

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 333 – 342, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A MPAA-Based Iterative Clustering Algorithm
Augmented by Nearest Neighbors Search for Time-Series

Data Streams

Jessica Lin1, Michai Vlachos1, Eamonn Keogh1, Dimitrios Gunopulos1,
Jianwei Liu2, Shoujian Yu2, and Jiajin Le2

1 Department of Computer Science and Engineering University of California,
Riverside Riverside, CA 92521

{jessica, mvlachos, eamonn, dg}@cs.ucr.edu
2 College of Computer Science & Technology,

Donghua University
liujw@mail.dhu.edu.cn

Abstract. In streaming time series the Clustering problem is more complex,
since the dynamic nature of streaming data makes previous clustering methods
inappropriate. In this paper, we propose firstly a new method to evaluate Clus-
tering in streaming time series databases. First, we introduce a novel multi-
resolution PAA (MPAA) transform to achieve our iterative clustering algo-
rithm. The method is based on the use of a multi-resolution piecewise aggregate
approximation representation, which is used to extract features of time series.
Then, we propose our iterative clustering approach for streaming time series.
We take advantage of the multiresolution property of MPPA and equip a stop-
ping criteria based on Hoeffding bound in order to achieve fast response time.
Our streaming time-series clustering algorithm also works by leveraging off the
nearest neighbors of the incoming streaming time series datasets and fulfill in-
cremental clustering approach. The comprehensive experiments based on sev-
eral publicly available real data sets shows that significant performance im-
provement is achieved and produce high-quality clusters in comparison to the
previous methods.

1 Introduction

Numerous clustering algorithms of time series have been proposed, the majority of
them work in relatively static model, while many current and emerging applications
require support for on-line analysis of rapidly changing streaming time series. In this
paper, we present a new approach for cluster streaming time series datasets.

Our work is motivated by the recent work by Jessica Lin and Eamonn Keogh on it-
erative incremental clustering of time series [1]. While we speed up clustering process
by examining the time series at increasingly finer levels of approximation using
multi-solution piecewise aggregate approximation (MPAA). We argue that MPAA
has all the pruning power of Wavelet transform dimensionality reduction, but is also
able to handle arbitrary length queries, is much faster to compute and can support a

334 J. Lin et al.

more general distance measures. Although there has been a lot of work on more flexi-
ble distance measures using Wavelet [2, 3], none of these techniques are indexable.
While time series databases are often extremely large, any dimensionality reduction
technique should support index method. For the task of indexing MPAA has all the
advantages of Wavelet with none of the drawbacks.

Our work addresses four major challenges in applying their ideas for clustering
time series in a streaming environment. Specifically, our work has fourfold main
contribution:

Clustering Time Series in Streaming Environment: Streaming time-series are
common in many recent applications, e.g., stock quotes, e-commerce data, system
logs, network traffic management, etc [4]. Compared with traditional datasets, stream-
ing time-series pose new challenges for query processing due to the streaming nature
of data which constantly changes over time. Clustering is perhaps the most frequently
used data mining algorithm. Surprisingly, clustering streaming time-series still have
not explored thoroughly, to the best of our knowledge, no previous work has ad-
dressed this problem.

MPAA-based Iterative Time Series Clustering: PAA (Piecewise Aggregate Ap-
proximation) [5] transformation produces a piecewise constant approximation of the
original sequence. In this paper, we introduce a novel multi-resolution PAA (MPAA)
transform to achieve our iterative clustering algorithm.

Proposed stopping criteria for multi-level iterative clustering: We solve the diffi-
cult problem of deciding exactly how many levels are necessary at each node in itera-
tive clustering algorithm by using a statistical result known as the Hoeffding bound
[6].

Time Series Clustering augmented Nearest Neighbor: Our proposed inline
clustering algorithm exploits characteristic of a neighborhood and significantly reduce
clustering construction time and improve clustering quality.

The rest of the paper is organized as follows. In section 2, we develop enhanced it-
erative clustering and streaming clustering algorithm. Section 4 presents the experi-
mental evaluation of our proposed algorithms both in offline and online form. We
conclude in Section 5 with some summary remarks and future research directions.

2 Streaming Iterative Clustering Method

2.1 MPAA -Based Dimensionality Reduction

Our MPAA-based time series representation work is derived from the recent work by
Eamonn Keogh [5] and Yi and Faloutsos [7] on segmenting time series representa-
tions of dimensionality reduction.

The basic idea on which their work develops is as follows. Suppose, we denote the

set of time series which constitute the database as X = 1{ , , }nX X! . A time series

 A MPAA-Based Iterative Clustering Algorithm 335

iX of length n is represented in N space by a vector iX = 1, ,i iNx x! . The ith ele-

ment of iX is calculated by the following equation:

(1) 1

n
i

N

i j
n

j i
N

N
X x

n
= − +

= ! (1)

Our MPPA method divides time series iX of length n into a series of lower-

dimensional signal with different resolution N. where {1, , }N n∈ ! . Simply stated,

in first level, the data is divided into N "frames", whose sizes need not be contiguous
and equal. The mean value of the data falling within a frame is calculated and a vector
of these values becomes the data reduced representation. Then Recursively applying
the above pairwise averaging process on the lower-resolution array containing the
averages, we get a multi-resolution representation of time series.

We give a simple example to illustrate the MPAA decomposition procedure in
Table 1. Suppose we are given a time series containing the following eight values A=
[3, 5, 2, 6, 4, 8, 7, 1] and we initiate divide it into 4 segments. The MPPA transform
of A can be computed as follows. We first average the values together pairwise to get
a new “lower-resolution” representation of the data with the following average values
[4, 4, 6, 4]. In other words, the average of the first two values (that is, 3 and 5) is 4
and that of the next two values (that is, 6 and 4) is 5, and so on. Recursively applying
the above pairwise averaging process on the lower-resolution array containing the
averages, we get the following full decomposition:

Table 1. A simple example to illustrate the MPAA decomposition procedure

Resolution MPAA Values
8 3,5,2,6,4,8,7,1
4 4,4,6,4
2 4,5
1 4.5

The MPAA approximation scheme has some desirable properties that allow incre-
mental computation of the solution. These properties are necessary in order for the
algorithm to be able to operate efficiently on large datasets and streaming environment.

2.2 Enhanced Iterative Clustering Methods

Our iterative clustering method is similar to [1]. The algorithm works by leveraging
off the multiresolution property of MPPA.

Note that an open problem that arise with this sort of iterative models is the defini-
tion of a minimum number of observations, i.e., devising an objective functions that
determine the quality of clustering results from the previous stages to eliminate the
need to re-compute all the distances.

336 J. Lin et al.

Due to us perform the k-Means clustering algorithm, starting at the second level
and gradually progress to finer levels, in order to find the stopping resolutions as low
as possible to complete a good k-means clustering, it may be sufficient to consider
only a small subset of the multi-level clustering examples that pass through the level
of decomposition tree. We solve the difficult problem of deciding exactly how many
levels are necessary at each node by using a statistical result known as the Hoeffding
bound or additive Chernoff bound [6], which have in fact be successfully used in
online decision trees [8][9]. After n independent observations of a real-valued random
variable r with range R, the Hoeffding bound ensures that, with confidence 1 δ− ,
the true mean of r is at least r ε− , where r is the observed mean of the samples and

2 (1)

2
R In

n

δε = (2)

This is true irrespective of the probability distribution that generated the observations.

Table 2. The enhanced iterative clustering algorithms

Algorithm SI-kMeans
1 Decide on a value for k.
2 Perform MPAA decomposition on raw data
3 Initialize the k cluster centers (randomly, if necessary).
4 Compute the hoeffding bound(ε)
5 Run the k-Means algorithm on the level i of MPAA representa-

tion of the data
6 Use final centers from level i as initial centers for level i+1.

This is achieved by projecting the k centers returned by k-

Means algorithm for the 2i space in the 12i+ space.
7 Compute the distance centerD between initial centers of level i

and initial centers for level i+1
8 Compute respectively maximum values of the sum of squared

intra-cluster errors in jth iterative clustering and (j+1)th iterative

clustering, i.e. max()iE and max(1)iE +

9 If max(1)iE + − max()iE > ε , exit.

10 If centerD > ε , goto 3.

We call the new iterative clustering algorithm supporting stopping criteria SI-
kMeans, where S stands for “stopping criteria.”, and I stands for “interactive.” Table 2
gives a skeleton of this idea.

2.3 Proposed Streaming Clustering Algorithm

A key challenging issue with streaming time series clustering algorithm is the high
rate of input sequences insertion.

 A MPAA-Based Iterative Clustering Algorithm 337

To illustrate our application, consider the following issue. Most streaming time se-
ries are related to previously arrived time series or future ones, hence, this strong
temporal dependency between the streaming time series should not be ignored when
clustering streaming data collection. This issue can be addressed by considering the
nearest neighbor. A simple distance metric between two new arriving time series and
the clustering center will show how much they are related to each other. Hence, the
nearest neighbor analysis allows us to automatically identify related cluster.

Below, we give a more formally definition in order to depict our Streaming Clus-
tering algorithm.

Definition 1. Similarity measure: To measure closeness between two sequences, we
use correlation between time series as a similarity measure. Supposed that time-series

iT and jT in a sliding window which length is w is represented respectively

by 1 1{ , , , , }i i in inu t u t< > < >! and 1 1{ , , , , }j j jn jnv t v t< > < >! The Similarity

between two time series iT and jT is defined by

1

2 2 2 2

1 1

si (,)

w

ik jkk
i j w w

ik ikk k

u v wu v
milarity T T

u wu v wv

=

= =

−
=

− −

!
! !

i

i
 (3)

Definition 2. Similar: If si (,)i jmilarity T T ς≥ , then a time series iT is referred

to as similar to a time series jT .

Based on the definition of similar in Definition 1, we can define the ζ -

neighborhood ()iN Tζ as follows:

Definition 3. ζ -neighborhood ()iN Tζ : ζ -neighborhood for a time series iT is

defined as a set of sequences{ : si (,) }j j iX milarity X T ζ≥ .

Our proposed clustering algorithm exploits characteristic of a neighborhood. It is
based on the observation that a property of a time-series would be influenced by its
neighbors. Examples of such properties are the properties of the neighbors, or the
percentage of neighbors that fulfill a certain constraint. The above idea can be trans-
lated into clustering perspective as follows: a cluster label of a time-series depends on
the cluster labels of its neighbors.

The intuition behind this algorithm originates from the observation that the cluster
of time series sequences can often be approximately captured by performing nearest
neighbor search. In what follows, our idea is explained in detail.

Initially, we assume that only time series in now window is available. Thus, we
implement SI-kMeans clustering on these sequences itself and form k clusters. Add-
ing new sequences to existing cluster structure proceeds in three phases: neighbor-
hood search, identification of an appropriate cluster for a new sequences, and re-
clustering based on local information. The proposed incremental clustering algorithm
STSI-kMeans (streaming time series iterative K-means clustering algorithm) can be
discribed as follow:

338 J. Lin et al.

Step 1. Initialization. Get next new sequences { 1, , }c cT w T− + ! in now window.

Step 2. Neighborhood search. Given a new incoming sequences{ cT w− 1+ ,!

, }cT and let
jKC be the set of clusters containing any time series belonging to ()jN Tζ ,

obtain { (1), (2), , ()}c c cN T w N T w N Tζ ζ ζ− + − + ! by performing a neighbor-

hood search on { 1, , }c cT w T− + ! , and find the candidate cluster
jKC which can host a

new sequence jT ∈ { 1, , }c cT w T− + ! , that mean to identify
jKC ⊃ ()jN Tζ .

Step 3. Identifying an appropriate cluster. Cluster If there exists a cluster KC that

can host a sequence jT , and then add jT to the cluster KC . Otherwise, create a new

cluster newC for jT .

To identify a cluster KC which can absorb the new time-series jT from the set of

candidate clusters
jKC , we employ a simple but effective approach, which measures

the Euclidean distance between the center of candidate clusters and the new time-

series jT , the cluster which returns the minimum distance is selected as a cluster KC

which can absorb the new time-series jT .

Step 4. Re-clustering over affected cluster. If jT is assigned to KC or create a new

cluster newC for jT , then a merge operation needs to be triggered. This is based on a

locality assumption [10]. Instead of re-clustering the whole dataset, we only need to
focus on the clusters that are affected by the new time-series. That is, a new time-
series is placed in the cluster, and a sequence of cluster re-structuring processes is
performed only in regions that have been affected by the new time-series, i.e., clusters
that contain any time-series belonging to the neighborhood of a new time-series need
to be considered.

Note that based on SI-kMeans re-clustering, the number of clusters, k′ value De-
cide by the number of affected clusters k′′ by absorbing the new time-series. Where
k′ = k′′ .

Step 5. Repetition. Repeat Step 2-4 whenever new sequences available in the next
window.

3 Experimental Evaluation

In this section, we implemented our algorithms SI-kMeans and STSI-kMeans, and
conducted a series of experiments to evaluate their efficiency. We also implemented
the I-kMeans algorithm, to compare against our techniques. When not explicitly men-
tioned, the results reported are averages over 100 tests.

 A MPAA-Based Iterative Clustering Algorithm 339

3.1 Datasets

The data using in our experiment is similar to [1]. We tested on two publicly avail-
able, real datasets: JPL datasets and heterogeneous datasets [11]. The dataset cardinal-
ities range from 1,000 to 8,000. The length of each time series has been set to 512 on
one dataset, and 1024 on the other. Each time series is z-normalized to have mean
value of 0 and standard deviation of 1.

3.2 Offline Clustering Comparison

To show that our SI-kMeans approach is superior to the I-kMeans algorithm for clus-
tering time series in offline form, in the first set of experiments, we performed a series
of experiments on publicly available real datasets. After each execution, we compute
the error and the execution time on the clustering results.

Fig. 1. Comparison of the clustering approximation error between SI-kMeans and I-kMeans.
(a) Error of SI-kMeans algorithm on the Heterogeneous dataset, presented as fraction of the
error from the I-kMeans algorithm. (b) Objective functions of SI-kMeans algorithm on the JPL
dataset, presented as fraction of error from the I-kMeans algorithm

Figure 1 illustrates the results of clustering approximation error. As it can be seen,
our algorithm achieves better clustering accuracy.

Figure 2 shows Speedup of SI-kMeans against I-kMeans. the SI-kMeans algorithm
finds the best result in relatively early stage and does not need to run through all levels.

3.3 Online Clustering Comparison

In the next set of experiments, we compare the inline performance of STSI-kMeans to
I-kMeans, which is essentially a comparison between an online and the corresponding
offline algorithm. Since original I-kMeans algorithm is not suitable for online cluster-
ing streaming time series, we revise it and adapt it to online clustering.

340 J. Lin et al.

Fig. 2. Speedup of SI-kMeans against I-kMeans. (a) SI-kMeans vs. I-kMeans algorithms in
terms of clustering error and running time for in the Heterogeneous dataset. (b) SI-kMeans vs.
I-kMeans algorithms in terms of objective function and running time for JPL dataset

We quantify firstly the differences in the performance of the two algorithms. We
report the cumulative relative error over count-based or sequence-based windows,
which measure the relative increase in the cumulative error when using STSI-kMeans
and I-kMeans.

STSI-kMeans I-kMeans1 1

I-kMeans1

() ()
100

()

q q

j jj j

q

jj

Error w Error w
CRE

Error w

= =

=

−
= ×

! !
!

 (4)

Where, q is the number of elapsed windows. In Figure 3, we depict CRE as a

function of q and k. In the experiment of Figure 5, the length of streaming time se-

ries 1000,2000,4000,8000 points, through, for increasing q we observe a very slow

build-up of the relative error. Our algorithm performs better as the number of q in-
creases.

Fig. 3. Comparison of the clustering approximation error between STSI-kMeans and I-kMeans

 A MPAA-Based Iterative Clustering Algorithm 341

The second measure of interest is the speedup, which measures how many times
faster STSI-kMeans is when compared to I-kMeans.

STSI-kMeans1

I-kMeans1

()

()

q

jj

q

jj

time w
speedup

time w

=

=

=
!
!

 (5)

 Figure 4 shows the speedup that our algorithm achieves, which translates to one or
two orders of magnitude faster execution than the offline I-kMeans algorithm (for the
experiments we ran). The STSI-kMeans algorithm is 10-30 times faster than I-
kMeans. We observe that the speedup increases significantly for decreasing k. This is
because the amount of work that STSI-kMeans does remains almost constant, while I-
kMeans requires lots of extra effort for smaller values of k. As expected, the speedup
gets larger when we increase q.

Fig. 4. Speedup of STSI-kMeans against I-kMeans

4 Conclusions

In this paper, we have presented firstly an approach to perform incremental clustering
of time-series at various resolutions using the multi-resolution piecewise aggregate
transform. The algorithm equipping a stopping criteria based on Hoeffding bound
stabilizes at very early stages, eliminating the needs to operate on high resolutions.
This approach resolves the dilemma associated with the choices of initial centers for
k-Means and at which stage terminate the program for I-kMeans. This allows our
algorithm to terminate the program at early stage with quality guarantee, thus elimi-
nate the need to re-compute all the distances and significantly improves the execution
time and clustering quality. We also expend our method to streaming time series
environment. Our streaming time-series clustering algorithm works by leveraging off
the nearest neighbors of the incoming streaming time series datasets and fulfill incre-
mental clustering approach. Our experimental results based on several publicly avail-
able real data sets shows that significant performance improvement is achieved and
produce high-quality clusters in comparison to the previous methods.

342 J. Lin et al.

References

1. Lin, J., Vlachos, M., Keogh, E., & Gunopulos, D.: Iterative Incremental Clustering of
Time Series. In proceedings of the IX Conference on Extending Database Technology
(EDBT 2004). Crete, Greece. (2004) 14-18

2. Huhtala, Y., Kärkkäinen, J., & Toivonen. H.: Mining for Similarities in Aligned Time Se-
ries Using Wavelets. In Data Mining and Knowledge Discovery: Theory, Tools, and
Technology. SPIE Proceedings Series Vol. 3695. Orlando, Florida. (1999)150 - 160

3. Struzik, Z. , Siebes, A.: The Haar Wavelet Transform in The Time Series Similarity Para-
digm. In Proc 3rd European Conference on Principles and Practice of Knowledge Discov-
ery in Databases. (1999)12-22

4. D. Carney, U. Cetinternel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik.: Monitoring streams: A New Class of Data Management Applica-
tions. In Proc. 28th Int. Conf. on Very Large Data Bases, (2002) 215-226.

5. Keogh, E., Chakrabarti, K. Pazzani, M , Mehrotra, S.: Dimensionality Reduction for Fast
Similarity Search in Large Time Series Databases. Journal of Knowledge and Information
Systems. Vol. 3, No. 3. (2001) 263-286

6. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association (1963) 13-30

7. Yi, B. , Faloutsos, C.: Fast Time Sequence Indexing for Arbitrary Lp Norms. In proceed-
ings of the 26th Int'l Conference on Very Large Databases. Cairo, Egypt, Sept 10-14. pp
385-394.l Database Management. Berlin, Germany, Jul 26-28. (2000)55-68.

8. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proceedings of the Sixth
International Conference on Knowledge Discovery and Data Mining, Boston, MA, ACM
Press (2000) 71-80

9. Gama, J., Medas, P., Rodrigues, P.: Concept Drift in Decision-Tree Learning for Data
Streams. In: Proceedings of the Fourth European Symposium on Intelligent Technologies
and their implementation on Smart Adaptive Systems, Aachen, Germany, Verlag Mainz
(2004) 218-225

10. L. Ralaivola, F. dAlche-Buc.: Incremental Support Vector Machine Learning: A Local
Approach. In Proceedings of the Annual Conference of the European Neural Network So-
ciety. (2001) 322-329

11. Bay, S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science. (1999)

	Introduction
	Streaming Iterative Clustering Method
	MPAA -Based Dimensionality Reduction
	Enhanced Iterative Clustering Methods
	Proposed Streaming Clustering Algorithm

	Experimental Evaluation
	Datasets
	Offline Clustering Comparison
	Online Clustering Comparison

	Conclusions
	References

