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Abstract 

 
Time series data is ubiquitous and plays an important 

role in virtually every domain. For example, in medicine, 
the advancement of computer technology has enabled more 
sophisticated patients monitoring, either on-site or 
remotely. Such monitoring produces massive amount of 
time series data, which contain valuable information for 
pattern learning and knowledge discovery. In this paper, 
we explore the problem of identifying frequently occurring 
patterns, or motifs, in streaming medical data. The problem 
of frequent patterns mining has many potential 
applications, including compression, summarization, and 
event prediction. We propose a novel approach based on 
grammar induction that allows the discovery of 
approximate, variable-length motifs in streaming data. The 
preliminary results show that the grammar-based approach 
is able to find some important motifs in some medical data, 
and suggest that using grammar-based algorithms for time 
series pattern discovery might be worth exploring. 
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1. Introduction 
 

Time series data is ubiquitous and plays an important 
role in virtually every domain. For example, in medicine, 
the advancement of computer technology has enabled more 
sophisticated patients monitoring, either on-site or 
remotely. With the massive amount of medical data 
produced everyday, it has become increasingly apparent 
that efficient methods to search and analyze historic data, 
and to detect events in real-time streaming data are in great 
demand. Examples of medical time series or streaming data 
include electrocardiogram (ECG) signals, respiration rates, 
blood pressure, etc.  

The task of frequent pattern mining is an important 
problem that has many applications. In addition to its own 
merit of summarizing and compressing data, it is also a pre-
cursor to association rule or sequential pattern mining [2]. 
The frequent patterns mined can potentially be helpful in 
predicting future events. For example, there has been some 
work on the extraction of significant patterns for heart 

attack prediction [38]. In bioinformatics, it is well 
understood that overrepresented DNA sequences often have 
biological significance [9, 11, 12, 28, 32]. A substantial 
body of literature has been devoted to techniques to 
discover such patterns [2, 3]. 

In a previous work, we defined the related concept of 
“time series motif” [18], which are frequently occurring 
patterns in time series data. Since then, a great deal of work 
has been proposed for the discovery of time series motifs 
[5, 7, 18, 20, 21, 22. 23, 29, 30, 31]. Figure 1 shows an 
example of a time series motif in an ECG dataset. 

 
Figure 1. (Top) Original ECG time series. Matches for a motif of 
length 159 is highlighted. The initial length used is 150.  (Bottom) 
The discovered motif instances are plotted. 

Intuitively, one may try to convert a real-valued time 
series data into a data format for which existing off-the-
shelf algorithms can be applied. One way to achieve this is 
to discretize each data value in the time series. However, 
the problem with this approach is that time series data are 
typically noisy, and considering every single point as an 
“event” would result in a noisy string that inaccurately 
reflects the noises as true patterns in the data. A better 
alternative is to consider subsequences instead. However, 
this approach poses another challenge: we simply cannot 
know in advance which subsequences are frequent. As a 
result, we need to consider every possible subsequence in 
the data. Considering all subsequences of any length, with 
overlaps, is undoubtedly a tedious task. To alleviate the 
complexity, most existing work [7, 18, 22, 23] thus require 
an input parameter: a pre-defined motif length n. This 



limits the search space for the algorithms; however, it also 
implies that the length of motifs (n) must be known in 
advance. In addition, frequent patterns of different lengths 
might co-exist within the same dataset. In order to find all 
significant patterns with unknown lengths, one would need 
to repeat the motif discovery algorithm several times—each 
time with a different window size. It is more desirable to 
have an algorithm that can automatically detect significant 
motifs of variable, previously unknown lengths, without 
exhaustively trying different subsequence lengths.  

In this work, we propose to utilize a grammar-based 
compression algorithm, Sequitur [24], that can 
automatically and efficiently identify frequent patterns and 
hierarchical structure in data. We believe that a grammar-
based approach [13, 14, 16, 24, 33] is suitable and 
advantageous for our task due to several reasons. First, 
producing a (relatively) small set of interpretable rules from 
a massive dataset is a desirable goal of data mining. 
Clearly, a grammar-based method will allow a more natural 
mapping from data to rules [34], and can reveal the hidden 
hierarchical structures in the data. There has also been 
increasing interest in grammar-based methods for feature 
extraction, classification and forecasting of time series [10, 
36]. Furthermore, as mentioned earlier, it is important to 
consider every subsequence in the time series when trying 
to identify motifs.  

While this work is still at its early stage, the 
preliminary results are promising. Specifically, they show 
that the grammar-based approach has the potential to 
identify some important motifs in time series. 

The rest of the paper is organized as follows. Section 2 
discusses background and related work on time series 
motifs and grammar induction. Section 3 describes the 
grammar induction algorithm, Sequitur, that we adapt in 
this work. We describe our approach in Section 4. Section 5 
presents some preliminary results using grammar-based 
approach to find variable-length motifs. We conclude in 
Section 6 and discuss future work. 

 
2. Background and Related Work 
 

In this section, we briefly discuss background and 
related work on time series similarity search. 

For concreteness, we begin with definitions of time 
series: 
Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Since we are interested in finding local patterns, we 
consider time series subsequences as the basic unit: 
Definition 2. Subsequence: Given a time series T of length 
m, a subsequence C of T is a subsection of length n ≤ m of 
contiguous position from p, that is, C = tp…tp+n-1 for 1 ≤ p ≤ 
m – n + 1. 

Since all subsequences may potentially be the 
candidates for motifs, any algorithm would have to extract 

and consider all of them. This can be achieved via the use 
of a sliding window: 
Definition 4. Sliding Window: Given a time series T and a 
user-defined subsequence length n, all possible 
subsequences can be extracted by sliding a window of size 
n across T and considering each subsequence Cp, for 1 ≤ p 
≤ m – n + 1. 

Next, we briefly discuss related work on time series 
motif discovery and grammar induction techniques. 

 
2.1 Related Work 
 

In [18], we defined time series motif C as the 
subsequence in T that has the highest count of non-trivial 
matches, that is, subsequences that are within ε units of 
distance away from C. We proposed a sub-quadratic 
algorithm to find exact motifs of a given length. Mueen et 
al proposed an algorithm named MK that is an 
improvement from the brute-force exact motif discovery 
algorithm [23]. In some applications, it may be sufficient or 
even desirable to have a fast algorithm that can find 
approximate motifs [7]. As an example, Chiu and Keogh 
proposed probabilistic motif discovery algorithm based on 
random projection [7, 32]. The advantage of probabilistic 
motif discovery algorithm is its efficiency. Other 
approximate motifs algorithms exist [5, 27, 30, 35]; 
however, one common drawback for all these algorithms is 
that they require an input parameter for the motif length. 

A few algorithms were proposed to discover motifs of 
variable lengths [21, 25, 30]; however, they either do so via 
post-processing, scale poorly, or quantize the whole data 
rather than considering overlapping subsequences, resulting 
in inaccurate and incomplete patterns found. 

 
3. Sequitur 
 

We investigate how to extract patterns using 
techniques that identify hierarchies and frequent sequences. 
Although aimed at compressing discrete sequences of data, 
there are algorithms that can be used as a proof-of-concept 
for our preliminary study. For instance, Sequitur [24] is a 
string compression algorithm that infers a context-free 
grammar from a sequence of discrete symbols [24]. It has 
been adopted in various domains due to the many nice 
properties it offers: it has been used to find repeated DNA 
sequences [6, 33] and repeated function call sequences 
[15], and to segment time series [4]. The main premise is 
that repeated subsequences are replaced by a grammatical 
rule that generates the subsequence, thereby reducing the 
length of the original sequence, and producing a 
hierarchical representation that summarizes the structure of 
the data. Although simple in design, Sequitur has been 
shown to be competitive with the state-of-the-art 
compression algorithms [24], maintaining its scalability 
even for large sequences. Moreover, Sequitur offers a 
unique advantage—it utilizes and identifies the hidden 



structure (recurring subsequences) in the input data 
sequence, requiring relatively small memory footprint. Due 
to these reasons, we choose Sequitur in this work to 
demonstrate the utility of using grammar-based 
compression algorithms to find patterns in time series data. 

Sequitur works by maintaining two properties: digram 
uniqueness and rule utility [24]. The first property governs 
that no pair of consecutive symbols (terminals or non-
terminals) can appear more than once. When Sequitur reads 
a new symbol from the input sequence, the last two 
symbols of the sequence read so far—the new symbol and 
its predecessor symbol—form a digram [24]. A table that 
stores all existing digrams is maintained. If this new digram 
already exists in the digram table, i.e., it appears 
somewhere in the sequence already read, Sequitur uses a 
non-terminal to substitute these digrams, and, if such rule1 
has not yet existed, it forms a new grammar rule with the 
non-terminal on the left hand side. The second property, 
rule uniqueness, ensures that each grammar rule be used 
more than once except for the top-level rule, since a 
grammar rule that occurs just once is not meaningful and 
should be removed. As an example, the input string S1: 
“12131213412” can be converted to the following 
grammar:   

Grammar rule Expanded Grammar rule 
S1 -> BB4A 12131213412 
A -> 12 12 
B -> A13 1213 
The top-level grammar rule, S1→ BB4A, denotes the 

sequence seen so far. Sequitur is an online algorithm that 
generates the grammar incrementally as each symbol 
arrives. It is, therefore, ideal for the streaming scenarios. It 
is both time- and space-efficient, requiring O(m) time to 
compress a sequence of size m, and a compressed sequence 
is of size O(m) in the worst case (i.e., no compression), and 
O(logm) in the best case [24]. 

The main advantages of Sequitur (or many grammar-
induction algorithms in general) are three-fold: (1) it 
identifies recurring patterns automatically, e.g., “1213” in 
the previous example, as well as hierarchical structure; (2) 
the recurring patterns found can be of any lengths; and (3) 
it is suitable for streaming data since it constructs the 
grammars in an incremental fashion. These benefits suggest 
that we may be able to adapt it to find variable-length 
motifs for time series. We describe how we achieve this in 
the next section. 

 
4. Finding Approximate Variable-Length 
Motifs By Sequitur 
 

                                                                    
1 Note the “rules” here should not be confused with the sequential or 

association rules. The “rules” here refer to those that are generated by 
the algorithm. It is equivalent to the concept of frequent itemsets in 
association rule mining. 

We propose an algorithm that finds approximate 
variable-length motifs using Sequitur. Our approach 
consists of three steps: Pre-processing (discretization), 
Motif Discovery (Sequitur), and Post-processing. We 
describe each step in more details below. 

 
4.1 Step 1: Discretization 

 
Sequitur, or more generally, grammar induction 

algorithms, were originally designed for discrete data. 
However, time series are real-valued data, requiring a pre-
processing step to allow the application of a grammar-
based algorithm.  

In a previous work, we introduced a time series 
symbolic representation called Symbolic Aggregate 
approXimation (SAX) [1, 17, 19]. While there have been 
dozens of symbolic representations proposed for time series 
data, SAX has been shown to outperform existing methods. 
In addition, SAX has some unique, desirable properties 
such as dimensionality reduction, lower-bounding distance 
measures, and equiprobable symbols. For these reasons, we 
will utilize SAX for our pre-processing step. 

Given a time series, SAX performs discretization by 
dividing the time series into w equal-sized segments. For 
each segment, their mean value is computed, and then 
mapped to a symbol according to a set of breakpoints that 
divide the distribution space into α equiprobable regions, 
where α is the alphabet size specified by the user. If the 
symbols were not equiprobable, some of the symbols 
would occur more frequently than others. As a 
consequence, we would inject a probabilistic bias in the 
process. It has been noted that some data structures such as 
suffix trees produce optimal results when the symbols are 
of equiprobability [8]. The discretization steps are 
summarized in Figure 2.  

 
Figure 2. Example of SAX for a time series. The time series 
above is transformed to the string cbccbaab, and the 
dimensionality is reduced from 128 to 8. 
 Since each subsequence in the dataset can be a 
potential candidate for motif, we should consider all 
possible subsequences in order to ensure correct results. 
This can be achieved by using a sliding window of length n 
across the time series. Note that n is just the initial window 
length for our algorithm; the algorithm will grow the 
patterns automatically. Once we collect all the 
subsequences, we can then discretize each subsequence 
individually using SAX, and then concatenate them to form 
one single sequence. A transformed sequence might look 



something like this:    
   S = 1131-1132-1232-1223-1344-1131-1132-1232...  
where the ‘-‘ denotes the delimiter between consecutive, 
overlapping subsequences.  

The reason we choose to discretize subsequences 
rather than individual points is that time series are typically 
very noisy. If we discretize each time point into a symbol, 
and then form a string from these symbols, then we would 
give equal weight to each time point, including the noises. 
On the other hand, the “aggregating” feature of SAX would 
smooth out the subsequences and essentially remove the 
noises. 

 
4.2 Step 2: Sequitur on SAX Words 

 
Once we transform the time series into a discrete 

sequence consisted of SAX strings, the application of 
Sequitur on the sequence is straight-forward. Each string 
delimited by ‘-‘ represents one subsequence, and is treated 
as a terminal symbol, an atomic unit for patterns. Sequitur 
embodies efficiency and accuracy in finding the repeated 
patterns of sequences in many cases. One possible grammar 
rule that can be generated from the above string is  

A → 1131-1132-1232. 
We modify the original Sequitur algorithm and record 

the offsets of the subsequences that occur in each grammar 
rule. 

 
4.3 Step 3: Post-Processing 

 
Since we discretized the data before running the 

algorithm, we now need to map the rules and frequent 
strings back to the time series subsequences. We can 
simply record the starting offsets of all grammar rule 
instances. The number of rules generated can be large and, 
similar to association rules mining [2], not all rules are 
interesting or important. Several refinement steps can be 
performed on the grammar rules. In this work, we 
performed the following refinement: eliminating trivial 
matches, ranking rules by their “interestingness” denoted 
by frequency, rule length, and pattern variation. 

 
5. Empirical Evaluation 
 

In this section we evaluate the potential of using 
Sequitur to find frequent patterns in medical time series 
data. While the experimental evaluation is brief, as this 
work is still at its early stage, the following examples show 
that Sequitur can find some time series motifs without 
knowing the exact lengths of the motifs in advance. For all 
examples shown below, we choose α = 4 and w = 4, which 
are both arbitrary choices that have been shown to work 
well for most datasets [19]. 

As a sanity check, the first dataset we used is the ECG 
dataset shown in Figure 1 (see Section 1). The obvious 

motif, i.e. the individual heartbeats, are indeed discovered. 
The length of the motif shown is 159, with the initial 
window length of 150. Figure 3 below shows two instances 
of a motif found in a heart rate dataset from a patient 
monitored in Intensive Care Unit. The data is obtained from 
UCI Machine Learning Repository [39]. 

 
Figure 3. (Top) A patient’s heart rate data. Matches for a motif of 
length 54 are highlighted. (Bottom) The discovered motif 
instances are plotted. 
 

In Figure 4, we show a motif found in the winding 
dataset from UCR Time Series Archive [37]. A motif of 
length 84 is found, when the initial window length is 50.  

 
Figure 4. (Top) Original winding dataset. Matches for a motif of 
length 84 is highlighted. The initial length used is 50. (Bottom). 
The discovered motif instances are plotted. 
 

6. Conclusion 
 

In this preliminary work, we propose a methodology to 
find approximate variable-length medical time series motif 
using an efficient grammar-based compression algorithm. 
Existing algorithms that discover motifs of variable lengths 
either do so via post-processing, scale poorly, or quantize 
the whole data rather than considering overlapping 
subsequences, resulting in inaccurate and incomplete 
patterns found. Our algorithm mitigates the shortcomings; 



in addition, it offers the advantage of discovering 
hierarchical structure, regularity and grammar from the 
data. The preliminary results are promising. They show that 
the grammar-based approach is able to find some important 
motifs in some medical data and suggest that using 
grammar-based algorithms for time series pattern discovery 
might be worth exploring. A natural question to ask now is, 
would our algorithm be useful for finding patterns or 
predicting future events in streaming medical data? 

Several other future directions are possible. Due to the 
preliminary stage of this work, the literature comparison is 
non-existent. It is partly due to the fact that to the best of 
our knowledge, there is no known algorithm that can find 
variable-length frequent patterns with comparable 
efficiency. Nonetheless, we would like compare with some 
existing methods to further validate our findings. In 
addition, the post-processing step of the algorithm can be 
further refined for better motif identification. It would be 
useful to rank motifs based on their “interestingness.” 
Furthermore, we would like to investigate the utilities of 
our algorithm on finding hierarchical structures and 
grammars from medical time series data. 
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