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Abstract. In streaming time series the Clustering problem is more complex, 
since the dynamic nature of streaming data makes previous clustering methods 
inappropriate. In this paper, we propose firstly a new method to evaluate Clus-
tering in streaming time series databases. First, we introduce a novel multi-
resolution PAA (MPAA) transform to achieve our iterative clustering algo-
rithm. The method is based on the use of a multi-resolution piecewise aggregate 
approximation representation, which is used to extract features of time series. 
Then, we propose our iterative clustering approach for streaming time series. 
We take advantage of the multiresolution property of MPPA and equip a stop-
ping criteria based on Hoeffding bound in order to achieve fast response time. 
Our streaming time-series clustering algorithm also works by leveraging off the 
nearest neighbors of the incoming streaming time series datasets and fulfill in-
cremental clustering approach. The comprehensive experiments based on sev-
eral publicly available real data sets shows that significant performance im-
provement is achieved and produce high-quality clusters in comparison to the 
previous methods. 

1   Introduction 

Numerous clustering algorithms of time series have been proposed, the majority of 
them work in relatively static model, while many current and emerging applications 
require support for on-line analysis of rapidly changing streaming time series. In this 
paper, we present a new approach for cluster streaming time series datasets. 

Our work is motivated by the recent work by Jessica Lin and Eamonn Keogh on it-
erative incremental clustering of time series [1]. While we speed up clustering process 
by examining the time series at increasingly finer levels of approximation using 
multi-solution piecewise aggregate approximation (MPAA). We argue that MPAA 
has all the pruning power of Wavelet transform dimensionality reduction, but is also 
able to handle arbitrary length queries, is much faster to compute and can support a 
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more general distance measures. Although there has been a lot of work on more flexi-
ble distance measures using Wavelet [2, 3], none of these techniques are indexable. 
While time series databases are often extremely large, any dimensionality reduction 
technique should support index method. For the task of indexing MPAA has all the 
advantages of Wavelet with none of the drawbacks. 

Our work addresses four major challenges in applying their ideas for clustering 
time series in a streaming environment. Specifically, our work has fourfold main 
contribution: 

Clustering Time Series in Streaming Environment: Streaming time-series are 
common in many recent applications, e.g., stock quotes, e-commerce data, system 
logs, network traffic management, etc [4]. Compared with traditional datasets, stream-
ing time-series pose new challenges for query processing due to the streaming nature 
of data which constantly changes over time. Clustering is perhaps the most frequently 
used data mining algorithm. Surprisingly, clustering streaming time-series still have 
not explored thoroughly, to the best of our knowledge, no previous work has ad-
dressed this problem.   

MPAA-based Iterative Time Series Clustering: PAA (Piecewise Aggregate Ap-
proximation) [5] transformation produces a piecewise constant approximation of the 
original sequence. In this paper, we introduce a novel multi-resolution PAA (MPAA) 
transform to achieve our iterative clustering algorithm.  

Proposed stopping criteria for multi-level iterative clustering: We solve the diffi-
cult problem of deciding exactly how many levels are necessary at each node in itera-
tive clustering algorithm by using a statistical result known as the Hoeffding bound 
[6]. 

Time Series Clustering augmented Nearest Neighbor: Our proposed inline 
clustering algorithm exploits characteristic of a neighborhood and significantly reduce 
clustering construction time and improve clustering quality. 

The rest of the paper is organized as follows. In section 2, we develop enhanced it-
erative clustering and streaming clustering algorithm. Section 4 presents the experi-
mental evaluation of our proposed algorithms both in offline and online form. We 
conclude in Section 5 with some summary remarks and future research directions. 

2   Streaming Iterative Clustering Method 

2.1   MPAA -Based Dimensionality Reduction  

Our MPAA-based time series representation work is derived from the recent work by 
Eamonn Keogh [5] and Yi and Faloutsos [7] on segmenting time series representa-
tions of dimensionality reduction.  

The basic idea on which their work develops is as follows. Suppose, we denote the 

set of time series which constitute the database as X  = 1{ , , }nX X!  . A time series 
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iX  of length n is represented in N space by a vector iX = 1, ,i iNx x!  . The ith ele-

ment of iX  is calculated by the following equation: 
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Our MPPA method divides time series iX  of length n into a series of lower-

dimensional signal with different resolution N. where {1, , }N n∈ ! . Simply stated, 

in first level, the data is divided into N "frames", whose sizes need not be contiguous 
and equal. The mean value of the data falling within a frame is calculated and a vector 
of these values becomes the data reduced representation. Then Recursively applying 
the above pairwise averaging process on the lower-resolution array containing the 
averages, we get a multi-resolution representation of time series.  

We give a simple example to illustrate the MPAA decomposition procedure in  
Table 1. Suppose we are given a time series containing the following eight values A= 
[3, 5, 2, 6, 4, 8, 7, 1] and we initiate divide it into 4 segments. The MPPA transform 
of A can be computed as follows. We first average the values together pairwise to get 
a new “lower-resolution” representation of the data with the following average values 
[4, 4, 6, 4]. In other words, the average of the first two values (that is, 3 and 5) is 4 
and that of the next two values (that is, 6 and 4) is 5, and so on. Recursively applying 
the above pairwise averaging process on the lower-resolution array containing the 
averages, we get the following full decomposition: 

Table 1. A simple example to illustrate the MPAA decomposition procedure 

Resolution MPAA Values 
8 3,5,2,6,4,8,7,1 
4 4,4,6,4 
2 4,5 
1 4.5 

The MPAA approximation scheme has some desirable properties that allow incre-
mental computation of the solution. These properties are necessary in order for the 
algorithm to be able to operate efficiently on large datasets and streaming environment.  

2.2   Enhanced Iterative Clustering Methods  

Our iterative clustering method is similar to [1]. The algorithm works by leveraging 
off the multiresolution property of MPPA.  

Note that an open problem that arise with this sort of iterative models is the defini-
tion of a minimum number of observations, i.e., devising an objective functions that 
determine the quality of clustering results from the previous stages to eliminate the 
need to re-compute all the distances.  
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Due to us perform the k-Means clustering algorithm, starting at the second level 
and gradually progress to finer levels, in order to find the stopping resolutions as low 
as possible to complete a good k-means clustering, it may be sufficient to consider 
only a small subset of the multi-level clustering examples that pass through the level 
of decomposition tree. We solve the difficult problem of deciding exactly how many 
levels are necessary at each node by using a statistical result known as the Hoeffding 
bound or additive Chernoff bound [6], which have in fact be successfully used in 
online decision trees [8][9]. After n independent observations of a real-valued random 
variable r with range R, the Hoeffding bound ensures that, with confidence 1 δ−  , 
the true mean of r is at least r ε− , where r is the observed mean of the samples and  
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This is true irrespective of the probability distribution that generated the observations. 

Table 2. The enhanced iterative clustering algorithms  

Algorithm SI-kMeans 
1 Decide on a value for k. 
2 Perform MPAA decomposition on raw data 
3 Initialize the k cluster centers (randomly, if necessary). 
4 Compute the hoeffding bound(ε ) 
5 Run the k-Means algorithm on the level i of MPAA representa-

tion of the data 
6 Use final centers from level i as initial centers for level i+1. 

This is achieved by projecting the k centers returned by k-

Means algorithm for the 2i  space in the 12i+  space. 
7 Compute the distance centerD  between initial centers of level i 

and initial centers for level i+1 
8 Compute respectively maximum values of  the sum of squared 

intra-cluster errors in jth iterative clustering  and (j+1)th iterative 

clustering, i.e. max( )iE  and max( 1)iE +  

9 If max( 1)iE + − max( )iE > ε , exit. 

10 If centerD > ε , goto 3. 

We call the new iterative clustering algorithm supporting stopping criteria SI-
kMeans, where S stands for “stopping criteria.”, and I stands for “interactive.” Table 2 
gives a skeleton of this idea. 

2.3   Proposed Streaming Clustering Algorithm  

A key challenging issue with streaming time series clustering algorithm is the high 
rate of input sequences insertion. 
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To illustrate our application, consider the following issue. Most streaming time se-
ries are related to previously arrived time series or future ones, hence, this strong 
temporal dependency between the streaming time series should not be ignored when 
clustering streaming data collection.  This issue can be addressed by considering the 
nearest neighbor. A simple distance metric between two new arriving time series and 
the clustering center will show how much they are related to each other. Hence, the 
nearest neighbor analysis allows us to automatically identify related cluster. 

Below, we give a more formally definition in order to depict our Streaming Clus-
tering algorithm. 

Definition 1. Similarity measure: To measure closeness between two sequences, we 
use correlation between time series as a similarity measure. Supposed that time-series 

iT  and jT  in a sliding window which length is w is represented respectively 

by 1 1{ , , , , }i i in inu t u t< > < >! and 1 1{ , , , , }j j jn jnv t v t< > < >!  The Similarity 

between two time series iT and jT  is defined by 
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Definition 2. Similar: If si ( , )i jmilarity T T ς≥ , then a time series iT  is referred 

to as similar to a time series jT  . 

Based on the definition of similar in Definition 1, we can define the ζ -

neighborhood ( )iN Tζ  as follows: 

Definition 3. ζ -neighborhood ( )iN Tζ :  ζ -neighborhood for a time series iT  is 

defined as a set of sequences{ : si ( , ) }j j iX milarity X T ζ≥ . 

Our proposed clustering algorithm exploits characteristic of a neighborhood. It is 
based on the observation that a property of a time-series would be influenced by its 
neighbors. Examples of such properties are the properties of the neighbors, or the 
percentage of neighbors that fulfill a certain constraint. The above idea can be trans-
lated into clustering perspective as follows: a cluster label of a time-series depends on 
the cluster labels of its neighbors. 

The intuition behind this algorithm originates from the observation that the cluster 
of time series sequences can often be approximately captured by performing nearest 
neighbor search. In what follows, our idea is explained in detail. 

Initially, we assume that only time series in now window is available. Thus, we 
implement SI-kMeans clustering on these sequences itself and form k clusters. Add-
ing new sequences to existing cluster structure proceeds in three phases: neighbor-
hood search, identification of an appropriate cluster for a new sequences, and re-
clustering based on local information. The proposed incremental clustering algorithm 
STSI-kMeans (streaming time series iterative K-means clustering algorithm) can be 
discribed as follow: 
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Step 1. Initialization. Get next new sequences { 1, , }c cT w T− + ! in now window. 

Step 2. Neighborhood search. Given a new incoming sequences{ cT w− 1+ ,!  

, }cT and let 
jKC be the set of clusters containing any time series belonging to ( )jN Tζ  , 

obtain { ( 1), ( 2), , ( )}c c cN T w N T w N Tζ ζ ζ− + − + !  by performing a neighbor-

hood search on { 1, , }c cT w T− + ! , and find the candidate cluster 
jKC which can host a 

new sequence jT ∈ { 1, , }c cT w T− + ! , that mean to identify
jKC ⊃ ( )jN Tζ . 

Step 3. Identifying an appropriate cluster. Cluster If there exists a cluster KC  that 

can host a sequence jT , and then add jT  to the cluster KC . Otherwise, create a new 

cluster newC  for jT . 

To identify a cluster KC  which can absorb the new time-series jT  from the set of 

candidate clusters
jKC , we employ a simple but effective approach, which measures 

the Euclidean distance between the center of candidate clusters and the new time-

series jT , the cluster which returns the minimum distance is selected as  a cluster KC  

which can absorb the new time-series jT . 

Step 4. Re-clustering over affected cluster. If jT  is assigned to KC or create a new 

cluster newC  for jT , then a merge operation needs to be triggered. This is based on a 

locality assumption [10]. Instead of re-clustering the whole dataset, we only need to 
focus on the clusters that are affected by the new time-series. That is, a new time-
series is placed in the cluster, and a sequence of cluster re-structuring processes is 
performed only in regions that have been affected by the new time-series, i.e., clusters 
that contain any time-series belonging to the neighborhood of a new time-series need 
to be considered. 

Note that based on SI-kMeans re-clustering, the number of clusters, k′  value De-
cide by the number of affected clusters k′′  by absorbing the new time-series. Where 
k′ = k′′ . 

Step 5. Repetition. Repeat Step 2-4 whenever new sequences available in the next 
window. 

3   Experimental Evaluation 

In this section, we implemented our algorithms SI-kMeans and STSI-kMeans, and 
conducted a series of experiments to evaluate their efficiency. We also implemented 
the I-kMeans algorithm, to compare against our techniques. When not explicitly men-
tioned, the results reported are averages over 100 tests. 
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3.1   Datasets  

The data using in our experiment is similar to [1]. We tested on two publicly avail-
able, real datasets: JPL datasets and heterogeneous datasets [11]. The dataset cardinal-
ities range from 1,000 to 8,000. The length of each time series has been set to 512 on 
one dataset, and 1024 on the other. Each time series is z-normalized to have mean 
value of 0 and standard deviation of 1. 

3.2   Offline Clustering Comparison 

To show that our SI-kMeans approach is superior to the I-kMeans algorithm for clus-
tering time series in offline form, in the first set of experiments, we performed a series 
of experiments on publicly available real datasets. After each execution, we compute 
the error and the execution time on the clustering results.  

 

Fig. 1. Comparison of the clustering approximation error between SI-kMeans and I-kMeans. 
(a) Error of SI-kMeans algorithm on the Heterogeneous dataset, presented as fraction of the 
error from the I-kMeans algorithm. (b) Objective functions of SI-kMeans algorithm on the JPL 
dataset, presented as fraction of error from the I-kMeans algorithm 

Figure 1 illustrates the results of clustering approximation error. As it can be seen, 
our algorithm achieves better clustering accuracy.  

Figure 2 shows Speedup of SI-kMeans against I-kMeans. the SI-kMeans algorithm 
finds the best result in relatively early stage and does not need to run through all levels.  

3.3   Online Clustering Comparison 

In the next set of experiments, we compare the inline performance of STSI-kMeans to 
I-kMeans, which is essentially a comparison between an online and the corresponding 
offline algorithm. Since original I-kMeans algorithm is not suitable for online cluster-
ing streaming time series, we revise it and adapt it to online clustering. 
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Fig. 2. Speedup of SI-kMeans against I-kMeans. (a) SI-kMeans vs. I-kMeans algorithms in 
terms of clustering error and running time for in the Heterogeneous dataset. (b) SI-kMeans vs. 
I-kMeans algorithms in terms of objective function and running time for JPL dataset 

We quantify firstly the differences in the performance of the two algorithms. We 
report the cumulative relative error over count-based or sequence-based windows, 
which measure the relative increase in the cumulative error when using STSI-kMeans 
and I-kMeans. 
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Where, q  is the number of elapsed windows.  In Figure 3, we depict CRE as a 

function of q  and k. In the experiment of Figure 5, the length of streaming time se-

ries 1000,2000,4000,8000 points, through, for increasing q  we observe a very slow 

build-up of the relative error. Our algorithm performs better as the number of q  in-
creases. 

 

Fig. 3. Comparison of the clustering approximation error between STSI-kMeans and I-kMeans 
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The second measure of interest is the speedup, which measures how many times 
faster STSI-kMeans is when compared to I-kMeans. 
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 Figure 4 shows the speedup that our algorithm achieves, which translates to one or 
two orders of magnitude faster execution than the offline I-kMeans algorithm (for the 
experiments we ran). The STSI-kMeans algorithm is 10-30 times faster than I-
kMeans. We observe that the speedup increases significantly for decreasing k. This is 
because the amount of work that STSI-kMeans does remains almost constant, while I-
kMeans requires lots of extra effort for smaller values of k. As expected, the speedup 
gets larger when we increase q.  

 

Fig. 4. Speedup of  STSI-kMeans against I-kMeans 

4   Conclusions  

In this paper, we have presented firstly an approach to perform incremental clustering 
of time-series at various resolutions using the multi-resolution piecewise aggregate 
transform. The algorithm equipping a stopping criteria based on Hoeffding bound 
stabilizes at very early stages, eliminating the needs to operate on high resolutions. 
This approach resolves the dilemma associated with the choices of initial centers for 
k-Means and at which stage terminate the program for I-kMeans. This allows our 
algorithm to terminate the program at early stage with quality guarantee, thus elimi-
nate the need to re-compute all the distances and significantly improves the execution 
time and clustering quality. We also expend our method to streaming time series 
environment. Our streaming time-series clustering algorithm works by leveraging off 
the nearest neighbors of the incoming streaming time series datasets and fulfill incre-
mental clustering approach. Our experimental results based on several publicly avail-
able real data sets shows that significant performance improvement is achieved and 
produce high-quality clusters in comparison to the previous methods.  
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