Approximate Reverse Nearest Neighbor Search for Multimedia Data

 Jessica Lin David Etter David DeBarr
 jessica@ise.gmu.edu detter@gmu.edu Dave.DeBarr@microsoft.com

George Mason University Microsoft Corporation
 Fairfax, VA 22030 Redmond, WA 98052

Abstract
Reverse nearest neighbor queries are useful in identifying
objects that are of significant influence or importance.
Existing methods either rely on pre-computation of nearest
neighbor distances, do not scale well with high
dimensionality, or do not produce exact solutions. In this
work we motivate and investigate the problem of reverse
nearest neighbor search on high dimensional, multimedia
data. We propose exact and approximate algorithms that
do not require pre-computation of nearest neighbor
distances, and can potentially prune off most of the search
space. We demonstrate the utility of reverse nearest
neighbor search by showing how it can help improve the
classification accuracy.

1 Introduction
The nearest neighbor (NN) search [1, 2, 3, 7, 9, 14] has
long been accepted as one of the classic data mining
methods, and its role in classification and similarity search
is well documented. Given a query object, nearest
neighbor search returns the object in the database that is
the most similar to the query object. Similarly, the k
nearest neighbor search [15], or the k-NN search, returns
the k most similar objects to the query. NN and k-NN
search problems have applications in many disciplines:
information retrieval (find the most similar website to the
query website), GIS (find the closest hospital to a certain
location), etc.

Contrary to nearest neighbor search, less considered is
the related but much more computationally complicated
problem of reverse nearest neighbor (RNN) search [8, 16,
17, 18, 20]. Given a query object, reverse nearest neighbor
search finds all objects in the database whose nearest
neighbors are the query object. Note that since the relation
of NN is not symmetric, the NN of a query object might
differ from its RNN(s). Figure 1 illustrates this idea.
Object B being the nearest neighbor of object A does not
automatically make it the reverse nearest neighbor of A,
since A is not the nearest neighbor of B.

The problem of reverse nearest neighbor search has
many practical applications that can be applied to areas
such as business impact analysis and customer profile
analysis. An example of business impact analysis using

RNN search can be found in the selection of a location for
a new supermarket. In the decision process of where to
locate a new supermarket, we may wish to evaluate the
number of potential customers who would find this store
to be the closest supermarket to their homes.

 NN RNN(s)

A B ---

B C A

C D {B, D}

D C C
Figure 1. B is the nearest neighbor of A; therefore, the
RNN of B contains A. However, the RNN of A does not
contain B since A is not the nearest neighbor of B.

Another example can be found in the area of customer
profiling. Emerging technologies on the internet have
allowed businesses to push information such as news
articles or advertisements to their customer’s browser. An
effective marketing strategy will attempt to filter this data,
so that only those of items of interest to the customer will
be pushed. A customer who is flooded with information
that is not of interest to them will soon stop viewing the
data or stop using the service. In this example, an RNN
search can be used to identify customer profiles that find
the information closest to their liking.

It is interesting to note that the examples above
present a slight variation of the RNN problem known as
the Bichromatic RNN [17]. In the Bichromatic problem,
we consider two classes in our set of objects S. The set has
been subdivided into supermarkets and potential customers
for the first example, and information/products and
internet viewers for the second example. We are interested
in distances between objects from different classes.

On the other hand, the Monochromatic RNN search
[17] is one in which all objects in the database are treated
the same and we are interested in similarities between
them. For example, in the medical domain, doctors might
wish to identify all patients who exhibit certain medical

656

conditions such as heartbeat patterns similar to a specific
patient or a specific prototypical heartbeat pattern.

In all the examples described above, it is important to
note the distinction between (k-)NN queries, range queries,
and RNN queries. If we wish to find the objects similar to
our query point, often our search needs to expand beyond
the simple notion of nearest neighbor or k-nearest
neighbors. For example, we might be interested in objects
that may not be in the k-NN search neighborhood, but find
our query to be closest to them. Furthermore, in all cases
above, it’s difficult to specify a range for similarity (as in
the case for range queries), or a desired number of
matching objects (i.e. k for k-NN) to be returned. The RNN
queries will provide exactly the results to the problems
described above.

In addition, the number of RNNs for an object can
potentially capture the notion of its influence or
importance. For the supermarket example, the location
with the highest RNN count (i.e. the highest number of
potential customers) can be said to be of significant
influence. This novel notion of the influence of a data
object in the database was introduced by Korn and
Muthukrishnan [8]. The influence set of a data object Q is
the set of objects in the database that are likely to be
affected by Q. To solve the problem, the authors
introduced the notion of RNN. The RNNs of a query
object Q is the set of objects whose nearest neighbors are
Q. If we consider the nearest neighbor of any object to be
of certain significance with respect to the object, then
intuitively, Q has significant influence on its RNNs, since
the objects in this set all consider Q to be closest to them.

1.1 RNN on multimedia data
With the rapid advancement of technology today, the past
decade has seen an increasing interest in generating and
mining multimedia datasets. This type of data includes
time series, images, video sequences, audio, etc. Since they
are typically very high dimensional, many mining
algorithms or dimensionality reduction techniques are
proposed to cope with the high dimensionality. To date,
existing algorithms for exact RNN search work for only
low-dimensional data. Some algorithms are proposed for
arbitrary dimensionality, but they rely on indices such as
R-tree or its variants, which do not scale well for high
dimensionality [1]. Our goal is thus to design algorithms
that can scale to high dimensionality.

In this work we focus on multimedia sequence data to
demonstrate the effectiveness of our algorithms. Apart
from its ubiquity and simplicity, multimedia data such as
images can potentially be represented as sequences of
values as well. For example, one can construct a color
histogram for each of the RGB components for color
images, and concatenate the histograms together to form
one series, which can then be treated the same as
conventional time series data [12]. Figure 2 shows such an

example. In Figure 3, a shape is converted into a sequence
of values [10]. Recent studies have shown that such
representations produce promising results for various data
mining tasks [10, 12, 19]. In fact, some of the time series
datasets we use for experimental evaluation are shape-
converted sequence data. In addition, even without the
conversion to time series, the algorithms proposed here can
potentially be adapted for many signal-typed, continuous
data, as they share some common characteristics, such as
high autocorrelation, with time series. For the rest of the
paper, we will use the terms sequences and time series
interchangeably.

Thus, we motivate, and show the utility of RNN
search on time series, and propose several heuristics for
finding exact solutions. We also propose heuristics that
find approximate solutions, which are useful when
efficiency rather than exactness is of critical concern. In
addition, we demonstrate how R(k)NN search can be
applied for anomaly detection and thus improve
classification accuracy.

Figure 2. The RGB histograms, as well as the texture
information, from the image are extracted and concatenated
together to form a long series.

Figure 3. A shape is converted to time series. The y-axis is
the distance from the center of mass to the outline of the
shape

657

The paper is organized as follows. Section 2 provides
background information on time series, as well as related
work on reverse nearest neighbor search. In Section 3 we
formally define the RNN search problem for time series
and describe the brute-force algorithm to find RNNs given
a query. In Section 4, we describe four different heuristics
to help speed up the search process. In Section 5, we show
results of experimental evaluation on our heuristics in
terms of both accuracy and efficiency. Section 6 concludes
and offers suggestions for future work.

2 Related Work and Background
The earlier work on RNN focuses mostly on 2-D objects.
The pioneering work on RNN search [8] proposes
algorithms that are based on pre-computed nearest
neighbor distances for all objects. Such pre-computation is
inefficient and is expensive for dynamic databases. Stanoi
et al [17] proposed an algorithm that does not require pre-
computation of NN distances; however, their approach
does not work for dimensionalities higher than two.

Tao et al [18] developed a solution for arbitrary
dimensionality. The technique, TPL, cuts the data space
into two half-planes by drawing a perpendicular bisector
between the query object Q and an arbitrary data object P.
The intuition is that all the objects that reside on the
opposite of Q cannot be the candidates for Q’s RNN since
they are closer to P than they are to Q. These objects can
thus be eliminated from the search without computing the
actual nearest neighbor distances. This simple and elegant
approach works well for low dimensionality. However, in
high dimensionality, truncating the search space by
drawing the hyper-curve bisectors can be computationally
expensive [16]. The same authors further proposed another
algorithm that works on higher dimensionality. However,
since it utilizes R-trees, the dimensionality suitable for the
algorithms is limited by that of R-trees. Furthermore, the
highest dimensionality shown in their experiments is 6
[18]. An approximate version of the algorithm is available;
however, it works only with Euclidean distance [18].

Singh et al [16] proposed an approximate algorithm
for high dimensional data, based on the relationship
between k-NN and RNN; however, it cannot guarantee
exact results. In addition, although the claim is to find
RNNs on high-dimensional data, the algorithm still relies
on pre-processing the data with Singular Value
Decomposition (SVD) to reduce the dimensionality. This
approach is clearly infeasible for large or dynamic data, as
SVD is known to be computationally expensive.

2.1 Notation
For concreteness, we begin with a definition of time series:
Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Some distance measure Dist(C,M) needs to be defined in
order to determine the similarity between time series
objects.
Definition 2. Distance: Dist is a function that has C and M
as inputs and returns a nonnegative value R, which is said
to be the distance from M to C. We require that the
function Dist be symmetric, that is, Dist(C,M) =
Dist(M,C).

Although there are dozens of distance measures
proposed for time series in the literature, Euclidean
distance has been shown to outperform many of the more
complicated distance measures [5]. Therefore, we will use
Euclidean distance as our choice of distance measure in
this paper.
Definition 3. Euclidean Distance: Given two sequences Q
and C of length n, the Euclidean distance between them is
defined as:

 () ()! "#
=

n

i
ii cqCQDist

1

2
,

Each sequence object is normalized to have mean zero
and a standard deviation of one before calling the distance
function, because it is well understood that in virtually all
settings, it is meaningless to compare time series with
different offsets and amplitudes [5].

3 Finding RNN in Time Series
As mentioned, the existing work on RNN fails to address
high dimensional data such as sequences, since the
algorithms proposed typically scale poorly with increasing
dimensionality. Here we consider the RNN search problem
for time series data, and propose an efficient algorithm on
the discretized representation of data. We further propose
an approximate version of the algorithm that improves the
efficiency even more.

We begin by formally defining the RNN search
problem for time series.

There are two types of RNN queries: monochromatic
and bichromatic.

Definition 2. monochromatic-RNN: Given a time
series database TT and a query time series Q,
monoRNN(TT,Q) is the set of time series objects B in TT
that have Q as their nearest neighbors.

Definition 3. bichromatic-RNN: Given two time series
databases TT and SS, and a query time series Q ! SS,
biRNN(TT, SS, Q) is the set of time series B in TT that have
Q as their nearest neighbor from SS.

For simplicity and clarity, for the rest of the paper we
will refer to RNN as in the monochromatic case. Extension
to the bichromatic case is straight-forward, thus omitted
from our description.

In addition, as with the nearest-neighbor search
problem, RNN search can be extended to RkNN search.
Applying our heuristics to RkNN is straight-forward. We

658

will conclude our discussion of RkNN with the definition
below, and will revisit RkNN in the experimental section.

Definition 4. RkNN: Given a time series database TT
and a query time series Q, RkNN(TT,Q, k) is the set of time
series in TT who have Q as one of their k-nearest-
neighbors.

Let’s first consider the simplest scenario for the RNN
search problem. Similar to the examples described in the
previous section, a query object Q (e.g. the heartbeats of a
patient) is given, and the goal is to retrieve all objects that
consider the query object their nearest neighbor.
Intuitively, the definition of RNN implies that in order to
find the RNN of Q, one may need to find the nearest
neighbor for every object in the dataset.

The brute-force algorithm for finding RNN, as well as
the earlier algorithms proposed that require pre-
computation, work by finding the nearest neighbor for
each object and then determining which objects have Q as
their nearest neighbors. The computation of all nearest
neighbors, whether they be stored on hard disk (i.e.
precomputed), or be computed on the fly, require double
nested loops, where the outer loop considers each
candidate object C in the dataset, and the inner loop is a
linear scan to identify the candidate’s nearest neighbor.
The brute-force algorithm is easy to implement and
produces exact results. However, its quadratic time
complexity makes this approach impractical for large
and/or dynamic datasets.

Once the nearest neighbors for all objects are
identified, some of the existing approaches then record the
nearest neighbor distances, and use index structures to
determine if the query is closer to an object than the
object’s previously-computed nearest neighbor is. If the
database is large, frequently updated, or streaming (which
are all typical cases for time series), then a more efficient
algorithm that does not need computation of all pair-wise
distances is desirable.

Fortunately, the following observations offer hope for
improving the algorithm’s running time. Recall that the
goal is to identify the objects whose distances to Q are
smaller than their distances to all other objects in the
dataset. This implies that we might not need to know the
actual nearest neighbor or the nearest neighbor distance for
every candidate. The only piece of information that is
crucial is whether or not a given object in the dataset could
be the candidate for RNN(TT, Q).

Consider the following scenario. Suppose we start
with the candidate object Ci from TT, and Dist(Ci, Q) is 10.
We would like to find the nearest neighbor for Ci so we
can determine if Ci is an RNN for Q. In the process of
identifying the nearest neighbor for Ci, suppose the first
object we examine is Cj, and suppose we find that Dist(Ci,
Cj) is 2. At this point, we know that Ci could not be the
candidate for RNN(TT, Q), since its nearest neighbor is
obviously not Q. We can therefore safely abandon the rest

of the search for Ci’s nearest neighbor. In other words,
when we consider a candidate Ci in TT, we don’t actually
need to find its true nearest neighbor. As soon as we find
any object that has a smaller distance to Ci than Dist(Ci,
Q), we can abandon the search process for Ci, knowing
that it could not be in RNN(TT, Q). The steps are outlined in
Table 1.

Table 1. Outline for the improved RNN algorithm

1 Insert all objects in TT to the Candidate List CL. Initialize
the current candidate, Ci, to be the first item in CL.

2 Compute Dist(Ci, Q).

3 Start the nearest neighbor search for Ci by computing
Dist(Ci, Cj) for all j ≠ i, until we encounter Dist(Ci, Cj) <
Dist(Ci, Q) – in which case, stop the search for Ci. If the
nearest neighbor search is run to completion for Ci, insert
Ci to the set RNN(TT, Q). Remove Ci from CL.

4 Go back to Step 1 and repeat the process until CL is
empty.

The idea of filtering out candidates that could not be
the solution is not new. In fact, it is the basis for many of
the existing approaches [16, 17]. However, since their
techniques do not scale well with high dimensionality, here
we offer a different approach to determine which
candidates should be pruned off.

Clearly, for each candidate considered, the most time-
consuming step is Step 3. In addition, the utility of the
optimization depends on the number of distances we need
to compute before we can call off the nearest neighbor
search for Ci: the earlier we examine an object that has a
smaller distance to Ci than Dist(Ci, Q), the earlier we can
abandon the search process for the current candidate.
Simply stated, our goal is thus the following: if there is a
reason that a candidate could not be in the answer set, we
would like to detect that reason as soon as possible.

Note that the order in which the candidates are
examined (i.e. the objects in CL) does not matter, as each
search is independent. It is the ordering of objects when
searching for Ci’s nearest neighbor, as in Step 3, that we
should try to optimize. However, for the candidates in CL,
we can take advantage of the already-computed distances
so far, and continue the search process with the objects
previously considered.

Continuing from the example described above, after
we abandon the nearest neighbor search for Ci, we can go
on and compute Dist(Cj, Q) since we already know
Dist(Ci, Cj). If Dist(Ci, Cj) < Dist(Cj, Q), then we can
abandon the search for Cj as well, otherwise the search
continues.

Our task now is narrowed to predicting the likely
near-neighbors for a given candidate, and designing a
heuristic that determines the ordering of objects examined
for Step 3 such that we can abandon the searches for non-
RNNs as soon as possible. Note that the optimal ordering
for each candidate Ci completely depends on its relations

659

with other objects in the dataset; therefore, such heuristic
will need to be applied to each candidate to determine the
optimal ordering.

3.1 Best-case scenario

In the best case scenario, the number of distance
computations we need to make is approximately

|||)),(|2(

||2|||),(|_#

TTQTTRNN

TTTTQTTRNNcallsdist

!+=

!+!=

where |RNN(TT, Q)| is the number of RNNs for Q, and |TT|
is the number of objects in the dataset. Since all members
in RNN(TT, Q) have Q as their nearest neighbor, it’s
inevitable that for these objects, their distances to all other
objects in the dataset need to be computed in order to
conclude that their distances to Q is indeed the minimum.
Therefore, the |||),(| TTQTTRNN ! distance calls are
necessary. For the rest of the candidates, the best case
occurs when the first object we examine in Step 3 is an
object closer to the candidate than the query. In this case,
we can ensure that at most two distance computations are
needed before abandoning the search (i.e. the first one
computes Dist(Ci, Q); the second one, if not already
computed previously, computes a distance smaller than
Dist(Ci, Q), thus allowing early abandonment of search).
Note that this is only an approximation, for simplicity, as
the computations for RNN(TT, Q) are double-counted.

We can also record the distances computed so far to
avoid redundant computation, but such optimization has
limited improvement if the number of RNNs for Q is small
relative to the number of objects in the dataset – as we can
assume to be the case for most real-life datasets.

The time complexity for the best case scenario is thus
Ω(rN), where r is the number of RNNs, and N is the size
of the dataset. Since we expect that r << N, the best-case
scenario for the ordered search is by far more efficient than
the O(N2) complexity of the brute-force approach.

In the next section we describe several heuristics that
approximate the optimal ordering without having any
information about the actual distances.

4 Approximating the Optimal Ordering

The time series research community has significant
experience in dealing with high dimensional data and has
introduced numerous dimensionality reduction techniques.
In this work, we will utilize Symbolic Aggregate
Approximation (SAX) [11] to reduce the dimensionality of
our data. This method has been adopted by numerous
researches and has proven to be a very effective technique,
and the only symbolic one that provides a lower bounding
distance measure. Our review of this technique is brief
and we refer the interested reader to [11] for expanded
analysis.

4.1 Symbolic Aggregate approXimation (SAX)
Given a time series of length n, SAX produces a lower

dimensional representation of a time series by
transforming the original data into symbolic words. Two
parameters are used to specify the size of the alphabet to
use (i.e. α) and the size of the words to produce (i.e. w).
The algorithm begins by using a normalized version of the
data and creating a Piecewise Aggregate Approximation
(PAA). PAA reduces the dimensionality of a time series by
transforming the original representation into a user defined
number (i.e. w, typically w << n) of equal segments. The
segment values are determined by calculating the mean of
the data points in that segment. The PAA values are then
transformed into symbols by using a breakpoint table
based on a Gaussian distribution. In [4] the authors found
that normalized time series subsequences had a highly
Gaussian distribution. A symbolic transformation table
could be created by defining breakpoints that would results
in regions of equal-probability on the Gaussian
distribution. These breakpoints may be determined by
looking them up in a statistical table. For example, Table 2
gives the breakpoints for values of α from 3 to 5.

Table 2. A lookup table that contains the breakpoints that
divides a Gaussian distribution into an arbitrary number
(from 3 to 5) of equiprobable regions.

 βi a

3 4 5

β1 -0.43 -0.67 -0.84
β2 0.43 0 -0.25
β3 0.67 0.25
β4 0.84

Figure 4 summarizes how a time series is converted to

PAA and then symbols.

Figure 4. Example of SAX for a time series. The time series
above is transformed to the string cbccbaab, and the
dimensionality is reduced from 128 to 8.

4.2 Ordered search for RNN
We will first describe the basic heuristic that helps

identify candidates that are closer to other objects than
they are to the query. Then we will describe how we can
further prune off the search space by considering only a
subset of candidates that can potentially be in the solution
set.

660

H1: same string heuristic
Recall that our goal is to identify objects whose nearest
neighbors is the query object. This means these objects are
closer to the query than they are to any other objects in the
database. Therefore, if we see that the candidate being
examined has a smaller distance to another object than its
distance to the query, then we can conclude that this
candidate could not be the RNN for the query. Our goal is
thus to encounter any object close to the current candidate
as early as possible. To predict which objects are close to
the given candidate, we can look at their SAX
representation. As shown in Figure 4, the shape of the
given time series is approximately preserved by its
symbolic representation. Therefore, we can expect that the
time series encoded into the same SAX representation are
likely to be similar to each other. Considering those with
the same symbolic representation first seems a reasonable
starting point. Among this subset, whose size is expected
to be much smaller than the original dataset, we can
potentially find one object to which the candidate Ci is
closer than it is to the query, thus helping us eliminate Ci
from the search.

What we need to consider now, then, is to efficiently
build the subset in which all the time series have the same
string representation as the candidate, for each candidate
examined. One obvious approach to identify such time
series is to sequentially scan through the entire string
representations of time series. However, having a linear
scan for each object in the dataset clearly is not an efficient
solution. Fortunately, the symbolic nature of SAX allows
hashing, for which constant-time look-up can be expected.

We begin by creating two data structures to support
our heuristics. As a pre-processing step, each time series in
TT is converted to a SAX word, which is stored in an array
along with a pointer to the object. Note that the
conversion/dimensionality reduction for each time series is
independent of other objects in the dataset. Therefore,
insertions of new data points would not require re-
processing of the entire dataset.

Once we have this list of SAX words, we construct a
hash table. Each bucket in the hash table represents a word
and contains a linked-list index of all word occurrences
that map to the corresponding string. The address of a
SAX word is computed by using the following hash
function:

!
=

"#"=
w

i

iw

i
cordwCh

1

)1)ˆ((),,($$

where)ˆ(
i
cord is the ordinal value of

i
ĉ , i.e. ord(a) = 1,

ord(b) = 2, and so forth; w is the word size; and α is the
alphabet size. For example, for the string caa, where w = 3,
α = 3,

18303032)3,3,(012
=!+!+!=caah

This hash function assigns each SAX word a unique
address ranging from 0 to 1!

w" , hence guarantees minimal
perfect hashing.

The size of the hash table is independent of the size of
the dataset – it depends only on the two parameters of
SAX: w and α. According to [11], it’s typically sufficient
for α to take on small values such as 3 or 4; and while w is
usually data-dependent, oftentimes we can expect it to
remain reasonably small as well for the following reasons.
First, it is generally not very meaningful to compare time
series that are too long – for long time series, we are
typically only interested in their local structures extracted
via sliding windows. In addition, [11] has shown that SAX
approximation produces competitive results comparing to
other dimensionality reduction techniques such as DFT
and DWT, or even the raw data.

That being said, despite the optimality of the suitable
choice of w, the memory consumption for creating an
empty hash table is considerably small and negligible,
compared to the typically massive amount of time series
data. For example, for w = 10 and α = 3, the table size is
310 = 59,049. The memory consumption for creating an
empty hash table of this size is less than 1 MB. The size of
the resulting hash table, with subsequence indices hashed
to the buckets of the corresponding SAX strings, is linear
to the size of the time series datasets.

Once the hash table is constructed, we can
approximate the optimal ordering for the current
candidate’s nearest neighbor search as follows. For each
candidate Ci being considered, we check in the SAX words
array for its SAX word, and since our purpose is to
identify the objects that are likely to be similar to Ci, we
then check the hash table for the corresponding bucket,
and retrieve the list of objects that are encoded to the same
SAX string. This list of objects will be examined prior to
the rest of the objects which are then ordered sequentially.
Hopefully among these preferred objects, we will find one
that is closer to Ci than the query is to Ci. This process is
repeated for each candidate examined. This simple
heuristic is shown to work well and reduce the search
space by a large amount.

H2: Zero MINDIST heuristic
One of the advantages of SAX that makes it more
desirable than all the other symbolic representation
proposed in literature is that it provides lower-bound
distance measures. As shown in [11], given a lookup table
for the breakpoints as in Table 3, the lower-bounding
distance for the Euclidean distance, MINDIST, between
two strings

1
S and

2
S can be determined as follows:

661

()! =
"

w

i iiw

n SSdistSSMINDIST
1

2

2121),(),(

where

!
"
#

$

%$
=

$ otherwise

crif
crdist

crcr ,

1,0
),(

),min(1),max(&&

and),min(1),max(crcr
!! "" is the difference in breakpoints

for the regions associated with the alphabetic symbols.

Table 3. Lookup table for alphabet distances

 a b c
a 0 0 0.86
b 0 0 0
c 0.86 0 0

Simply speaking, the minimum distance between two

alphabets is zero if they are the same, or neighboring
alphabets (e.g. dist(a, a) = 0, dist(a, b) = 0). Otherwise,
their distance is the height of the region between them. For
an example alphabet of size 3, Table 3 shows that dist(a, c)
= 0.86 (cf. Figure 4).

The heuristic described in the previous section looks
for time series objects that are encoded to the same string.
It might be the case that a given candidate has a string
representation not shared by many others. In this case, we
might exhaust this preferred, same-string list pretty fast.
When this happens, instead of sequentially scanning the
rest of the remaining objects, we consider a simple
alternative.

As Figure 4 suggests, segments that are encoded as
neighboring alphabets (e.g. a and b) might be close to each
other. This is also the reason that neighboring alphabets
have a minimum distance of zero. Therefore, we propose
that, after exhausting the same-string list, we iteratively
examine the buckets for which the ordinal values of all
symbols differ by no more than one from the
corresponding symbols in the candidate string. For
example, if the candidate string is “bab,” after exhausting
the bucket containing objects encoded to “bab,” we might
retrieve the bucket for “aaa, ” then “aab” and so forth. If
we exhaust all the buckets for strings of MINDIST zero
from the candidate string, then we examine the rest of the
objects in sequential order (we can have a vector of flags,
telling us which object has been visited). This strategy is
not much more costly than the base heuristic, except for
the bucket-lookup, and is shown to be more efficient than
the base heuristic.

Note that we can effectively prune off the search
space (not just for individual candidate’s nearest neighbor
search, but for the entire RNN search) by taking advantage
of the lower-bounding property of SAX, and/or using the
triangle inequality property. For example, we can eliminate
unnecessary distance computations if the lower-bounding

distance between Ci and Cj is larger than Dist(Ci, Q). We
can envision such optimization to be extremely useful
when Dist(Ci, Q) is small (i.e. when Ci is one of Q’s
RNNs). Such case is also the only case when the whole
dataset needs to be scanned in order to conclude that Q is
Ci’s nearest neighbor. We will defer the effectiveness of
lower-bounding distances for future research. In the
remaining of this section, we describe two more heuristics
that return approximate answers.

H3: MINDIST partial candidates heuristic
So far, the two heuristics proposed determine the ordering
of the preferred list before examining the remaining
objects. Nevertheless, both heuristics still require that we
check every single object before the search of RNN ends.
For this heuristic, instead of going through every object in
the entire dataset (cf. Step 1 in Table 1), we only consider
candidates whose MINDIST to Q is zero. Then for each
candidate, we retrieve objects the same way as in H2.

The intuition behind this heuristic is that objects that
can potentially be RNNs of the query are probably similar
to the query. Therefore, they are likely to be encoded to
similar strings as the query (i.e. same string or strings with
MINDIST of zero). While we cannot guarantee to always
find exact solutions with this heuristic unless we
incorporate the knowledge from lower- or even upper-
bounding distances, experiments show that this heuristic
produces close-to-exact output.

In a broad sense, our approximate search is similar to
the approach in [16]. In their work, the search for
approximate RNNs is done by the following steps:

1. A small subset of objects that could potentially be
the RNNs of the query is identified. The authors
argue that due to the close relationship between k-
NN and RNN, an object’s RNNs are likely to be
also its k-NNs, given an appropriate k.

2. For this subset of objects, find their global nearest
neighbors so that it can be determined if they are
closer to the query than they are to their
respective nearest neighbors. The author proposed
two filtering approaches to speed up the search.

There is no guarantee that the query’s RNNs are
always among its k-NNs, since it’s dependent on the value
of k. Therefore, the results produced are only an
approximate. The authors showed that with a relatively
small k (e.g. 30), they achieve 85%-95% recall on 4
different datasets.

This part of our work is similar to theirs in the sense
that we also try to produce a small subset of objects that
likely contain the true RNNs. However, we do so by
predicting such likelihood from the objects’ symbolic
representations. Our approach is not restricted by the
choice of k. As will be shown later, it is difficult to
determine the value of k that works well for all datasets. If
k is too large, then we end up with a larger subset than

662

necessary. On the other hand, if k is too small, than we
might miss the true RNNs. Instead of specifying the
number of objects to be our potential candidates, the size
of such subset depends on the data. Our approach only
retrieves the “similar” ones according to the symbolic
representations.

H4: MINDIST subset only heuristic
For the MINDIST-Partial Heuristic, although we have
reduced the search space by only considering the candidate
objects that fulfill the MINDIST requirement (let’s call
this subset of objects A), the search space for individual
candidates is still the same (i.e. we need to potentially
consider the entire dataset for each candidate). With the
same argument provided above, for this heuristic, we
consider only objects whose MINDIST to the current
candidate object is zero (let’s call this subset of objects B).
Note that A and B are not necessarily the same.

Let’s consider an example. Suppose the SAX word for
the query is “aba.” Furthermore, suppose that among the
subset A that fulfills the MINDIST requirement for the
query, we consider a candidate “bba.” Note
MINDIST(“aba”, “bba”) = 0. We then need to construct
subset B that fulfills the MINDIST requirement with
respect to “bba.” In this subset B, we might have an object
whose SAX word is “cba.” Again, verify that
MINDIST(“bba”, “cba”) = 0. However, “cba” is not in A,
since MINDIST(“cba”, “aba”) > 0. This is the reason that
for each candidate, we need to construct its own subset of
potential candidates.

Again, this heuristic produces approximate solutions;
however, the experiments show that the accuracy is very
high. As a matter of fact, the accuracy for this heuristic is
the same as the previous heuristic, i.e. whatever objects
retrieved by H3 will be guaranteed to be retrieved by H4.
Since we only consider a subset of the dataset, the
declaration of a candidate as an RNN after exhausting the
subset and not finding an object closer to the query might
be a false positive (i.e. a closer object might be among the
remaining subset that we do not consider). However, this
heuristic improves the search time tremendously, and is
particularly useful when speed rather than exactness is of
critical concern.

Since the MINDIST subset might still be larger than
we desire, we can put more restrictions on the strings to be
considered. For example, instead of allowing the alphabets
at each location to differ at most by 1, we can allow only
one or two such “don’t-care” location for the entire string.
For H3 and H4, the string “aba” would consider “bab”
similar since MINDIST(“aba”, “bab”) = 0, even though at
all locations, the alphabets are different. If we allow only
one or two differing alphabets for the entire string, then the
potential subset will be considerably smaller. We defer the
analysis of trade-off between efficiency and accuracy for
future research.

We summarize all heuristics in Table 4 below. All but
the brute-force approach benefits from early termination
for each candidate’s NN search. Heuristics #1-#4 were
described in this section, whereas Heuristic #0B was
described in Table 1. The brute-force approach computes
all O(N2) distances.

Table 4. Summary of the heuristics described so far.

 Outer loop
(candidates)

Inner loop (NN
search for
candidate)

0A Brute Force (no
early termination)

Sequential – all Sequential – all

0B Basic w/o SAX Sequential – all Sequential – all

1 Basic w/ SAX
(same string)

Sequential – all Same string
subset first; the
rest sequential

2 Zero MINDIST Sequential – all Zero MINDIST
subset first; the
rest sequential

3 Zero MINDST w/
Partial Candidates

Zero
MINDIST
subset only

Zero MINDIST
subset first; the
rest sequential

4 Zero MINDST
Subset Only

Zero
MINDIST
subset only

Zero MINDIST
subset only wrt
current candidate

4.3 Parameter selection

SAX requires two parameters: alphabet size α, and the
SAX word size w. While large values of α and/or w result
in more selective encoding, they also result in small
preferred lists (since the criteria for objects to be mapped
to the same or similar strings are more strict). On the other
hand, small values of α and/or w will likely result in large
preferred lists, with few of the objects being the true
similar ones. Neither of these situations is desirable for our
heuristics.

Extensive experiments carried out by [11] suggest that
typically, a value of either 3 or 4 for α works well for
virtually any task on any dataset. For this reason, we use α
= 4 for all our experiments.

Having fixed α, we now have to determine the value
for w. While the best choice of w is data-dependent,
generally speaking, time series with smooth patterns can
be described with a small w, and those with rapidly
changing patterns prefer large w to capture the critical
changes.

5 Empirical evaluation

All heuristics we propose in this paper can be
extended to RkNN search very easily. In the first part of
our experiments, we evaluate the accuracy of the
approximate algorithms of RkNN search, and its
efficiency/scalability in the second part. Note that H1 and

663

H2 produce exact solutions, so they are excluded from the
accuracy experiments. In the third part of our experiments,
RkNN is used to identify and remove outliers from training
sets for pattern recognition by kNN.

5.1 Accuracy

We use the datasets from UCR Time Series Archive
[4]. The datasets can be found from the UCR Time Series
Classification/Clustering Page [6]. Other than regular time
series data, the datasets also contain shape (e.g. Face, Leaf)
and video (e.g. yoga) data that are represented as sequence
data. Since we do not need the class information, we
combine the training and test sets to form larger datasets.
For each dataset, we randomly draw 50 objects as queries,
and run RkNN on these objects in separate runs.
Arbitrarily, we choose k = 3, α = 4, and w = 4. We then
compute the average error and false alarm rates. The error
rate is one minus the percentage of RkNNs successfully
found; and the false alarm rate is the percentage of items
incorrectly identified as the RkNNs. As noted in [6], these
datasets are too small to make any meaningful claims on
efficiency. Experiments on scalability will be reported in
the next section.

We compare our results with the kNN based strawman
approach as described in Section 4.2, under heuristic H3
[16]. We need to determine one parameter; namely, the
value for k. In order to avoid confusion with the k in
RkNN, we will use k1 to denote the k in k-NN based
approach. In the paper [16], the authors stated that 90%
recall can be achieved by using k1 = 10. We note that this
is only true for two out of four experiments conducted in
the original paper. For one of the datasets, the recall is
around 72% for k1 = 10. Therefore, we choose k1 = 30, in
hope that better accuracy can be obtained.

The accuracy reported here for the strawman
approach, shown in Table 5, is expected to be higher than
the accuracy in the original paper, since instead of
performing SVD on the data, we use the raw data directly.
The reason that we skip the SVD step is that SVD becomes
impractical for large and/or dynamic datasets. We feel that
this is a fair comparison, since in this section, we are only
comparing accuracy, and by deliberately removing the step
that causes deteriorating results for their approach, the
results we report here are actually optimistic compared to
the original ones. Nevertheless, even in this case, our
heuristics result in considerably higher accuracy. Note that
both H3 and the k-NN based approach should have no
false positives, as they consider the entire dataset for each
candidate (i.e. find global NN), whereas H4 considers only
the MINDIST subset.

As mentioned earlier, it’s difficult to determine the
effective value for k1. One naïve approach of choosing k1
as a function of the size of the dataset does not work, as we
can see from the results that the error rates for the k-NN
based approach are not correlated to the data size.

Fortunately, our approaches allow automatic determination
of the subset size, according to the structure of data.

From the results, we can see that our accuracy is
nearly 100%, except for two datasets. For H4, there are
some false positives, but the average false alarm rates are
very small.

Table 5 Error and false positive rates for the approximate
heuristics (H3 and H4).

 H3 H4 k-NN
Datasets (#
records x
length)

Error
rate

False
Pos.
rate

Error
rate

False
Pos.
rate

Error
rate

False
Pos.
rate

50words
(905x270)

0.0 0.0 0.008 0.01 0.015 0.0

Adiac
(781x176)

0.0 0.0 0.0 0.0 0.124 0.0

Beef
(60x470)

0.0 0.0 0.0 0.0 0.0 0.0

CBF
(930x128)

0.0 0.0 0.0 0.0 0.004 0.0

Coffee
(56x286)

0.0 0.0 0.0 0.0 0.0 0.0

ECG200
(200x96)

0.0 0.0 0.0 0.0 0.024 0.0

FaceAll
(2250x131)

0.0 0.0 0.0 0.0 0.034 0.0

FaceFour
(112x350)

0.0 0.0 0.0 0.0 0.012 0.0

Gun_Point
(200x150)

0.0 0.0 0.0 0.0 0.005 0.0

Lighting2
(121x637)

0.0 0.0 0.0 0.0 0.05 0.0

Lighting7
(143x319)

0.0 0.0 0.0 0.0 0.025 0.0

OSULeaf
(442x427)

0.0 0.0 0.0 0.0 0.038 0.0

OliveOil
(60x570)

0.0 0.0 0.0 0.0 0.032 0.0

SwedishLeaf
(1125x128)

0.0 0.0 0.0 0.0 0.2 0.0

Trace
(200x275)

0.0 0.0 0.0 0.0 0.0 0.0

TwoPatterns
(5000x128)

0.0 0.0 0.0 0.0 0.031 0.0

Fish
(350x463)

0.0 0.0 0.0 0.0 0.065 0.0

Synthetic
Control
(600x60)

0.003 0.0 0.003 0.006 0.177 0.0

Wafer
(7164x152)

0.0 0.0 0.0 0.0 0.036 0.0

Yoga
(3300x426)

0.0 0.0 0.0 0.0 0.017 0.0

5.2 Efficiency and scalability
In this part of the experiments, we evaluate the efficiency
of our heuristics on large datasets. We create random walk

664

datasets of 100,000 and 300,000 in size. We then generate
10 different queries and use them for RNN search. To
determine the efficiency of the heuristics, we compare the
total number of distance calls to the Euclidean distance
function. Figure 5 shows the results, measured in the
fraction of distance calls needed compared to the basic
heuristic (H0B, early termination only; no heuristic
ordering). Note that as the data size increases, the speedup
is more obvious. Also, since we should expect that real-
world datasets have more structure than random walk data
(thus easier to come across similar object which provokes
early termination), the results shown here are likely to be
an underestimation of true potential of speedup.

Figure 5. The speed up is shown as the percentage of
distance calls needed for each heuristic, compared to the
basic heuristic (H0B: early termination only; no heuristic
ordering).

5.3 Outlier Detection
In addition to determining the influence of a given

query point, the concept of RNN has many useful
applications. For example, RNN can potentially be applied
on clustering outlier detection. While most anomaly
detection algorithms [13, 18] work efficiently in detecting
a global anomaly, they cannot detect local outlier for a
given cluster (e.g. an outlier that is not necessarily farthest
away from the rest of the data).

As illustrated in Figure 6, there are two clusters with
two outliers. Observation 8 is considered to be a global
outlier, while observation 7 is considered to be a local
outlier. Most anomaly detection algorithms can identify
observation 8 as the anomaly, but will fail to identify
observation 7.

In addition, in pattern recognition (classification)
tasks, it can be useful to avoid making inferences based on
unusual training set members. For example, in Figure 6,
observation 7 changes the position of the maximum
margin hyperplane that separates the squares on the left
from the circles on the right.

Figure 6. Two clusters of data with one global outlier
(observation 8) and one local outlier (observation 7). Both
outliers can be detected using an RkNN-based algorithm.

Nanopoulos et al [13] proposed an algorithm based on
RkNN to identify anomalies in data. The idea is that, given
an appropriate value of k, objects that do not have any
RkNN are considered anomalies. In this section we
investigate the effectiveness of the RkNN-based outlier
detection algorithm

We used the data sets from the UCR
Classification/Clustering page [6] to see if using RkNN for
outlier detection and removal improves query
classification performance. In our training step, we try
different values of k starting from 2, and remove all the
objects with zero RkNN count. We stop the process when
no object has zero RkNN count (typically when k = 5 or 6)
or when we reach the user-defined maximum value of k.
Note that as k increases, the number of such objects
returned decreases.

After identifying and removing the outliers (if any),
we validate the results and show the actual classification
accuracy on the test sets in Table 6. The first column of
numbers is the original accuracy, computed before any
outlier removal. The second column of numbers is the
accuracy for the RkNN-based outlier detection algorithm.

The bolded text indicates that the removal of outliers
by the corresponding method improves the accuracy,
whereas the shaded cell indicates that the accuracy
deteriorates after the removal. To get an idea of how
effective our algorithms perform, we repeat the
classification task using various parameters examined
during the training process, and record the best possible
accuracy (shown as the second number, if the actual
accuracy is not the best).

665

Table 6. Error rate before and after outlier removal, if any.

Dataset Original RkNN/best
possible

50words 0.2527 0.2527 / 0.2505

Adiac 0.4194 0.4194

Beef 0.33 0.33

CBF 0.0233 0.06/0.0233

Coffee 0 0

ECG200 0.1900 0.1800

FaceAll 0.2154 0.2154 / 0.1811

FaceFour 0.1591 0.1591

GunPoint 0.04 0.04 / 0.033

Lighting2 0.1311 0.1311

Lighting7 0.2329 0.2740 / 0.2329

OSULeaf 0.4463 0.4463

OliveOil 0.1333 0.1333

Swedish 0.2192 0.2192 / 0.2176

Trace 0.01 0.01

2Patterns 0.0008 0.0008 / 0.0005

Fish 0.1657 0.1543

Synthetic 0.0367 0.0367

Wafer 0.0092 0.0117 / 0.0092

In some cases, removal of “outliers” worsens the accuracy.
We believe that one way to improve the flexibility of the
RkNN-based approach is to add a filtering step and treat
the “outliers” returned from the algorithm as candidates
only, rather than removing them right away. Once we get
the set of candidates, we can then remove them one at a
time until the accuracy deteriorates. We will defer the
investigation of such refinement for future research.

We conclude this section by noting that while most
anomaly detection algorithms can benefit from knowing
the class labels (i.e. anomaly detection can be applied
individually on each class), the RkNN-based anomaly
detection approach does not need such information and
therefore has potential for a broader range of applications
such as pre-clustering outlier removal.

6 Conclusions and future work

In this work we propose several heuristics that speed
up the reverse nearest neighbor search by pruning off a
large part of the search space. While the focus is mainly on
sequence data, we note that many multimedia data types
such as images can be represented as sequences as well. In
addition, the same heuristics can potentially be adapted to
other signal-typed, continuous data even without
representing them as time series.

For future work, we plan to investigate the following:

• Efficient algorithms when multiple queries are
given.

• As shown in the experimental results, the speedup
becomes more significant when the data size
increases. We plan to run more scalability
experiments, using large, disk-resident datasets.

• Other heuristics as mentioned in Section 4.

7 References
[1] S. Bertchtold, B. Ertl, D. A. Keim, H. P. Kriegel, and

T. Seidl. Fast Nearest Neighbor Search in High-
Dimensional Space. In proceedings of the 14th
International Conference on Data Engineering.
Orlando, FL. Feb 23-27, 1998. pp. 209-218

[2] K. L. Cheung and A. W. Fu. Enhanced Nearest
Neighbour Search on the R-Tree. SIGMOD Record.
vol. 27. pp. 16-21. 1998.

[3] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E.
Abbadi. Constrained Nearest Neighbor Queries. In
proceedings of the 7th Internaional Symposium on
Spatial and Temporal Databases. Redondo Beach, CA.
July 12-15, 2001. pp. 257-278

[4] The UCR Time Series Data Mining Archive.
http://www.cs.ucr.edu/~eamonn/TSDMA/index.html

[5] E. Keogh and S. Kasetty. On the Need for Time Series
Data Mining Benchmarks: A Survey and Empirical
Demonstration. In proceedings of the 8th ACM
SIGKDD Int'l Conference on Knowledge Discovery
and Data Mining. Edmonton, Alberta, Canada. July
23-26, 2002. pp. 102-111

[6] The UCR Time Series Classification/Clustering
Homepage:
http://www.cs.ucr.edu/~eamonn/time_series_data.

[7] G. Kollios, G. Gunopulos, and V. J. Tsotras. Nearest
Neighbor Queries in a Mobile Environment. In
proceedings of the International Workshop on Spatio-
Temporal Database Management. Edinburgh,
Scotland. Sept 10-11, 1999. pp. 119-134

[8] F. Korn and S. Muthukrishnan. Influence Sets Based
on Reverse Nearest Neighbor Queries. In proceedings
of the 19th ACM SIGMOD International Conference
on Management of Data. Dallas, TX. May 14-19,
2000. pp. 201-212

[9] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and
Z. Protopapas. Fast Nearest-Neighbor Search in
Medical Image Databases. In proceedings of the 22nd
International Conference on Very Large Data Base.
Bombay, India. Sept 3-6, 1996. pp. 215-226

[10] J. Lin and E. Keogh. Group SAX: Extending the
Notion of Contrast Sets to Time Series and
Multimedia Data. In proceedings of the 10th European
Conference on Principles and Practice of Knowledge

666

Discovery in Databases. Berlin, Germany. Sept 18-22,
2006. pp. 284-296

[11] J. Lin, E. Keogh, W. Li, and S. Lonardi. Experiencing
SAX: A Novel Symbolic Representation of Time
Series. Data Mining and Knowledge Discovery. 2007.

[12]J. Lin, M. Vlachos, E. Keogh, and G. Gunopulos,
Multi-Resolution K-Means Clustering of Time Series
and Application to Images, Workshop on Multimedia
Data Mining, the 4th SIGKDD International
Conference on Knowledge Discovery and Data
Mining. Washington D.C., 2003.

[13]A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos.
C2p: Clustering Based on Closest Pairs. In
proceedings of the 27th Internaional Conference on
Very Large Data Bases. Rom Italy. Sept 11-14, 2001.
pp. 331-340

[14] S. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. In proceedings of the 1995 ACM
SIGMOD International Conference on Management
of Data. San Jose, CA. May 22-25, 1995. pp. 71-79

[15] T. Seidl and H. P. Kriegel. Optimal Multi-Step k-
Nearest Neighbor Search. In proceedings of the 1998
SIGMOD International Conference on Management
of Data. Seattle, WA. June 2-4, 1998. pp. 154-165

[16] A. Singh, H. Ferhatosmanoglu, and A. Tosun. High-
Dimensional Reverse Nearest Neighbor Queries. In
proceedings of the 2003 ACM CIKM International
Conference on Information and Knowledge
Management. New Orleans, LA. Nov 2-8, 2003.

[17] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
Nearest Neighbor Queries for Dynamic Databases. In
proceedings of the ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge
Discovery. Dallas, TX. May 14, 2000. pp. 44-53

[18] Y. Tao, D. Papadias, and X. Lian. Reverse knn Search
in Arbitrary Dimensionality. In proceedings of the
30th International Conference on Very Large Data
Bases. Toronto, Canada. Aug 31-Sept 3, 2004. pp.
744-755

[19] L. Wei, E. Keogh, and X. Xi. SAXually Explicit
Images: Finding Unusual Shapes. In proceedings of
the 2006 IEEE International Conference on Data
Mining. Hong Kong. Dec 18-22, 2006.

[20] C. Yang and K.-I. Lin. An Index Structure for
Efficient Reverse Nearest Neighbor Queries. In
proceedings of the 17th International Conference on
Data Engineering. Heidelberg, Germany. April 2-6,
2001. pp. 485-492

667

