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Abstract 
Reverse nearest neighbor queries are useful in identifying 
objects that are of significant influence or importance. 
Existing methods either rely on pre-computation of nearest 
neighbor distances, do not scale well with high 
dimensionality, or do not produce exact solutions. In this 
work we motivate and investigate the problem of reverse 
nearest neighbor search on high dimensional, multimedia 
data. We propose exact and approximate algorithms that 
do not require pre-computation of nearest neighbor 
distances, and can potentially prune off most of the search 
space. We demonstrate the utility of reverse nearest 
neighbor search by showing how it can help improve the 
classification accuracy. 
 
1 Introduction 
The nearest neighbor (NN) search [1, 2, 3, 7, 9, 14] has 
long been accepted as one of the classic data mining 
methods, and its role in classification and similarity search 
is well documented. Given a query object, nearest 
neighbor search returns the object in the database that is 
the most similar to the query object. Similarly, the k 
nearest neighbor search [15], or the k-NN search, returns 
the k most similar objects to the query. NN and k-NN 
search problems have applications in many disciplines: 
information retrieval (find the most similar website to the 
query website), GIS (find the closest hospital to a certain 
location), etc.  

Contrary to nearest neighbor search, less considered is 
the related but much more computationally complicated 
problem of reverse nearest neighbor (RNN) search [8, 16, 
17, 18, 20]. Given a query object, reverse nearest neighbor 
search finds all objects in the database whose nearest 
neighbors are the query object. Note that since the relation 
of NN is not symmetric, the NN of a query object might 
differ from its RNN(s). Figure 1 illustrates this idea. 
Object B being the nearest neighbor of object A does not 
automatically make it the reverse nearest neighbor of A, 
since A is not the nearest neighbor of B. 

The problem of reverse nearest neighbor search has 
many practical applications that can be applied to areas 
such as business impact analysis and customer profile 
analysis. An example of business impact analysis using 

RNN search can be found in the selection of a location for 
a new supermarket.  In the decision process of where to 
locate a new supermarket, we may wish to evaluate the 
number of potential customers who would find this store 
to be the closest supermarket to their homes. 

 
 

 
 NN RNN(s) 

A B --- 

B C A 

C D {B, D} 

D C C  
Figure 1. B is the nearest neighbor of A; therefore, the 
RNN of B contains A. However, the RNN of A does not 
contain B since A is not the nearest neighbor of B. 

Another example can be found in the area of customer 
profiling.  Emerging technologies on the internet have 
allowed businesses to push information such as news 
articles or advertisements to their customer’s browser.  An 
effective marketing strategy will attempt to filter this data, 
so that only those of items of interest to the customer will 
be pushed.  A customer who is flooded with information 
that is not of interest to them will soon stop viewing the 
data or stop using the service.  In this example, an RNN 
search can be used to identify customer profiles that find 
the information closest to their liking. 

It is interesting to note that the examples above 
present a slight variation of the RNN problem known as 
the Bichromatic RNN [17].  In the Bichromatic problem, 
we consider two classes in our set of objects S. The set has 
been subdivided into supermarkets and potential customers 
for the first example, and information/products and 
internet viewers for the second example. We are interested 
in distances between objects from different classes.  

On the other hand, the Monochromatic RNN search 
[17] is one in which all objects in the database are treated 
the same and we are interested in similarities between 
them. For example, in the medical domain, doctors might 
wish to identify all patients who exhibit certain medical 
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conditions such as heartbeat patterns similar to a specific 
patient or a specific prototypical heartbeat pattern. 

In all the examples described above, it is important to 
note the distinction between (k-)NN queries, range queries, 
and RNN queries.  If we wish to find the objects similar to 
our query point, often our search needs to expand beyond 
the simple notion of nearest neighbor or k-nearest 
neighbors.  For example, we might be interested in objects 
that may not be in the k-NN search neighborhood, but find 
our query to be closest to them.  Furthermore, in all cases 
above, it’s difficult to specify a range for similarity (as in 
the case for range queries), or a desired number of 
matching objects (i.e. k for k-NN) to be returned. The RNN 
queries will provide exactly the results to the problems 
described above. 

In addition, the number of RNNs for an object can 
potentially capture the notion of its influence or 
importance. For the supermarket example, the location 
with the highest RNN count (i.e. the highest number of 
potential customers) can be said to be of significant 
influence. This novel notion of the influence of a data 
object in the database was introduced by Korn and 
Muthukrishnan [8]. The influence set of a data object Q is 
the set of objects in the database that are likely to be 
affected by Q. To solve the problem, the authors 
introduced the notion of RNN. The RNNs of a query 
object Q is the set of objects whose nearest neighbors are 
Q. If we consider the nearest neighbor of any object to be 
of certain significance with respect to the object, then 
intuitively, Q has significant influence on its RNNs, since 
the objects in this set all consider Q to be closest to them.  

 
1.1 RNN on multimedia data 
With the rapid advancement of technology today, the past 
decade has seen an increasing interest in generating and 
mining multimedia datasets. This type of data includes 
time series, images, video sequences, audio, etc. Since they 
are typically very high dimensional, many mining 
algorithms or dimensionality reduction techniques are 
proposed to cope with the high dimensionality. To date, 
existing algorithms for exact RNN search work for only 
low-dimensional data. Some algorithms are proposed for 
arbitrary dimensionality, but they rely on indices such as 
R-tree or its variants, which do not scale well for high 
dimensionality [1]. Our goal is thus to design algorithms 
that can scale to high dimensionality. 

In this work we focus on multimedia sequence data to 
demonstrate the effectiveness of our algorithms. Apart 
from its ubiquity and simplicity, multimedia data such as 
images can potentially be represented as sequences of 
values as well. For example, one can construct a color 
histogram for each of the RGB components for color 
images, and concatenate the histograms together to form 
one series, which can then be treated the same as 
conventional time series data [12]. Figure 2 shows such an 

example. In Figure 3, a shape is converted into a sequence 
of values [10]. Recent studies have shown that such 
representations produce promising results for various data 
mining tasks [10, 12, 19]. In fact, some of the time series 
datasets we use for experimental evaluation are shape-
converted sequence data. In addition, even without the 
conversion to time series, the algorithms proposed here can 
potentially be adapted for many signal-typed, continuous 
data, as they share some common characteristics, such as 
high autocorrelation, with time series. For the rest of the 
paper, we will use the terms sequences and time series 
interchangeably. 

Thus, we motivate, and show the utility of RNN 
search on time series, and propose several heuristics for 
finding exact solutions. We also propose heuristics that 
find approximate solutions, which are useful when 
efficiency rather than exactness is of critical concern. In 
addition, we demonstrate how R(k)NN search can be 
applied for anomaly detection and thus improve 
classification accuracy. 

 
Figure 2. The RGB histograms, as well as the texture 
information, from the image are extracted and concatenated 
together to form a long series. 

 

 
Figure 3. A shape is converted to time series. The y-axis is 
the distance from the center of mass to the outline of the 
shape 
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The paper is organized as follows. Section 2 provides 
background information on time series, as well as related 
work on reverse nearest neighbor search. In Section 3 we 
formally define the RNN search problem for time series 
and describe the brute-force algorithm to find RNNs given 
a query. In Section 4, we describe four different heuristics 
to help speed up the search process. In Section 5, we show 
results of experimental evaluation on our heuristics in 
terms of both accuracy and efficiency. Section 6 concludes 
and offers suggestions for future work. 

2 Related Work and Background  
The earlier work on RNN focuses mostly on 2-D objects. 
The pioneering work on RNN search [8] proposes 
algorithms that are based on pre-computed nearest 
neighbor distances for all objects. Such pre-computation is 
inefficient and is expensive for dynamic databases. Stanoi 
et al  [17] proposed an algorithm that does not require pre-
computation of NN distances; however, their approach 
does not work for dimensionalities higher than two.  

Tao et al [18] developed a solution for arbitrary 
dimensionality. The technique, TPL, cuts the data space 
into two half-planes by drawing a perpendicular bisector 
between the query object Q and an arbitrary data object P. 
The intuition is that all the objects that reside on the 
opposite of Q cannot be the candidates for Q’s RNN since 
they are closer to P than they are to Q. These objects can 
thus be eliminated from the search without computing the 
actual nearest neighbor distances. This simple and elegant 
approach works well for low dimensionality. However, in 
high dimensionality, truncating the search space by 
drawing the hyper-curve bisectors can be computationally 
expensive [16]. The same authors further proposed another 
algorithm that works on higher dimensionality. However, 
since it utilizes R-trees, the dimensionality suitable for the 
algorithms is limited by that of R-trees. Furthermore, the 
highest dimensionality shown in their experiments is 6 
[18]. An approximate version of the algorithm is available; 
however, it works only with Euclidean distance [18].  

Singh et al [16] proposed an approximate algorithm 
for high dimensional data, based on the relationship 
between k-NN and RNN; however, it cannot guarantee 
exact results. In addition, although the claim is to find 
RNNs on high-dimensional data, the algorithm still relies 
on pre-processing the data with Singular Value 
Decomposition (SVD) to reduce the dimensionality. This 
approach is clearly infeasible for large or dynamic data, as 
SVD is known to be computationally expensive. 

 
2.1 Notation  
For concreteness, we begin with a definition of time series: 
Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Some distance measure Dist(C,M) needs to be defined in 
order to determine the similarity between time series 
objects. 
Definition 2. Distance: Dist is a function that has C and M 
as inputs and returns a nonnegative value R, which is said 
to be the distance from M to C. We require that the 
function Dist be symmetric, that is, Dist(C,M) = 
Dist(M,C). 

Although there are dozens of distance measures 
proposed for time series in the literature, Euclidean 
distance has been shown to outperform many of the more 
complicated distance measures [5]. Therefore, we will use 
Euclidean distance as our choice of distance measure in 
this paper. 
Definition 3. Euclidean Distance: Given two sequences Q 
and C of length n, the Euclidean distance between them is 
defined as:           

       ( ) ( )! "#
=

n

i
ii cqCQDist

1

2
,                     

Each sequence object is normalized to have mean zero 
and a standard deviation of one before calling the distance 
function, because it is well understood that in virtually all 
settings, it is meaningless to compare time series with 
different offsets and amplitudes [5]. 

 
3 Finding RNN in Time Series 
As mentioned, the existing work on RNN fails to address 
high dimensional data such as sequences, since the 
algorithms proposed typically scale poorly with increasing 
dimensionality. Here we consider the RNN search problem 
for time series data, and propose an efficient algorithm on 
the discretized representation of data. We further propose 
an approximate version of the algorithm that improves the 
efficiency even more. 

We begin by formally defining the RNN search 
problem for time series. 

There are two types of RNN queries: monochromatic 
and bichromatic.  

Definition 2. monochromatic-RNN: Given a time 
series database TT and a query time series Q, 
monoRNN(TT,Q) is the set of time series objects B in TT 
that have Q as their nearest neighbors. 

Definition 3. bichromatic-RNN: Given two time series 
databases TT and SS, and a query time series Q !  SS, 
biRNN(TT, SS, Q) is the set of time series B in TT that have 
Q as their nearest neighbor from SS.  

For simplicity and clarity, for the rest of the paper we 
will refer to RNN as in the monochromatic case. Extension 
to the bichromatic case is straight-forward, thus omitted 
from our description.  

In addition, as with the nearest-neighbor search 
problem, RNN search can be extended to RkNN search. 
Applying our heuristics to RkNN is straight-forward. We 
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will conclude our discussion of RkNN with the definition 
below, and will revisit RkNN in the experimental section. 

Definition 4. RkNN: Given a time series database TT 
and a query time series Q, RkNN(TT,Q, k) is the set of time 
series in TT who have Q as one of their k-nearest-
neighbors. 

Let’s first consider the simplest scenario for the RNN 
search problem. Similar to the examples described in the 
previous section, a query object Q (e.g. the heartbeats of a 
patient) is given, and the goal is to retrieve all objects that 
consider the query object their nearest neighbor. 
Intuitively, the definition of RNN implies that in order to 
find the RNN of Q, one may need to find the nearest 
neighbor for every object in the dataset. 

The brute-force algorithm for finding RNN, as well as 
the earlier algorithms proposed that require pre-
computation, work by finding the nearest neighbor for 
each object and then determining which objects have Q as 
their nearest neighbors. The computation of all nearest 
neighbors, whether they be stored on hard disk (i.e. 
precomputed), or be computed on the fly, require double 
nested loops, where the outer loop considers each 
candidate object C in the dataset, and the inner loop is a 
linear scan to identify the candidate’s nearest neighbor. 
The brute-force algorithm is easy to implement and 
produces exact results. However, its quadratic time 
complexity makes this approach impractical for large 
and/or dynamic datasets.  

Once the nearest neighbors for all objects are 
identified, some of the existing approaches then record the 
nearest neighbor distances, and use index structures to 
determine if the query is closer to an object than the 
object’s previously-computed nearest neighbor is. If the 
database is large, frequently updated, or streaming (which 
are all typical cases for time series), then a more efficient 
algorithm that does not need computation of all pair-wise 
distances is desirable. 

Fortunately, the following observations offer hope for 
improving the algorithm’s running time. Recall that the 
goal is to identify the objects whose distances to Q are 
smaller than their distances to all other objects in the 
dataset. This implies that we might not need to know the 
actual nearest neighbor or the nearest neighbor distance for 
every candidate. The only piece of information that is 
crucial is whether or not a given object in the dataset could 
be the candidate for RNN(TT, Q).  

Consider the following scenario. Suppose we start 
with the candidate object Ci from TT, and Dist(Ci, Q) is 10. 
We would like to find the nearest neighbor for Ci so we 
can determine if Ci is an RNN for Q. In the process of 
identifying the nearest neighbor for Ci, suppose the first 
object we examine is Cj, and suppose we find that Dist(Ci, 
Cj) is 2. At this point, we know that Ci could not be the 
candidate for RNN(TT, Q), since its nearest neighbor is 
obviously not Q. We can therefore safely abandon the rest 

of the search for Ci’s nearest neighbor. In other words, 
when we consider a candidate Ci in TT, we don’t actually 
need to find its true nearest neighbor. As soon as we find 
any object that has a smaller distance to Ci than Dist(Ci, 
Q), we can abandon the search process for Ci, knowing 
that it could not be in RNN(TT, Q). The steps are outlined in 
Table 1. 

Table 1. Outline for the improved RNN algorithm 

1 Insert all objects in TT to the Candidate List CL. Initialize 
the current candidate, Ci, to be the first item in CL. 

2 Compute Dist(Ci, Q). 

3 Start the nearest neighbor search for Ci by computing 
Dist(Ci, Cj) for all j ≠ i, until we encounter Dist(Ci, Cj) < 
Dist(Ci, Q) – in which case, stop the search for Ci. If the 
nearest neighbor search is run to completion for Ci, insert 
Ci to the set RNN(TT, Q). Remove Ci from CL. 

4 Go back to Step 1 and repeat the process until CL is 
empty. 

The idea of filtering out candidates that could not be 
the solution is not new. In fact, it is the basis for many of 
the existing approaches [16, 17]. However, since their 
techniques do not scale well with high dimensionality, here 
we offer a different approach to determine which 
candidates should be pruned off.  

Clearly, for each candidate considered, the most time-
consuming step is Step 3. In addition, the utility of the 
optimization depends on the number of distances we need 
to compute before we can call off the nearest neighbor 
search for Ci: the earlier we examine an object that has a 
smaller distance to Ci than Dist(Ci, Q), the earlier we can 
abandon the search process for the current candidate. 
Simply stated, our goal is thus the following: if there is a 
reason that a candidate could not be in the answer set, we 
would like to detect that reason as soon as possible.  

Note that the order in which the candidates are 
examined (i.e. the objects in CL) does not matter, as each 
search is independent. It is the ordering of objects when 
searching for Ci’s nearest neighbor, as in Step 3, that we 
should try to optimize. However, for the candidates in CL, 
we can take advantage of the already-computed distances 
so far, and continue the search process with the objects 
previously considered. 

Continuing from the example described above, after 
we abandon the nearest neighbor search for Ci, we can go 
on and compute Dist(Cj, Q) since we already know 
Dist(Ci, Cj). If Dist(Ci, Cj) < Dist(Cj, Q), then we can 
abandon the search for Cj as well, otherwise the search 
continues.  

Our task now is narrowed to predicting the likely 
near-neighbors for a given candidate, and designing a 
heuristic that determines the ordering of objects examined 
for Step 3 such that we can abandon the searches for non-
RNNs as soon as possible. Note that the optimal ordering 
for each candidate Ci completely depends on its relations 
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with other objects in the dataset; therefore, such heuristic 
will need to be applied to each candidate to determine the 
optimal ordering. 

 
3.1 Best-case scenario 

In the best case scenario, the number of distance 
computations we need to make is approximately  

|||)),(|2(

||2|||),(|_#

TTQTTRNN

TTTTQTTRNNcallsdist

!+=

!+!=  

where |RNN(TT, Q)| is the number of RNNs for Q, and |TT| 
is the number of objects in the dataset. Since all members 
in RNN(TT, Q) have Q as their nearest neighbor, it’s 
inevitable that for these objects, their distances to all other 
objects in the dataset need to be computed in order to 
conclude that their distances to Q is indeed the minimum. 
Therefore, the |||),(| TTQTTRNN !  distance calls are 
necessary. For the rest of the candidates, the best case 
occurs when the first object we examine in Step 3 is an 
object closer to the candidate than the query. In this case, 
we can ensure that at most two distance computations are 
needed before abandoning the search (i.e. the first one 
computes Dist(Ci, Q); the second one, if not already 
computed previously, computes a distance smaller than 
Dist(Ci, Q), thus allowing early abandonment of search). 
Note that this is only an approximation, for simplicity, as 
the computations for RNN(TT, Q) are double-counted. 

We can also record the distances computed so far to 
avoid redundant computation, but such optimization has 
limited improvement if the number of RNNs for Q is small 
relative to the number of objects in the dataset – as we can 
assume to be the case for most real-life datasets. 

The time complexity for the best case scenario is thus 
Ω(rN), where r is the number of RNNs, and N is the size 
of the dataset. Since we expect that r << N, the best-case 
scenario for the ordered search is by far more efficient than 
the O(N2) complexity of the brute-force approach. 

In the next section we describe several heuristics that 
approximate the optimal ordering without having any 
information about the actual distances. 

 
4 Approximating the Optimal Ordering 

The time series research community has significant 
experience in dealing with high dimensional data and has 
introduced numerous dimensionality reduction techniques.  
In this work, we will utilize Symbolic Aggregate 
Approximation (SAX) [11] to reduce the dimensionality of 
our data.  This method has been adopted by numerous 
researches and has proven to be a very effective technique, 
and the only symbolic one that provides a lower bounding 
distance measure.  Our review of this technique is brief 
and we refer the interested reader to [11] for expanded 
analysis.  

 

4.1 Symbolic Aggregate approXimation (SAX) 
Given a time series of length n, SAX produces a lower 

dimensional representation of a time series by 
transforming the original data into symbolic words.  Two 
parameters are used to specify the size of the alphabet to 
use (i.e. α) and the size of the words to produce (i.e. w).  
The algorithm begins by using a normalized version of the 
data and creating a Piecewise Aggregate Approximation 
(PAA). PAA reduces the dimensionality of a time series by 
transforming the original representation into a user defined 
number (i.e. w, typically w << n) of equal segments.  The 
segment values are determined by calculating the mean of 
the data points in that segment. The PAA values are then 
transformed into symbols by using a breakpoint table 
based on a Gaussian distribution.  In [4] the authors found 
that normalized time series subsequences had a highly 
Gaussian distribution. A symbolic transformation table 
could be created by defining breakpoints that would results 
in regions of equal-probability on the Gaussian 
distribution. These breakpoints may be determined by 
looking them up in a statistical table. For example, Table 2 
gives the breakpoints for values of α from 3 to 5. 
 

Table 2. A lookup table that contains the breakpoints that 
divides a Gaussian distribution into  an arbitrary number 
(from 3 to 5) of equiprobable regions. 

  βi       a 
 

3 4 5 

β1 -0.43 -0.67 -0.84 
β2 0.43 0 -0.25 
β3  0.67 0.25 
β4   0.84 

 
Figure 4 summarizes how a time series is converted to 

PAA and then symbols. 

 
Figure 4. Example of SAX for a time series. The time series 
above is transformed to the string cbccbaab, and the 
dimensionality is reduced from 128 to 8. 

 

4.2 Ordered search for RNN 
We will first describe the basic heuristic that helps 

identify candidates that are closer to other objects than 
they are to the query. Then we will describe how we can 
further prune off the search space by considering only a 
subset of candidates that can potentially be in the solution 
set. 
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H1: same string heuristic   
Recall that our goal is to identify objects whose nearest 
neighbors is the query object. This means these objects are 
closer to the query than they are to any other objects in the 
database. Therefore, if we see that the candidate being 
examined has a smaller distance to another object than its 
distance to the query, then we can conclude that this 
candidate could not be the RNN for the query. Our goal is 
thus to encounter any object close to the current candidate 
as early as possible. To predict which objects are close to 
the given candidate, we can look at their SAX 
representation. As shown in Figure 4, the shape of the 
given time series is approximately preserved by its 
symbolic representation. Therefore, we can expect that the 
time series encoded into the same SAX representation are 
likely to be similar to each other. Considering those with 
the same symbolic representation first seems a reasonable 
starting point. Among this subset, whose size is expected 
to be much smaller than the original dataset, we can 
potentially find one object to which the candidate Ci is 
closer than it is to the query, thus helping us eliminate Ci 
from the search. 

What we need to consider now, then, is to efficiently 
build the subset in which all the time series have the same 
string representation as the candidate, for each candidate 
examined. One obvious approach to identify such time 
series is to sequentially scan through the entire string 
representations of time series. However, having a linear 
scan for each object in the dataset clearly is not an efficient 
solution. Fortunately, the symbolic nature of SAX allows 
hashing, for which constant-time look-up can be expected.  

We begin by creating two data structures to support 
our heuristics. As a pre-processing step, each time series in 
TT is converted to a SAX word, which is stored in an array 
along with a pointer to the object. Note that the 
conversion/dimensionality reduction for each time series is 
independent of other objects in the dataset. Therefore, 
insertions of new data points would not require re-
processing of the entire dataset.  

Once we have this list of SAX words, we construct a 
hash table. Each bucket in the hash table represents a word 
and contains a linked-list index of all word occurrences 
that map to the corresponding string. The address of a 
SAX word is computed by using the following hash 
function: 

!
=

"#"=
w

i

iw

i
cordwCh

1

)1)ˆ((),,( $$
 

where )ˆ(
i
cord  is the ordinal value of 

i
ĉ , i.e. ord(a) = 1, 

ord(b) = 2, and so forth; w is the word size; and α is the 
alphabet size. For example, for the string caa, where w = 3, 
α = 3, 

18303032)3,3,( 012
=!+!+!=caah  

This hash function assigns each SAX word a unique 
address ranging from 0 to 1!

w" , hence guarantees minimal 
perfect hashing.  

The size of the hash table is independent of the size of 
the dataset – it depends only on the two parameters of 
SAX: w and α. According to [11], it’s typically sufficient 
for α to take on small values such as 3 or 4; and while w is 
usually data-dependent, oftentimes we can expect it to 
remain reasonably small as well for the following reasons. 
First, it is generally not very meaningful to compare time 
series that are too long – for long time series, we are 
typically only interested in their local structures extracted 
via sliding windows. In addition, [11] has shown that SAX 
approximation produces competitive results comparing to 
other dimensionality reduction techniques such as DFT 
and DWT, or even the raw data.  

That being said, despite the optimality of the suitable 
choice of w, the memory consumption for creating an 
empty hash table is considerably small and negligible, 
compared to the typically massive amount of time series 
data. For example, for w = 10 and α = 3, the table size is 
310 = 59,049. The memory consumption for creating an 
empty hash table of this size is less than 1 MB. The size of 
the resulting hash table, with subsequence indices hashed 
to the buckets of the corresponding SAX strings, is linear 
to the size of the time series datasets.  

Once the hash table is constructed, we can 
approximate the optimal ordering for the current 
candidate’s nearest neighbor search as follows. For each 
candidate Ci being considered, we check in the SAX words 
array for its SAX word, and since our purpose is to 
identify the objects that are likely to be similar to Ci, we 
then check the hash table for the corresponding bucket, 
and retrieve the list of objects that are encoded to the same 
SAX string. This list of objects will be examined prior to 
the rest of the objects which are then ordered sequentially. 
Hopefully among these preferred objects, we will find one 
that is closer to Ci than the query is to Ci. This process is 
repeated for each candidate examined. This simple 
heuristic is shown to work well and reduce the search 
space by a large amount.  

 
H2: Zero MINDIST heuristic  
One of the advantages of SAX that makes it more 
desirable than all the other symbolic representation 
proposed in literature is that it provides lower-bound 
distance measures. As shown in [11], given a lookup table 
for the breakpoints as in Table 3, the lower-bounding 
distance for the Euclidean distance, MINDIST, between 
two strings 

1
S  and 

2
S can be determined as follows: 
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!! ""  is the difference in breakpoints 

for the regions associated with the alphabetic symbols. 
 

Table 3. Lookup table for alphabet distances 

 a b c 
a 0 0 0.86 
b 0 0 0 
c 0.86 0 0 

 
Simply speaking, the minimum distance between two 

alphabets is zero if they are the same, or neighboring 
alphabets (e.g. dist(a, a) = 0, dist(a, b) = 0). Otherwise, 
their distance is the height of the region between them. For 
an example alphabet of size 3, Table 3 shows that dist(a, c) 
= 0.86 (cf. Figure 4). 

The heuristic described in the previous section looks 
for time series objects that are encoded to the same string. 
It might be the case that a given candidate has a string 
representation not shared by many others. In this case, we 
might exhaust this preferred, same-string list pretty fast. 
When this happens, instead of sequentially scanning the 
rest of the remaining objects, we consider a simple 
alternative.  

As Figure 4 suggests, segments that are encoded as 
neighboring alphabets (e.g. a and b) might be close to each 
other. This is also the reason that neighboring alphabets 
have a minimum distance of zero. Therefore, we propose 
that, after exhausting the same-string list, we iteratively 
examine the buckets for which the ordinal values of all 
symbols differ by no more than one from the 
corresponding symbols in the candidate string. For 
example, if the candidate string is “bab,” after exhausting 
the bucket containing objects encoded to “bab,” we might 
retrieve the bucket for “aaa, ” then “aab” and so forth. If 
we exhaust all the buckets for strings of MINDIST zero 
from the candidate string, then we examine the rest of the 
objects in sequential order (we can have a vector of flags, 
telling us which object has been visited). This strategy is 
not much more costly than the base heuristic, except for 
the bucket-lookup, and is shown to be more efficient than 
the base heuristic. 

Note that we can effectively prune off the search 
space (not just for individual candidate’s nearest neighbor 
search, but for the entire RNN search) by taking advantage 
of the lower-bounding property of SAX, and/or using the 
triangle inequality property. For example, we can eliminate 
unnecessary distance computations if the lower-bounding 

distance between Ci and Cj is larger than Dist(Ci, Q). We 
can envision such optimization to be extremely useful 
when Dist(Ci, Q) is small (i.e. when Ci is one of Q’s 
RNNs). Such case is also the only case when the whole 
dataset needs to be scanned in order to conclude that Q is 
Ci’s nearest neighbor. We will defer the effectiveness of 
lower-bounding distances for future research. In the 
remaining of this section, we describe two more heuristics 
that return approximate answers.  

 
H3: MINDIST partial candidates heuristic  
So far, the two heuristics proposed determine the ordering 
of the preferred list before examining the remaining 
objects. Nevertheless, both heuristics still require that we 
check every single object before the search of RNN ends. 
For this heuristic, instead of going through every object in 
the entire dataset (cf. Step 1 in Table 1), we only consider 
candidates whose MINDIST to Q is zero. Then for each 
candidate, we retrieve objects the same way as in H2. 

The intuition behind this heuristic is that objects that 
can potentially be RNNs of the query are probably similar 
to the query. Therefore, they are likely to be encoded to 
similar strings as the query (i.e. same string or strings with 
MINDIST of zero). While we cannot guarantee to always 
find exact solutions with this heuristic unless we 
incorporate the knowledge from lower- or even upper-
bounding distances, experiments show that this heuristic 
produces close-to-exact output. 

In a broad sense, our approximate search is similar to 
the approach in [16]. In their work, the search for 
approximate RNNs is done by the following steps: 

1. A small subset of objects that could potentially be 
the RNNs of the query is identified. The authors 
argue that due to the close relationship between k-
NN and RNN, an object’s RNNs are likely to be 
also its k-NNs, given an appropriate k. 

2. For this subset of objects, find their global nearest 
neighbors so that it can be determined if they are 
closer to the query than they are to their 
respective nearest neighbors. The author proposed 
two filtering approaches to speed up the search. 

There is no guarantee that the query’s RNNs are 
always among its k-NNs, since it’s dependent on the value 
of k. Therefore, the results produced are only an 
approximate. The authors showed that with a relatively 
small k (e.g. 30), they achieve 85%-95% recall on 4 
different datasets. 

This part of our work is similar to theirs in the sense 
that we also try to produce a small subset of objects that 
likely contain the true RNNs. However, we do so by 
predicting such likelihood from the objects’ symbolic 
representations. Our approach is not restricted by the 
choice of k. As will be shown later, it is difficult to 
determine the value of k that works well for all datasets. If 
k is too large, then we end up with a larger subset than 
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necessary. On the other hand, if k is too small, than we 
might miss the true RNNs. Instead of specifying the 
number of objects to be our potential candidates, the size 
of such subset depends on the data. Our approach only 
retrieves the “similar” ones according to the symbolic 
representations. 

 
H4: MINDIST subset only heuristic  
For the MINDIST-Partial Heuristic, although we have 
reduced the search space by only considering the candidate 
objects that fulfill the MINDIST requirement (let’s call 
this subset of objects A), the search space for individual 
candidates is still the same (i.e. we need to potentially 
consider the entire dataset for each candidate). With the 
same argument provided above, for this heuristic, we 
consider only objects whose MINDIST to the current 
candidate object is zero (let’s call this subset of objects B). 
Note that A and B are not necessarily the same.  

Let’s consider an example. Suppose the SAX word for 
the query is “aba.” Furthermore, suppose that among the 
subset A that fulfills the MINDIST requirement for the 
query, we consider a candidate “bba.” Note 
MINDIST(“aba”, “bba”) = 0. We then need to construct 
subset B that fulfills the MINDIST requirement with 
respect to “bba.” In this subset B, we might have an object 
whose SAX word is “cba.” Again, verify that 
MINDIST(“bba”, “cba”) = 0. However, “cba” is not in A, 
since MINDIST(“cba”, “aba”) > 0. This is the reason that 
for each candidate, we need to construct its own subset of 
potential candidates.  

Again, this heuristic produces approximate solutions; 
however, the experiments show that the accuracy is very 
high. As a matter of fact, the accuracy for this heuristic is 
the same as the previous heuristic, i.e. whatever objects 
retrieved by H3 will be guaranteed to be retrieved by H4. 
Since we only consider a subset of the dataset, the 
declaration of a candidate as an RNN after exhausting the 
subset and not finding an object closer to the query might 
be a false positive (i.e. a closer object might be among the 
remaining subset that we do not consider). However, this 
heuristic improves the search time tremendously, and is 
particularly useful when speed rather than exactness is of 
critical concern. 

Since the MINDIST subset might still be larger than 
we desire, we can put more restrictions on the strings to be 
considered. For example, instead of allowing the alphabets 
at each location to differ at most by 1, we can allow only 
one or two such “don’t-care” location for the entire string. 
For H3 and H4, the string “aba” would consider “bab” 
similar since MINDIST(“aba”, “bab”) = 0, even though at 
all locations, the alphabets are different. If we allow only 
one or two differing alphabets for the entire string, then the 
potential subset will be considerably smaller. We defer the 
analysis of trade-off between efficiency and accuracy for 
future research. 

We summarize all heuristics in Table 4 below. All but 
the brute-force approach benefits from early termination 
for each candidate’s NN search. Heuristics #1-#4 were 
described in this section, whereas Heuristic #0B was 
described in Table 1. The brute-force approach computes 
all O(N2) distances. 

Table 4. Summary of the heuristics described so far. 

  Outer loop 
(candidates) 

Inner loop (NN 
search for 
candidate) 

0A Brute Force (no 
early termination) 

Sequential – all Sequential – all 

0B Basic w/o SAX Sequential – all Sequential – all 

1 Basic w/ SAX 
(same string) 

Sequential – all Same string 
subset first; the 
rest sequential 

2 Zero MINDIST Sequential – all Zero MINDIST 
subset first; the 
rest sequential  

3 Zero MINDST w/ 
Partial Candidates 

Zero 
MINDIST 
subset only 

Zero MINDIST 
subset first; the 
rest sequential 

4 Zero MINDST 
Subset Only 

Zero 
MINDIST 
subset only 

Zero MINDIST 
subset only wrt 
current candidate 

  
4.3 Parameter selection 

SAX requires two parameters: alphabet size α, and the 
SAX word size w. While large values of α and/or w result 
in more selective encoding, they also result in small 
preferred lists (since the criteria for objects to be mapped 
to the same or similar strings are more strict). On the other 
hand, small values of α and/or w will likely result in large 
preferred lists, with few of the objects being the true 
similar ones. Neither of these situations is desirable for our 
heuristics. 

Extensive experiments carried out by [11] suggest that 
typically, a value of either 3 or 4 for α works well for 
virtually any task on any dataset. For this reason, we use α 
= 4 for all our experiments. 

Having fixed α, we now have to determine the value 
for w. While the best choice of w is data-dependent, 
generally speaking, time series with smooth patterns can 
be described with a small w, and those with rapidly 
changing patterns prefer large w to capture the critical 
changes.  

 
5 Empirical evaluation 

All heuristics we propose in this paper can be 
extended to RkNN search very easily. In the first part of 
our experiments, we evaluate the accuracy of the 
approximate algorithms of RkNN search, and its 
efficiency/scalability in the second part. Note that H1 and 
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H2 produce exact solutions, so they are excluded from the 
accuracy experiments.  In the third part of our experiments, 
RkNN is used to identify and remove outliers from training 
sets for pattern recognition by kNN. 

 
5.1 Accuracy 

We use the datasets from UCR Time Series Archive 
[4]. The datasets can be found from the UCR Time Series 
Classification/Clustering Page [6]. Other than regular time 
series data, the datasets also contain shape (e.g. Face, Leaf) 
and video (e.g. yoga) data that are represented as sequence 
data. Since we do not need the class information, we 
combine the training and test sets to form larger datasets. 
For each dataset, we randomly draw 50 objects as queries, 
and run RkNN on these objects in separate runs. 
Arbitrarily, we choose k = 3, α = 4, and w = 4. We then 
compute the average error and false alarm rates. The error 
rate is one minus the percentage of RkNNs successfully 
found; and the false alarm rate is the percentage of items 
incorrectly identified as the RkNNs. As noted in [6], these 
datasets are too small to make any meaningful claims on 
efficiency. Experiments on scalability will be reported in 
the next section. 

We compare our results with the kNN based strawman 
approach as described in Section 4.2, under heuristic H3 
[16]. We need to determine one parameter; namely, the 
value for k. In order to avoid confusion with the k in 
RkNN, we will use k1 to denote the k in k-NN based 
approach. In the paper [16], the authors stated that 90% 
recall can be achieved by using k1 = 10. We note that this 
is only true for two out of four experiments conducted in 
the original paper. For one of the datasets, the recall is 
around 72% for k1 = 10. Therefore, we choose k1 = 30, in 
hope that better accuracy can be obtained. 

The accuracy reported here for the strawman 
approach, shown in Table 5, is expected to be higher than 
the accuracy in the original paper, since instead of 
performing SVD on the data, we use the raw data directly. 
The reason that we skip the SVD step is that SVD becomes 
impractical for large and/or dynamic datasets. We feel that 
this is a fair comparison, since in this section, we are only 
comparing accuracy, and by deliberately removing the step 
that causes deteriorating results for their approach, the 
results we report here are actually optimistic compared to 
the original ones. Nevertheless, even in this case, our 
heuristics result in considerably higher accuracy. Note that 
both H3 and the k-NN based approach should have no 
false positives, as they consider the entire dataset for each 
candidate (i.e. find global NN), whereas H4 considers only 
the MINDIST subset. 

As mentioned earlier, it’s difficult to determine the 
effective value for k1. One naïve approach of choosing k1 
as a function of the size of the dataset does not work, as we 
can see from the results that the error rates for the k-NN 
based approach are not correlated to the data size. 

Fortunately, our approaches allow automatic determination 
of the subset size, according to the structure of data.   

From the results, we can see that our accuracy is 
nearly 100%, except for two datasets. For H4, there are 
some false positives, but the average false alarm rates are 
very small. 

 
Table 5 Error and false positive rates for the approximate 
heuristics (H3 and H4). 

 H3 H4 k-NN 
Datasets (# 
records x 
length) 

Error 
rate 

False 
Pos. 
rate 

Error 
rate 

False 
Pos. 
rate 

Error 
rate 

False 
Pos. 
rate 

50words 
(905x270) 

0.0 0.0 0.008 0.01 0.015 0.0 

Adiac 
(781x176) 

0.0 0.0 0.0 0.0 0.124 0.0 

Beef 
(60x470) 

0.0 0.0 0.0 0.0 0.0 0.0 

CBF 
(930x128) 

0.0 0.0 0.0 0.0 0.004 0.0 

Coffee 
(56x286) 

0.0 0.0 0.0 0.0 0.0 0.0 

ECG200 
(200x96) 

0.0 0.0 0.0 0.0 0.024 0.0 

FaceAll 
(2250x131) 

0.0 0.0 0.0 0.0 0.034 0.0 

FaceFour 
(112x350) 

0.0 0.0 0.0 0.0 0.012 0.0 

Gun_Point 
(200x150) 

0.0 0.0 0.0 0.0 0.005 0.0 

Lighting2 
(121x637) 

0.0 0.0 0.0 0.0 0.05 0.0 

Lighting7 
(143x319) 

0.0 0.0 0.0 0.0 0.025 0.0 

OSULeaf 
(442x427) 

0.0 0.0 0.0 0.0 0.038 0.0 

OliveOil 
(60x570) 

0.0 0.0 0.0 0.0 0.032 0.0 

SwedishLeaf 
(1125x128) 

0.0 0.0 0.0 0.0 0.2 0.0 

Trace 
(200x275) 

0.0 0.0 0.0 0.0 0.0 0.0 

TwoPatterns 
(5000x128) 

0.0 0.0 0.0 0.0 0.031 0.0 

Fish 
(350x463) 

0.0 0.0 0.0 0.0 0.065 0.0 

Synthetic 
Control 
(600x60) 

0.003 0.0 0.003 0.006 0.177 0.0 

Wafer 
(7164x152) 

0.0 0.0 0.0 0.0 0.036 0.0 

Yoga 
(3300x426) 

0.0 0.0 0.0 0.0 0.017 0.0 

  
5.2 Efficiency and scalability 
In this part of the experiments, we evaluate the efficiency 
of our heuristics on large datasets. We create random walk 
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datasets of 100,000 and 300,000 in size. We then generate 
10 different queries and use them for RNN search. To 
determine the efficiency of the heuristics, we compare the 
total number of distance calls to the Euclidean distance 
function. Figure 5 shows the results, measured in the 
fraction of distance calls needed compared to the basic 
heuristic (H0B, early termination only; no heuristic 
ordering). Note that as the data size increases, the speedup 
is more obvious. Also, since we should expect that real-
world datasets have more structure than random walk data 
(thus easier to come across similar object which provokes 
early termination), the results shown here are likely to be 
an underestimation of true potential of speedup. 

 
Figure 5. The speed up is shown as the percentage of 
distance calls needed for each heuristic, compared to the 
basic heuristic (H0B: early termination only; no heuristic 
ordering).  

 

5.3 Outlier Detection 
In addition to determining the influence of a given 

query point, the concept of RNN has many useful 
applications. For example, RNN can potentially be applied 
on clustering outlier detection. While most anomaly 
detection algorithms [13, 18] work efficiently in detecting 
a global anomaly, they cannot detect local outlier for a 
given cluster (e.g. an outlier that is not necessarily farthest 
away from the rest of the data).  

As illustrated in Figure 6, there are two clusters with 
two outliers. Observation 8 is considered to be a global 
outlier, while observation 7 is considered to be a local 
outlier. Most anomaly detection algorithms can identify 
observation 8 as the anomaly, but will fail to identify 
observation 7.  

In addition, in pattern recognition (classification) 
tasks, it can be useful to avoid making inferences based on 
unusual training set members.  For example, in Figure 6, 
observation 7 changes the position of the maximum 
margin hyperplane that separates the squares on the left 
from the circles on the right.  

 
Figure 6. Two clusters of data with one global outlier 
(observation 8) and one local outlier (observation 7). Both 
outliers can be detected using an RkNN-based algorithm. 

Nanopoulos et al [13] proposed an algorithm based on 
RkNN to identify anomalies in data. The idea is that, given 
an appropriate value of k, objects that do not have any 
RkNN are considered anomalies.  In this section we 
investigate the effectiveness of the RkNN-based outlier 
detection algorithm 

We used the data sets from the UCR 
Classification/Clustering page [6] to see if using RkNN for 
outlier detection and removal improves query 
classification performance. In our training step, we try 
different values of k starting from 2, and remove all the 
objects with zero RkNN count. We stop the process when 
no object has zero RkNN count (typically when k = 5 or 6) 
or when we reach the user-defined maximum value of k. 
Note that as k increases, the number of such objects 
returned decreases. 

After identifying and removing the outliers (if any), 
we validate the results and show the actual classification 
accuracy on the test sets in Table 6.  The first column of 
numbers is the original accuracy, computed before any 
outlier removal.  The second column of numbers is the 
accuracy for the RkNN-based outlier detection algorithm. 

The bolded text indicates that the removal of outliers 
by the corresponding method improves the accuracy, 
whereas the shaded cell indicates that the accuracy 
deteriorates after the removal. To get an idea of how 
effective our algorithms perform, we repeat the 
classification task using various parameters examined 
during the training process, and record the best possible 
accuracy (shown as the second number, if the actual 
accuracy is not the best). 
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Table 6. Error rate before and after outlier removal, if any. 

Dataset Original RkNN/best 
possible 

50words 0.2527 0.2527 / 0.2505 

Adiac 0.4194 0.4194 

Beef 0.33 0.33 

CBF 0.0233 0.06/0.0233 

Coffee 0 0 

ECG200 0.1900 0.1800 

FaceAll 0.2154 0.2154 / 0.1811 

FaceFour 0.1591 0.1591 

GunPoint 0.04 0.04 / 0.033 

Lighting2 0.1311 0.1311 

Lighting7 0.2329 0.2740 / 0.2329 

OSULeaf 0.4463 0.4463 

OliveOil 0.1333 0.1333 

Swedish 0.2192 0.2192 / 0.2176 

Trace 0.01 0.01 

2Patterns 0.0008 0.0008 / 0.0005 

Fish 0.1657 0.1543 

Synthetic 0.0367 0.0367 

Wafer 0.0092 0.0117 / 0.0092 

 
In some cases, removal of “outliers” worsens the accuracy.  
We believe that one way to improve the flexibility of the 
RkNN-based approach is to add a filtering step and treat 
the “outliers” returned from the algorithm as candidates 
only, rather than removing them right away. Once we get 
the set of candidates, we can then remove them one at a 
time until the accuracy deteriorates. We will defer the 
investigation  of such refinement for future research. 

We conclude this section by noting that while most 
anomaly detection algorithms can benefit from knowing 
the class labels (i.e. anomaly detection can be applied 
individually on each class), the RkNN-based anomaly 
detection approach does not need such information and 
therefore has potential for a broader range of applications 
such as pre-clustering outlier removal. 

 
6 Conclusions and future work 

In this work we propose several heuristics that speed 
up the reverse nearest neighbor search by pruning off a 
large part of the search space. While the focus is mainly on 
sequence data, we note that many multimedia data types 
such as images can be represented as sequences as well. In 
addition, the same heuristics can potentially be adapted to 
other signal-typed, continuous data even without 
representing them as time series. 

For future work, we plan to investigate the following: 

• Efficient algorithms when multiple queries are 
given. 

• As shown in the experimental results, the speedup 
becomes more significant when the data size 
increases. We plan to run more scalability 
experiments, using large, disk-resident datasets. 

• Other heuristics as mentioned in Section 4. 
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