
Finding Approximate Frequent Patterns in Streaming Medical Data

Jessica Lin
Computer Science Department

George Mason University
Fairfax, VA

jessica@cs.gmu.edu

Yuan Li
Computer Science Department

George Mason University
Fairfax, VA

 ylif@gmu.edu

Abstract

Time series data is ubiquitous and plays an important

role in virtually every domain. For example, in medicine,
the advancement of computer technology has enabled more
sophisticated patients monitoring, either on-site or
remotely. Such monitoring produces massive amount of
time series data, which contain valuable information for
pattern learning and knowledge discovery. In this paper,
we explore the problem of identifying frequently occurring
patterns, or motifs, in streaming medical data. The problem
of frequent patterns mining has many potential
applications, including compression, summarization, and
event prediction. We propose a novel approach based on
grammar induction that allows the discovery of
approximate, variable-length motifs in streaming data. The
preliminary results show that the grammar-based approach
is able to find some important motifs in some medical data,
and suggest that using grammar-based algorithms for time
series pattern discovery might be worth exploring.

Keywords
Time Series, Frequent Patterns, Grammar Induction

1. Introduction

Time series data is ubiquitous and plays an important
role in virtually every domain. For example, in medicine,
the advancement of computer technology has enabled more
sophisticated patients monitoring, either on-site or
remotely. With the massive amount of medical data
produced everyday, it has become increasingly apparent
that efficient methods to search and analyze historic data,
and to detect events in real-time streaming data are in great
demand. Examples of medical time series or streaming data
include electrocardiogram (ECG) signals, respiration rates,
blood pressure, etc.

The task of frequent pattern mining is an important
problem that has many applications. In addition to its own
merit of summarizing and compressing data, it is also a pre-
cursor to association rule or sequential pattern mining [2].
The frequent patterns mined can potentially be helpful in
predicting future events. For example, there has been some
work on the extraction of significant patterns for heart

attack prediction [38]. In bioinformatics, it is well
understood that overrepresented DNA sequences often have
biological significance [9, 11, 12, 28, 32]. A substantial
body of literature has been devoted to techniques to
discover such patterns [2, 3].

In a previous work, we defined the related concept of
“time series motif” [18], which are frequently occurring
patterns in time series data. Since then, a great deal of work
has been proposed for the discovery of time series motifs
[5, 7, 18, 20, 21, 22. 23, 29, 30, 31]. Figure 1 shows an
example of a time series motif in an ECG dataset.

Figure 1. (Top) Original ECG time series. Matches for a motif of
length 159 is highlighted. The initial length used is 150. (Bottom)
The discovered motif instances are plotted.

Intuitively, one may try to convert a real-valued time
series data into a data format for which existing off-the-
shelf algorithms can be applied. One way to achieve this is
to discretize each data value in the time series. However,
the problem with this approach is that time series data are
typically noisy, and considering every single point as an
“event” would result in a noisy string that inaccurately
reflects the noises as true patterns in the data. A better
alternative is to consider subsequences instead. However,
this approach poses another challenge: we simply cannot
know in advance which subsequences are frequent. As a
result, we need to consider every possible subsequence in
the data. Considering all subsequences of any length, with
overlaps, is undoubtedly a tedious task. To alleviate the
complexity, most existing work [7, 18, 22, 23] thus require
an input parameter: a pre-defined motif length n. This

limits the search space for the algorithms; however, it also
implies that the length of motifs (n) must be known in
advance. In addition, frequent patterns of different lengths
might co-exist within the same dataset. In order to find all
significant patterns with unknown lengths, one would need
to repeat the motif discovery algorithm several times—each
time with a different window size. It is more desirable to
have an algorithm that can automatically detect significant
motifs of variable, previously unknown lengths, without
exhaustively trying different subsequence lengths.

In this work, we propose to utilize a grammar-based
compression algorithm, Sequitur [24], that can
automatically and efficiently identify frequent patterns and
hierarchical structure in data. We believe that a grammar-
based approach [13, 14, 16, 24, 33] is suitable and
advantageous for our task due to several reasons. First,
producing a (relatively) small set of interpretable rules from
a massive dataset is a desirable goal of data mining.
Clearly, a grammar-based method will allow a more natural
mapping from data to rules [34], and can reveal the hidden
hierarchical structures in the data. There has also been
increasing interest in grammar-based methods for feature
extraction, classification and forecasting of time series [10,
36]. Furthermore, as mentioned earlier, it is important to
consider every subsequence in the time series when trying
to identify motifs.

While this work is still at its early stage, the
preliminary results are promising. Specifically, they show
that the grammar-based approach has the potential to
identify some important motifs in time series.

The rest of the paper is organized as follows. Section 2
discusses background and related work on time series
motifs and grammar induction. Section 3 describes the
grammar induction algorithm, Sequitur, that we adapt in
this work. We describe our approach in Section 4. Section 5
presents some preliminary results using grammar-based
approach to find variable-length motifs. We conclude in
Section 6 and discuss future work.

2. Background and Related Work

In this section, we briefly discuss background and
related work on time series similarity search.

For concreteness, we begin with definitions of time
series:
Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Since we are interested in finding local patterns, we
consider time series subsequences as the basic unit:
Definition 2. Subsequence: Given a time series T of length
m, a subsequence C of T is a subsection of length n ≤ m of
contiguous position from p, that is, C = tp…tp+n-1 for 1 ≤ p ≤
m – n + 1.

Since all subsequences may potentially be the
candidates for motifs, any algorithm would have to extract

and consider all of them. This can be achieved via the use
of a sliding window:
Definition 4. Sliding Window: Given a time series T and a
user-defined subsequence length n, all possible
subsequences can be extracted by sliding a window of size
n across T and considering each subsequence Cp, for 1 ≤ p
≤ m – n + 1.

Next, we briefly discuss related work on time series
motif discovery and grammar induction techniques.

2.1 Related Work

In [18], we defined time series motif C as the
subsequence in T that has the highest count of non-trivial
matches, that is, subsequences that are within ε units of
distance away from C. We proposed a sub-quadratic
algorithm to find exact motifs of a given length. Mueen et
al proposed an algorithm named MK that is an
improvement from the brute-force exact motif discovery
algorithm [23]. In some applications, it may be sufficient or
even desirable to have a fast algorithm that can find
approximate motifs [7]. As an example, Chiu and Keogh
proposed probabilistic motif discovery algorithm based on
random projection [7, 32]. The advantage of probabilistic
motif discovery algorithm is its efficiency. Other
approximate motifs algorithms exist [5, 27, 30, 35];
however, one common drawback for all these algorithms is
that they require an input parameter for the motif length.

A few algorithms were proposed to discover motifs of
variable lengths [21, 25, 30]; however, they either do so via
post-processing, scale poorly, or quantize the whole data
rather than considering overlapping subsequences, resulting
in inaccurate and incomplete patterns found.

3. Sequitur

We investigate how to extract patterns using
techniques that identify hierarchies and frequent sequences.
Although aimed at compressing discrete sequences of data,
there are algorithms that can be used as a proof-of-concept
for our preliminary study. For instance, Sequitur [24] is a
string compression algorithm that infers a context-free
grammar from a sequence of discrete symbols [24]. It has
been adopted in various domains due to the many nice
properties it offers: it has been used to find repeated DNA
sequences [6, 33] and repeated function call sequences
[15], and to segment time series [4]. The main premise is
that repeated subsequences are replaced by a grammatical
rule that generates the subsequence, thereby reducing the
length of the original sequence, and producing a
hierarchical representation that summarizes the structure of
the data. Although simple in design, Sequitur has been
shown to be competitive with the state-of-the-art
compression algorithms [24], maintaining its scalability
even for large sequences. Moreover, Sequitur offers a
unique advantage—it utilizes and identifies the hidden

structure (recurring subsequences) in the input data
sequence, requiring relatively small memory footprint. Due
to these reasons, we choose Sequitur in this work to
demonstrate the utility of using grammar-based
compression algorithms to find patterns in time series data.

Sequitur works by maintaining two properties: digram
uniqueness and rule utility [24]. The first property governs
that no pair of consecutive symbols (terminals or non-
terminals) can appear more than once. When Sequitur reads
a new symbol from the input sequence, the last two
symbols of the sequence read so far—the new symbol and
its predecessor symbol—form a digram [24]. A table that
stores all existing digrams is maintained. If this new digram
already exists in the digram table, i.e., it appears
somewhere in the sequence already read, Sequitur uses a
non-terminal to substitute these digrams, and, if such rule1
has not yet existed, it forms a new grammar rule with the
non-terminal on the left hand side. The second property,
rule uniqueness, ensures that each grammar rule be used
more than once except for the top-level rule, since a
grammar rule that occurs just once is not meaningful and
should be removed. As an example, the input string S1:
“12131213412” can be converted to the following
grammar:

Grammar rule Expanded Grammar rule
S1 -> BB4A 12131213412
A -> 12 12
B -> A13 1213
The top-level grammar rule, S1→ BB4A, denotes the

sequence seen so far. Sequitur is an online algorithm that
generates the grammar incrementally as each symbol
arrives. It is, therefore, ideal for the streaming scenarios. It
is both time- and space-efficient, requiring O(m) time to
compress a sequence of size m, and a compressed sequence
is of size O(m) in the worst case (i.e., no compression), and
O(logm) in the best case [24].

The main advantages of Sequitur (or many grammar-
induction algorithms in general) are three-fold: (1) it
identifies recurring patterns automatically, e.g., “1213” in
the previous example, as well as hierarchical structure; (2)
the recurring patterns found can be of any lengths; and (3)
it is suitable for streaming data since it constructs the
grammars in an incremental fashion. These benefits suggest
that we may be able to adapt it to find variable-length
motifs for time series. We describe how we achieve this in
the next section.

4. Finding Approximate Variable-Length
Motifs By Sequitur

1 Note the “rules” here should not be confused with the sequential or

association rules. The “rules” here refer to those that are generated by
the algorithm. It is equivalent to the concept of frequent itemsets in
association rule mining.

We propose an algorithm that finds approximate
variable-length motifs using Sequitur. Our approach
consists of three steps: Pre-processing (discretization),
Motif Discovery (Sequitur), and Post-processing. We
describe each step in more details below.

4.1 Step 1: Discretization

Sequitur, or more generally, grammar induction

algorithms, were originally designed for discrete data.
However, time series are real-valued data, requiring a pre-
processing step to allow the application of a grammar-
based algorithm.

In a previous work, we introduced a time series
symbolic representation called Symbolic Aggregate
approXimation (SAX) [1, 17, 19]. While there have been
dozens of symbolic representations proposed for time series
data, SAX has been shown to outperform existing methods.
In addition, SAX has some unique, desirable properties
such as dimensionality reduction, lower-bounding distance
measures, and equiprobable symbols. For these reasons, we
will utilize SAX for our pre-processing step.

Given a time series, SAX performs discretization by
dividing the time series into w equal-sized segments. For
each segment, their mean value is computed, and then
mapped to a symbol according to a set of breakpoints that
divide the distribution space into α equiprobable regions,
where α is the alphabet size specified by the user. If the
symbols were not equiprobable, some of the symbols
would occur more frequently than others. As a
consequence, we would inject a probabilistic bias in the
process. It has been noted that some data structures such as
suffix trees produce optimal results when the symbols are
of equiprobability [8]. The discretization steps are
summarized in Figure 2.

Figure 2. Example of SAX for a time series. The time series
above is transformed to the string cbccbaab, and the
dimensionality is reduced from 128 to 8.
 Since each subsequence in the dataset can be a
potential candidate for motif, we should consider all
possible subsequences in order to ensure correct results.
This can be achieved by using a sliding window of length n
across the time series. Note that n is just the initial window
length for our algorithm; the algorithm will grow the
patterns automatically. Once we collect all the
subsequences, we can then discretize each subsequence
individually using SAX, and then concatenate them to form
one single sequence. A transformed sequence might look

something like this:
 S = 1131-1132-1232-1223-1344-1131-1132-1232...
where the ‘-‘ denotes the delimiter between consecutive,
overlapping subsequences.

The reason we choose to discretize subsequences
rather than individual points is that time series are typically
very noisy. If we discretize each time point into a symbol,
and then form a string from these symbols, then we would
give equal weight to each time point, including the noises.
On the other hand, the “aggregating” feature of SAX would
smooth out the subsequences and essentially remove the
noises.

4.2 Step 2: Sequitur on SAX Words

Once we transform the time series into a discrete

sequence consisted of SAX strings, the application of
Sequitur on the sequence is straight-forward. Each string
delimited by ‘-‘ represents one subsequence, and is treated
as a terminal symbol, an atomic unit for patterns. Sequitur
embodies efficiency and accuracy in finding the repeated
patterns of sequences in many cases. One possible grammar
rule that can be generated from the above string is

A → 1131-1132-1232.
We modify the original Sequitur algorithm and record

the offsets of the subsequences that occur in each grammar
rule.

4.3 Step 3: Post-Processing

Since we discretized the data before running the

algorithm, we now need to map the rules and frequent
strings back to the time series subsequences. We can
simply record the starting offsets of all grammar rule
instances. The number of rules generated can be large and,
similar to association rules mining [2], not all rules are
interesting or important. Several refinement steps can be
performed on the grammar rules. In this work, we
performed the following refinement: eliminating trivial
matches, ranking rules by their “interestingness” denoted
by frequency, rule length, and pattern variation.

5. Empirical Evaluation

In this section we evaluate the potential of using
Sequitur to find frequent patterns in medical time series
data. While the experimental evaluation is brief, as this
work is still at its early stage, the following examples show
that Sequitur can find some time series motifs without
knowing the exact lengths of the motifs in advance. For all
examples shown below, we choose α = 4 and w = 4, which
are both arbitrary choices that have been shown to work
well for most datasets [19].

As a sanity check, the first dataset we used is the ECG
dataset shown in Figure 1 (see Section 1). The obvious

motif, i.e. the individual heartbeats, are indeed discovered.
The length of the motif shown is 159, with the initial
window length of 150. Figure 3 below shows two instances
of a motif found in a heart rate dataset from a patient
monitored in Intensive Care Unit. The data is obtained from
UCI Machine Learning Repository [39].

Figure 3. (Top) A patient’s heart rate data. Matches for a motif of
length 54 are highlighted. (Bottom) The discovered motif
instances are plotted.

In Figure 4, we show a motif found in the winding
dataset from UCR Time Series Archive [37]. A motif of
length 84 is found, when the initial window length is 50.

Figure 4. (Top) Original winding dataset. Matches for a motif of
length 84 is highlighted. The initial length used is 50. (Bottom).
The discovered motif instances are plotted.

6. Conclusion

In this preliminary work, we propose a methodology to
find approximate variable-length medical time series motif
using an efficient grammar-based compression algorithm.
Existing algorithms that discover motifs of variable lengths
either do so via post-processing, scale poorly, or quantize
the whole data rather than considering overlapping
subsequences, resulting in inaccurate and incomplete
patterns found. Our algorithm mitigates the shortcomings;

in addition, it offers the advantage of discovering
hierarchical structure, regularity and grammar from the
data. The preliminary results are promising. They show that
the grammar-based approach is able to find some important
motifs in some medical data and suggest that using
grammar-based algorithms for time series pattern discovery
might be worth exploring. A natural question to ask now is,
would our algorithm be useful for finding patterns or
predicting future events in streaming medical data?

Several other future directions are possible. Due to the
preliminary stage of this work, the literature comparison is
non-existent. It is partly due to the fact that to the best of
our knowledge, there is no known algorithm that can find
variable-length frequent patterns with comparable
efficiency. Nonetheless, we would like compare with some
existing methods to further validate our findings. In
addition, the post-processing step of the algorithm can be
further refined for better motif identification. It would be
useful to rank motifs based on their “interestingness.”
Furthermore, we would like to investigate the utilities of
our algorithm on finding hierarchical structures and
grammars from medical time series data.

7. References

1. SAX page: http://www.cs.gmu.edu/~jessica/sax.htm
2. R. Agrawal, T. Imielinski, and A. Swami. Mining

Association Rules Between Sets of Items in Large
Databases. In proceedings of the 1993 ACM SIGMOD
Int'l Conference on Management of Data. Washington,
D.C. May 26-28, 1993. pp. 207-216

3. R. Agrawal and Ramakrishnan Srikant. Mining
Sequential Patterns. In Proc. of the 11th Int'l
Conference on Data Engineering, Taipei, Taiwan,
March 1995.

4. T. Armstrong and T .Oates. RIPTIDE: Segmenting
Data Using Multiple Resolutions. In the Proceedings
of the 6th IEEE International Conference on
Development and Learning (ICDL), 2007.

5. P. Beaudoin, M. van de Panne, P. Poulin and S. Coros,
Motion-Motif Graphs, Symposium on Computer
Animation 2008.

6. N. Cherniavsky and R. Ladner. Grammar-based
Compression of DNA Sequences. UW CSE Technical
Report 2007-05-02.

7. Chiu, B. Keogh, E., & Lonardi, S. (2003). Probabilistic
Discovery of Time Series Motifs. In the 9th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. August 24 - 27, 2003.
Washington, DC, USA. pp 493-498.

8. M. Crochemore, A. Czumaj, L. Gasjeniec, S.
Jarominek, T. Lecroq, W. Plandowski, and W. Rytter.
Speeding Up Two String-Matching Algorithms.
Algorithmica. vol. 12. pp. 247-267. 1994.

9. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids: Cambridge University
Press. 1998.

10. D. Eads, E. Rosten, D. Helmbold. "Grammar-guided
Feature Extraction for Location-Based Object
Detection." British Machine Vision Conference. Queen
Mary, University of London. London, UK. September
11, 2009.

11. A. Gionis and H. Mannila. Finding Recurrent Sources
in Sequences. In proceedings of the 7th Int'l Conference
on Research in Computational Molecular Biology.
Berlin, Germany. 2003. pp. 123-130

12. D. He. Using Suffix Tree to Discover Complex
Repetitive Patterns in DNA Sequences, The 28th
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, IEEE
EMBC 2006, New York City, New York, USA,
August 30 - September 3, 2006

13. P. Langley. Simplicity and Representation Change in
Grammar Induction. Technical Report. 1995.

14. P. Langley and S. Stromsten. Learning Context-Free
Grammars with a Simplicity Bias. In proceedings of
the 11th International Conference on Machine
Learning. Standord, CA.

15. J.R. Larus. Whole program paths. SIGPLAN Not. 34,
5, pp. 259-269, 1999.

16. E. Lehman. Approximation Algorithms for Grammar-
Based Data Compression, PhD thesis, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2002.

17. J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A Symbolic
Representation of Time Series, with Implications for
Streaming Algorithms, Workshop on Research Issues
in Data Mining and Knowledge Discovery, the 8th
ACM SIGMOD. San Diego, CA, 2003.

18. J. Lin, E. Keogh, P. Patel, and S. Lonardi, Finding
Motifs in Time Series, the 2nd Workshop on Temporal
Data Mining, the 8th ACM Int'l Conference on
Knowledge Discovery and Data Mining. Edmonton,
Alberta, Canada, 2002, pp. 53-68.

19. J. Lin, E. Keogh, W. Li, and S. Lonardi. (2007).
Experiencing SAX: A Novel Symbolic Representation
of Time Series. Data Mining and Knowledge
Discovery Journal.

20. J. Meng, J.Yuan, M. Hans and Y. Wu, Mining Motifs
from Human Motion, Proc. of EUROGRAPHICS,
2008.

21. D. Minnen, T. Starner, I. Essa, C. Isbell. Activity
Discovery: Sparse Motifs from Multivariate Time
Series. Snowbird Learning Workshop, Snowbird, Utah,
April 4-7, 2006.

22. D. Minnen, C.L. Isbell, I. Essa, and T. Starner.
Discovering Multivariate Motifs using Subsequence
Density Estimation and Greedy Mixture Learning.
Twenty-Second Conf. on Artificial Intelligence
(AAAI-07), Vancouver, B.C., July 22-26, 2007.

23. A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B.
Westover. Exact Discovery of Time Series Motifs. In
proceedings of the 2009 SIAM International
Conference on Data Mining (SDM09). April 30-May
2, 2009. Sparks, NV.

24. C.G. Nevill-Manning and I.H. Witten. Identifying
Hierarchical Structure in Sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
7, 67-82.

25. T. Oates. PERUSE: An Unsupervised Algorithm for
Finding Recurring Patterns in Time Series. In
proceedings of the International Conference on Data
Mining. Maebashi City, Japan. Dec 9-12. pp. 330-337.

26. M. Riesenhuber and T. Poggio. Hierarchical Models of
Object Recognition in Cortex. Nature Neuroscience 2:
1019:1025.

27. S. Rombo and G. Terracina, Discovering
representative models in large time series databases,
Proc. of the 6th International Conference on Flexible
Query Answering Systems, pp. 84–97, 2004.

28. R. Staden. Methods for Discovering Novel Motifs in
Nucleic Acid Sequences. Computer Applications in
Biosciences. vol. 5. pp. 293-298. 1989.

29. Y. Tanaka and K. Uehara. Motif Discovery Algorithm
from Motion Data. In proceedings of the 18th Annual
Conference of the Japanese Society for Artificial
Intelligence. Kanazawa, Japan. June 2-4, 2004.

30. Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of
Time-Series Motif from Multi-Dimensional Data
Based on MDL Principle. Mach. Learn. 58, 2-3 (Feb.
2005), 269-300.

31. H. Tang and S.S. Liao. Discovering original motifs
with different lengths from time series. Know.-Based
Syst. 21, 7 (Oct. 2008), 666-671.

32. M. Tompa and J. Buhler. Finding Motifs Using
Random Projections. In proceedings of the 5th Int'l
Conference on Computational Molecular Biology.
Montreal, Canada. Apr 22-25, 2001. pp. 67-74

33. R. Ladner. Enhanced Sequitur for Finding Structure in
Data. In Proceedings of the 2003 Data Compression
Conference. March 25-27, Snowbird, UT. pp 425-.

34. M.L. Wong and K.S. Leung. Data mining using
grammar based genetic programming and applications.
In: Genetic programming, vol. 3. The Netherlands:
Kluwer Academic Publishers; 2000.

35. T. Guyet, C. Garbay and M. Dojat, Knowledge
construction from time series data using a
collaborative exploration system, Journal of
Biomedical Informatics 40(6): 672-687 (2007).

36. E. Keogh. Personal Communications.
37. E. Keogh The UCR Time Series Data Mining Archive.

http://www.cs. ucr.edu/~eamonn/tsdma/index.html
38. S. Patil & Y. S. Kumaraswamy. Extraction of

Significant Patterns from Heart Disease Warehouses
for Heart Attack Prediction. International Journal of
Computer Science and Network Security, Vol 9. No. 2.
February, 2009.

39. Frank, A. & Asuncion, A. (2010). UCI Machine
Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of
Information and Computer Science.

