
Chapter 5 1 

MINING TIME SERIES DATA 

Chotirat Ann Ratanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn 
Keogh 
University of California, Riverside 

Michail Vlachos 
IBM EJ. Watson Research Center 

Gautam Das 
University of Texas, Arlington 

Abstract Much of the world's supply of data is in the form of time series. In the last 
decade, there has been an explosion of interest in mining time series data. A 
number of new algorithms have been introduced to classify, cluster, segment, 
index, discover rules, and detect anomalies/novelties in time series. While these 
many different techniques used to solve these problems use a multitude of differ- 
ent techniques, they all have one common factor; they require some high level 
representation of the data, rather than the original raw data. These high level 
representations are necessary as a feature extraction step, or simply to make the 
storage, transmission, and computation of massive dataset feasible. A multitude 
of representations have been proposed in the literature, including spectral trans- 
forms, wavelets transforms, piecewise polynomials, eigenfunctions, and sym- 
bolic mappings. This chapter gives a high-level survey of time series Data Min- 
ing tasks, with an emphasis on time series representations. 
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1. Introduction 
Time series data accounts for an increasingly large fraction of the world's 

supply of data. A random sample of 4,000 graphics from 15 of the world's 
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newspapers published from 1974 to 1989 found that more than 75% of all 
graphics were time series (Tufte, 1983). Given the ubiquity of time series data, 
and the exponentially growing sizes of databases, there has been recently been 
an explosion of interest in time series Data Mining. In the medical domain 
alone, large volumes of data as diverse as gene expression data (Aach and 
Church, 2001), electrocardiograms, electroencephalograms, gait analysis and 
growth development charts are routinely created. Similar remarks apply to 
industry, entertainment, finance, meteorology and virtually every other field 
of human endeavour. Although statisticians have worked with time series for 
more than a century, many of their techniques hold little utility for researchers 
working with massive time series databases (for reasons discussed below). 

Below are the major task considered by the time series Data Mining com- 
munity. 

Indexing (Query by Content): Given a query time series Q, and some 
similarity/dissimilarity measure D(Q, C), find the most similar time se- 
ries in database DB (Chakrabarti et al., 2002; Faloutsos et al., 1994; 
Kahveci and Singh, 2001; Popivanov et al., 2002). 

Clustering: Find natural groupings of the time series in database DB un- 
der some similarity/dissimilarity measure D(Q, C) (Aach and Church, 
2001; Debregeas and Hebrail, 1998; Kalpakis et al., 2001; Keogh and 
Pazzani, 1998). 

Classification: Given an unlabeled time series Q, assign it to one of two 
or more predefined classes (Geurts, 2001; Keogh and Pazzani, 1998). 

Prediction (Forecasting): Given a time series Q containing n data poin- 
ts, predict the value at time n + 1. 

Summarization: Given a time series Q containing n data points where 
n is an extremely large number, create a (possibly graphic) approxima- 
tion of Q which retains its essential features but fits on a single page, 
computer screen, etc. (Indyk et al., 2000; Wijk and Selow, 1999). 

Anomaly Detection (Interestingness Detection): Given a time series Q, 
assumed to be normal, and an unannotated time series R, find all sections 
of R which contain anomalies or "surprising/interesting/unexpected" oc- 
currences (Guralnik and Srivastava, 1999; Keogh et al., 2002; Shahabi 
et al., 2000). 

Segmentation: (a) Given a time series Q containing n data points, con- 
struct a model Q, from K piecewise segments ( K  << n), such that 
Q closely approximates Q (Keogh and Pazzani, 1998). (b) Given a time 
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series Q, partition it into K internally homogenous sections (also known 
as change detection (Guralnik and Srivastava, 1999)). 

Note that indexing and clustering make explicit use of a distance measure, 
and many approaches to classification, prediction, association detection, sum- 
marization, and anomaly detection make implicit use of a distance measure. 
We will therefore take the time to consider time series similarity in detail. 

2. Time Series Similarity Measures 

2.1 Euclidean Distances and L, Norms 
One of the simplest similarity measures for time series is the Euclidean dis- 

tance measure. Assume that both time sequences are of the same length n, we 
can view each sequence as a point in n-dimensional Euclidean space, and de- 
fine the dissimilarity between sequences C and Q and D(C, Q) = Lp(C, Q ) ,  
i.e. the distance between the two points measured by the L, norm (whenp = 2, 
it reduces to the familiar Euclidean distance). Figure 51.1 shows a visual intu- 
ition behind the Euclidean distance metric. 

Figure 51.1. The intuition behind the Euclidean distance metric 

Such a measure is simple to understand and easy to compute, which has en- 
sured that the Euclidean distance is the most widely used distance measure for 
similarity search (Agrawal et al., 1993; Chan and Fu, 1999; Faloutsos et al., 
1994). However, one major disadvantage is that it is very brittle; it does not al- 
low for a situation where two sequences are alike, but one has been "stretched" 
or "compressed" in the Y-axis. For example, a time series may fluctuate with 
small amplitude between 10 and 20, while another may fluctuate in a similar 
manner with larger amplitude between 20 and 40. The Euclidean distance be- 
tween the two time series will be large. This problem can be dealt with easily 
with offset translation and amplitude scaling, which requires normalizing the 
sequences before applying the distance operator1. 

In Goldin and Kanellakis (1995) , the authors describe a method where the 
sequences are normalized in an effort to address the disadvantages of the Lp as 
a similarity measure. Figure 5 1.2 illustrates the idea. 
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Figure 51.2. A visual intuition of the necessity to normalize time series before measuring 
the distance between them. The two sequences Q and C appear to have approximately the 
same shape, but have different offsets in Y-axis. The unnormalized data greatly overstate the 
subjective dissimilarity distance. Normalizing the data reveals the true similarity of the two time 
series. 

More formally, let p(C) and u(C) be the mean and standard deviation of 
sequence C = {q, . . . , cn). The sequence C is replaced by the normalized 
sequences C', where 

Even after normalization, the Euclidean distance measure may still be un- 
suitable for some time series domains since it does not allow for acceleration 
and deceleration along the time axis. For example, consider the two subjec- 
tively very similar sequences shown in Figure 51.3A. Even with normaliza- 
tion, the Euclidean distance will fail to detect the similarity between the two 
signals. This problem can generally be handled by Dynamic Time Warping 
distance measure, which will be discussed in the next section. 

2.2 Dynamic Time Warping 
In some time series domains, a very simple distance measure such as the 

Euclidean distance will suffice. However, it is often the case that the two 
sequences have approximately the same overall component shapes, but these 
shapes do not line up in X-axis. Figure 5 1.3 shows this with a simple example. 
In order to find the similarity between such sequences or as a preprocessing 
step before averaging them, we must "warp" the time axis of one (or both) 
sequences to achieve a better alignment. Dynamic Time Warping (DTW) is a 
technique for effectively achieving this warping. 

In Berndt and Clifford (1996) , the authors introduce the technique of dy- 
namic time warping to the Data Mining community. Dynamic time warping is 
an extensively used technique in speech recognition, and allows acceleration- 
deceleration of signals along the time dimension. We describe the basic idea 
below. 
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Figure 51.3. Two time series which require a warping measure. Note that while the sequences 
have an overall similar shape, they are not aligned in the time axis. Euclidean distance, which 
assumes the ith point on one sequence is aligned with ith point on the other (A), will produce 
a pessimistic dissimilarity measure. A nonlinear alignment (B) allows a more sophisticated 
distance measure to be calculated. 

Consider two sequence (of possibly different lengths), C = {cl, . . . , c,} and 
Q = {ql, . . . , qn}. When computing the similarity of the two time series using 
Dynamic Time Warping, we are allowed to extend each sequence by repeating 
elements. 

A straightforward algorithm for computing the Dynamic Time Warping dis- 
tance between two sequences uses a bottom-up dynamic programming ap- 
proach, where the smaller sub-problems D(i, j) are first determined, and then 
used to solve the larger sub-problems, until D(m,n) is finally achieved, as 
illustrated in Figure 5 1.4 below. 

Figure 51.4. A) Two similar sequences Q and C, but out of phase. B) To align the sequences, 
we construct a warping matrix, and search for the optimal warping path, shown with solid 
squares. Note that the "comers" of the matrix (shown in dark gray) are excluded from the search 
path (specified by a warping window of size w) as part of an Adjustment Window condition. C) 
The resulting alignment 
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Although this dynamic programming technique is impressive in its ability 
to discover the optimal of an exponential number alignments, a basic imple- 
mentation runs in O(mn) time. If a warping window w is specified, as shown 
in Figure 51.4B, then the running time reduces to O(nw), which is still too 
slow for most large scale application. In (Ratanamahatana and Keogh, 2004), 
the authors introduce a novel framework based on a learned warping window 
constraint to further improve the classification accuracy, as well as to speed up 
the D l W  calculation by utilizing the lower bounding technique introduced in 
(Keogh, 2002). 

2 3  Longest Common Subsequence Similarity 
The longest common subsequence similarity measure, or LCSS, is a vari- 

ation of edit distance used in speech recognition and text pattern matching. 
The basic idea is to match two sequences by allowing some elements to be 
unmatched. The advantage of the LCSS method is that some elements may 
be unmatched or left out (e.g. outliers), where as in Euclidean and DlW, all 
elements from both sequences must be used, even the outliers. For a general 
discussion of string edit distances, see (Kruskal and Sankoff, 1983). 

For example, consider two sequences: C = {1,2,3,4,5,1,7) and 
Q = {2,5,4,5,3,1,8). The longest common subsequence is {2,4,5,1). 

More formally, let C and Q be two sequences of length m and n,  respec- 
tively. As was done with dynamic time warping, we give a recursive definition 
of the length of the longest common subsequence of C and Q. Let L(i ,  j )  de- 
note the longest common subsequences {cl, . . . ,Q) and {ql, . . . ,qj ). L(i, j )  
may be recursively defined as follows: 

IF ai = bj THEN 
L ( i 7 j )  = 1 + L ( i - 1 7 j - 1 )  

ELSE 
L ( i 7 j )  = max {D( i  - 1, j ) ,  D(i , j  - 1 ) )  

We define the dissimilarity between C and Q as 

where 1 is the length of the longest common subsequence. Intuitively, 
this quantity determines the minimum (normalized) number of elements that 
should be removed from and inserted into C to transform C to Q. As with 
dynamic time warping, the LCSS measure can be computed by dynamic pro- 
gramming in O(mn) time. This can be improved to O ( ( n  + m ) ~ )  time if a 
matching window of length w is specified (i.e. where li - jl is allowed to be 
at most w). 
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With time series data, the requirement that the corresponding elements in 
the common subsequence should match exactly is rather rigid. This problem is 
addressed by allowing some tolerance (say E > 0) when comparing elements. 
Thus, two elements a  and b are said to match if a(1 -  E )  < b < a( l  + E) .  

In the next two subsections, we discuss approaches that try to incorporate 
local scaling and global scaling functions in the basic LCSS similarity measure. 

2.3.1 Using local Scaling Functions. In (Agrawal et al., 1995), the 
authors develop a similarity measure that resembles LCSS-like similarity with 
local scaling functions. Here, we only give an intuitive outline of the complex 
algorithm; further details may be found in this work. 

The basic idea is that two sequences are similar if they have enough non- 
overlapping time-ordered pairs of contiguous subsequences that are similar. 
Two contiguous subsequences are similar if one can be scaled and translated 
appropriately to approximately resemble the other. The scaling and translation 
function is local, i.e. it may be different for other pairs of subsequences. 

The algorithmic challenge is to determine how and where to cut the original 
sequences into subsequences so that the overall similarity is minimized. We 
describe it briefly here (refer to (Agrawal et al., 1995) for further details). The 
first step is to find all pairs of atomic subsequences in the original sequences 
A and Q that are similar (atomic implies subsequences of a certain small size, 
say a parameter w). This step is done by a spatial self-join (using a spatial 
access structure such as an R-tree) over the set of all atomic subsequences. 
The next step is to "stitch" similar atomic subsequences to form pairs of larger 
similar subsequences. The last step is to find a non-overlapping ordering of 
subsequence matches having the longest match length. The stitching and sub- 
sequence ordering steps can be reduced to finding longest paths in a directed 
acyclic graph, where vertices are pairs of similar subsequences, and a directed 
edge denotes their ordering along the original sequences. 

2.3.2 Using a global scaling function. Instead of different local scal- 
ing functions that apply to different portions of the sequences, a simpler ap- 
proach is to try and incorporate a single global scaling function with the LCSS 
similarity measure. An obvious method is to first normalize both sequences 
and then apply LCSS similarity to the normalized sequences. However, the 
disadvantage of this approach is that the normalization function is derived from 
all data points, including outliers. This defeats the very objective of the LCSS 
approach which is to ignore outliers in the similarity calculations. 

In (Bollobas et al., 2001), an LCSS-like similarity measure is described that 
derives a global scaling and translation function that is independent of outliers 
in the data. The basic idea is that two sequences C and Q are similar if there 
exists constants a  and b, and long common subsequences C' and Q' such that 
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Q' is approximately equal to aC' + b. The scale+translation linear function 
(i.e. the constants a and b) is derived from the subsequences, and not from the 
original sequences. Thus, outliers cannot taint the scale+translation function. 

Although it appears that the number of all linear transformations is infinite, 
Bollobas et al. (2001) shows that the number of different unique linear trans- 
formations is 0(n2). A naive implementation would be to compute LCSS on 
all transformations, which would lead to an algorithm that takes 0(n3) time. 
Instead, in (Bollobas et al., 2001), an efficient randomized approximation al- 
gorithm is proposed to compute this similarity. 

2.4 Probabilistic methods 
A different approach to time-series similarity is the use of a probabilis- 

tic similarity measure. Such measures have been studied in (Ge and Smyth, 
2000; Keogh and Smyth, 1997). While previous methods were "distance" 
based, some of these methods are "model" based. Since time series similar- 
ity is inherently a fuzzy problem, probabilistic methods are well suited for 
handling noise and uncertainty. They are also suitable for handling scaling and 
offset translations. Finally, they provide the ability to incorporate prior knowl- 
edge into the similarity measure. However, it is not clear whether other prob- 
lems such as time-series indexing, retrieval and clustering can be efficiently 
accomplished under probabilistic similarity measures. 

Here, we briefly describe the approach in (Ge and Smyth, 2000). Given 
a sequence C, the basic idea is to construct a probabilistic generative model 
Mc, i.e. a probability distribution on waveforms. Once a model Mc has been 
constructed for a sequence C, we can compute similarity as follows. Given a 
new sequence pattern Q, similarity is measured by computing p(QIMc), i.e. 
the likelihood that M c  generates Q. 

2.5 General Transformations 
Recognizing the importance of the notion of "shape" in similarity computa- 

tions, an alternate approach was undertaken by Jagadish et al. (1995) . In this 
paper, the authors describe a general similarity framework involving a trans- 
formation rules language. Each rule in the transformation language takes an 
input sequence and produces an output sequence, at a cost that is associated 
with the rule. The similarity of sequence C to sequence Q is the minimum 
cost of transforming C to Q by applying a sequence of such rules. The actual 
rules language is application specific. 
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3. Time Series Data Mining 
The last decade has seen the introduction of hundreds of algorithms to clas- 

sify, cluster, segment and index time series. In addition, there has been much 
work on novel problems such as rule extraction, novelty discovery, and depen- 
dency detection. This body of work draws on the fields of statistics, machine 
learning, signal processing, information retrieval, and mathematics. It is in- 
teresting to note that with the exception of indexing, researches in the tasks 
enumerated above predate not only the decade old interest in Data Mining, but 
in computing itself. What then, are the essential differences between the clas- 
sic and the Data Mining versions of these problems? The key difference is 
simply one of size and scalability; time series data miners routinely encounter 
datasets that are gigabytes in size. As a simple motivating example, consider 
hierarchical clustering. The technique has a long history and well-documented 
utility. If however, we wish to hierarchically cluster a mere million items, we 
would need to construct a matrix with 1012 cells, well beyond the abilities of 
the average computer for many years to come. A Data Mining approach to 
clustering time series, in contrast, must explicitly consider the scalability of 
the algorithm (Kalpakis et al., 2001). 

In addition to the large volume of data, most classic machine learning and 
Data Mining algorithms do not work well on time series data due to their 
unique structure; it is often the case that each individual time series has a 
very high dimensionality, high feature correlation, and large amount of noise 
(Chakrabarti et al., 2002), which present a difficult challenge in time series 
Data Mining tasks. Whereas classic algorithms assume relatively low dimen- 
sionality (for example, a few measurements such as "height, weight, blood 
sugar, etc."), time series Data Mining algorithms must be able to deal with di- 
mensionalities in the hundreds or thousands. The problems created by high di- 
mensional data are more than mere computation time considerations; the very 
meanings of normally intuitive terms such as "similar to" and "cluster forming" 
become unclear in high dimensional space. The reason is that as dimension- 
ality increases, all objects become essentially equidistant to each other, and 
thus classification and clustering lose their meaning. This surprising result is 
known as the "curse of dimensionality" and has been the subject of extensive 
research (Aggarwal et al., 2001). The key insight that allows meaningful time 
series Data Mining is that although the actual dimensionality may be high, the 
intrinsic dimensionality is typically much lower. For this reason, virtually all 
time series Data Mining algorithms avoid operating on the original "raw" data; 
instead, they consider some higher-level representation or abstraction of the 
data. 

Before giving a full detail on time series representations, we first briefly ex- 
plore some of the classic time series Data Mining tasks. While these individual 
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tasks may be combined to obtain more sophisticated Data Mining applications, 
we only illustrate their main basic ideas here. 

3.1 Classification 
Classification is perhaps the most familiar and most popular Data Mining 

technique. Examples of classification applications include image and pattern 
recognition, spam filtering, medical diagnosis, and detecting malfunctions in 
industry applications. Classification maps input data into predefined groups. It 
is often referred to as supervised learning, as the classes are determined prior 
to examining the data; a set of predefined data is used in training process and 
learn to recognize patterns of interest. Pattern recognition is a type of classifi- 
cation where an input pattern is classified into one of several classes based on 
its similarity to these predefined classes. Two most popular methods in time 
series classification include the Nearest Neighbor classifier and Decision trees. 
Nearest Neighbor method applies the similarity measures to the object to be 
classified to determine its best classification based on the existing data that has 
already been classified. For decision tree, a set of rules are inferred from the 
training data, and this set of rules is then applied to any new data to be classi- 
fied. Note that even though decision trees are defined for real data, attempting 
to apply raw time series data could be a mistake due to its high dimensionality 
and noise level that would result in deep, bushy tree. Instead, some researchers 
suggest representing time series as Regression Tree to be used in Decision Tree 
training (Geurts, 2001). 

The performance of classification algorithms is usually evaluated by mea- 
suring the accuracy of the classification, by determining the percentage of ob- 
jects identified as the correct class. 

3.2 Indexing (Query by Content) 
Query by content in time series databases has emerged as an area of ac- 

tive interest since the classic first paper by Agrawal et al. (1993) . This also 
includes a sequence matching task which has long been divided into two cat- 
egories: whole matching and subsequence matching (Faloutsos et al., 1994; 
Keogh et al., 2001). 

Whole Matching: a query time series is matched against a database of 
individual time series to identify the ones similar to the query 

Subsequence Matching: a short query subsequence time series is matched 
against longer time series by sliding it along the longer sequence, looking for 
the best matching location. 

While there are literally hundreds of methods proposed for whole sequence 
matching (See, e.g. (Keogh and Kasetty, 2002) and references therein), in 
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practice, its application is limited to cases where some information about the 
data is known a priori. 

Subsequence matching can be generalized to whole matching by dividing 
sequences into non-overlapping sections by either a specific period or, more 
arbitrarily, by its shape. For example, we may wish to take a long electro- 
cardiogram and extract the individual heartbeats. This informal idea has been 
used by many researchers. 

Most of the indexing approaches so far use the original GEMINI framework 
(Faloutsos et al., 1994) but suggest a different approach to the dimensionality 
reduction stage. There is increasing awareness that for many Data Mining and 
information retrieval tasks, very fast approximate search is preferable to slower 
exact search (Chang et al., 2002). This is particularly true for exploratory 
purposes and hypotheses testing. Consider the stock market data. While it 
makes sense to look for approximate patterns, for example, "a pattern that 
rapidly decreases after a long plateau", it seems pedantic to insist on exact 
matches. Next we would like to discuss similarity search in some more detail. 

Given a database of sequences, the simplest way to find the closest match 
to a given query sequence Q, is to perform a linear or sequential scan of the 
data. Each sequence is retrieved from disk and its distance to the query Q 
is calculated according to the pre-selected distance measure. After the query 
sequence is compared to all the sequences in the database, the one with the 
smallest distance is returned to the user as the closest match. 

This brute-force technique is costly to implement, first because it requires 
many accesses to the disk and second because it operates or the raw sequences, 
which can be quite long. Therefore, the performance of linear scan on the raw 
data is typically very costly. 

A more efficient implementation of the linear scan would be to store two 
levels of approximation of the data; the raw data and their compressed version. 
Now the linear scan is performed on the compressed sequences and a lower 
bound to the original distance is calculated for all the sequences. The raw data 
are retrieved in the order suggested by the lower bound approximation of their 
distance to the query. The smallest distance to the query is updated after each 
raw sequence is retrieved. The search can be terminated when the lower bound 
of the currently examined object exceeds the smallest distance discovered so 
far. 

A more efficient way to perform similarity search is to utilize an index 
structure that will cluster similar sequences into the same group, hence pro- 
viding faster access to the most promising sequences. Using various pruning 
techniques, indexing structures can avoid examining large parts of the dataset, 
while still guaranteeing that the results will be identical with the outcome of 
linear scan. Indexing structures can be divided into two major categories: vec- 
tor based and metric based. 
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3.2.1 Vector Based Indexing Structures. Vector based indices work 
on the compressed data dimensionality. The original sequences are compacted 
using a dimensionality reduction method, and the resulting multi-dimensional 
vectors can be grouped into similar clusters using some vector-based indexing 
technique, as shown in Figure 5 1.5. 

Figure 51.5. Dimensionality reduction of time-series into two dimensions 

Vector-based indexing structures can also appear in two flavors; hierarchical 
or non-hierarchical. The most common hierarchical vector based index is the 
R-tree or some variant. The R-tree consists of multidimensional vectors on 
the leaf levels, which are organized in the tree fashion using hyper-rectangles 
that can potentially overlap, as illustrated in Figure 5 1.6. 

In order to perform the search using an index structure, the query is also pro- 
jected in the compressed dimensionality and then probed on the index. Using 
the R-tree, only neighboring hyper-rectangles to the query's projected location 
need to be examined. 

Other commonly used hierarchical vector-based indices are the kd-B-trees 
(Robinson, 1981) and the quad-trees (Tzouramanis et al., 1998). Non- 
hierarchical vector based structures are less common and are typically known 
as grid files (Nievergelt et al., 1984). For example, grid files have been used 
in (Zhu and Shasha, 2002) for the discovery of the most correlated data se- 
quences. 

However, such types of indexing structures work well only for low com- 
pressed dimensionalities (typicallyc5). For higher diensionalities, the prun- 
ing power of vector-based indices diminishes exponentially. This can be exper- 
imentally and analytically shown and it is coined under the term 'dimension- 
ality curse' (Agrawal et al., 1993). This inescapable fact suggests that even 
when using an index structure, the complete dataset wouId have to be retrieved 
from disk for higher compressed dirnensionalities. 
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Figure 51.6. Hierarchical organization using an R-tree 

3.2.2 Metric Based Indexing Structures. Metric based structures 
can typically perform much better than vector based indices, even for higher 
dimensionalities (up to 20 or 30). They are more flexible because they require 
only distances between objects. Thus, they do not cluster objects based on 
their compressed features but based on relative object distances. The choice of 
reference objects, from which all object distances will be calculated, can vary 
in different approaches. Examples of metric trees include the Vantage Point 
(VP) tree (Yianilos, 1992), M-tree (Ciaccia et al., 1997) and GNAT (Brin, 
1995). All variations of such trees, exploit the distances to the reference points 
in conjunction with the triangle inequality to prune parts of the tree, where no 
closer matches (to the ones already discovered) can be found. A recent use 
of VP-trees for time-series search under Euclidean distance using compressed 
Fourier descriptors can be found in (Vlachos et al., 2004). 

3.3 Clustering 
Clustering is similar to classification that categorizes data into groups; how- 

ever, these groups are not predefined, but rather defined by the data itself, based 
on the similarity between time series. It is often referred to as unsupervised 
learning. The clustering is usually accomplished by determining the similarity 
among the data on predefined attributes. The most similar data are grouped 
into clusters, but the clusters themselves should be very dissimilar. And since 
the clusters are not predefined, a domain expert is often required to interpret 
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the meaning of the created clusters. The two general methods of time series 
clustering are Partitional Clustering and Hierarchical Clustering. Hierarchical 
Clustering computes pairwise distance, and then merges similar clusters in a 
bottom-up fashion, without the need of providing the number of clusters. We 
believe that this is one of the best (subjective) tools to data evaluation, by creat- 
ing a dendrogram of several time series from the domain of interest (Keogh and 
Pazzani, 1998), as shown in Figure 51.7. However, its application is limited to 
only small datasets due to its quadratic computational complexity. 

Figure 51.7. A hierarchical clustering of time series 

On the other hand, Paritional Clustering typically uses the K-means algo- 
rithm (or some variant) to optimize the objective function by minimizing the 
sum of squared intra-cluster errors. While the algorithm is perhaps the most 
commonly used clustering algorithm in the literature, one of its shortcomings 
is the fact that the number of clusters, K ,  must be pre-specified. 

Clustering has been used in many application domains including biology, 
medicine, anthropology, marketing, and economics. It is also a vital process 
for condensing and summarizing information, since it can provide a synop- 
sis of the stored data. Similar to query by content, there are two types of 
time series clustering: whole clustering and subsequence clustering. The no- 
tion of whole clustering is similar to that of conventional clustering of discrete 
objects. Given a set of individual time series data, the objective is to group 
similar time series into the same cluster. On the other hand, given a single 
(typically long) time series, subsequence clustering is performed on each in- 
dividual time series (subsequence) extracted from the long time series with a 
sliding window. Subsequence clustering is a common pre-processing step for 
many pattern discovery algorithms, of which the most well-known being the 
one proposed for time series rule discovery. Recent empirical and theoretical 
results suggest that subsequence clustering may not be meaningful on an en- 
tire dataset (Keogh et al., 2003), and that clustering should only be applied to 
a subset of the data. Some feature extraction algorithm must choose the subset 
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of data, but we cannot use clustering as the feature extraction algorithm, as this 
would open the possibility of a chicken and egg paradox. Several researchers 
have suggested using time series motifs (see below) as the feature extraction 
algorithm (Chiu et al., 2003). 

3.4 Prediction (Forecasting) 
Prediction can be viewed as a type of clustering or classification. The dif- 

ference is that prediction is predicting a future state, rather than a current one. 
Its applications include obtaining forewarning of natural disasters (flooding, 
hurricane, snowstorm, etc), epidemics, stock crashes, etc. Many time series 
prediction applications can be seen in economic domains, where a prediction 
algorithm typically involves regression analysis. It uses known values of data 
to predict future values based on historical trends and statistics. For exam- 
ple, with the rise of competitive energy markets, forecasting of electricity has 
become an essential part of an efficient power system planning and operation. 
This includes predicting future electricity demands based on historical data and 
other information, e.g. temperature, pricing, etc. As another example, the sales 
volume of cellular phone accessories can be forecasted based on the number 
of cellular phones sold in the past few months. Many techniques have been 
proposed to increase the accuracy of time series forecast, including the use of 
neural network and dimensionality reduction techniques. 

3.5 Summarization 
Since time series data can be massively long, a summarization of the data 

may be useful and necessary. A statistic summarization of the data, such as 
the mean or other statistical properties can be easily computed even though 
it might not be particularly valuable or intuitive information. Rather, we can 
often utilize natural language, visualization, or graphical summarization to ex- 
tract useful or meaningful information from the data. Anomaly detection and 
motif discovery (see the next section below) are special cases of summarization 
where only anomaloushepeating patterns are of interest and reported. Summa- 
rization can also be viewed as a special type of clustering problem that maps 
data into subsets with associated simple (text or graphical) descriptions and 
provides a higher-level view of the data. This new simpler description of the 
data is then used in place of the entire dataset. The summarization may be done 
at multiple granularities and for different dimensions. 

Some of popular approaches for visualizing massive time series datasets 
include EmeSearcher, Calendar-Based Visualization, Spiral and VizTree. 

EmeSearcher (Hochheiser and Shneiderman, 2001) is a query-by-example 
time series exploratory and visualization tool that allows user to retrieve time 
series by creating queries, so called TimeBoxes. Figure 5 1.8 shows three Time- 
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Boxes being drawn to specify time series that start low, increase, then fall once 
more. However, some knowledge about the datasets may be needed in advance 
and users need to have a general idea of what to look for or what is interesting. 

Figure 51.8. The Thesearcher visual query interface. A user can filter away sequences that 
are not interesting by insisting that all sequences have at least one data point within the query 
boxes 

Cluster and Calendar-Based Visualization (Wijk and Selow, 1999) is a visu- 
alization system that 'chunks' time series data into sequences of day patterns, 
and these day patterns are clustered using a bottom-up clustering algorithm. 
The system displays patterns represented by cluster average, along with a cal- 
endar with each day color-coded by the cluster it belongs to. Figure 5 l .9 shows 
an example view of this visualization scheme. From viewing patterns which 
are linked to a calendar we can potentially discover simple rules such as: "In 
the winter months the power consumption is greater than in summer months". 

Spiral (Weber et al., 2000) maps each periodic section of time series onto 
one "ring" and attributes such as color and line thickness are used to charac- 
terize the data values. The main use of the approach is the identification of 
periodic structures in the data. Figure 51.10 displays the annual power usage 
that characterizes the normal "9-to-5" working week pattern. However, the 
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Figure 51.9. The cluster and calendar-based visualization on employee working hours data. It 
shows six clusters, representing different working-day pattern 

utility of this tool is limited for time series that do not exhibit periodic behav- 
iors, or when the period is unknown. 

Figure 51.10. The Spiral visualization approach applied to the power usage dataset 

VizTree (Lin et al., 2004) is recently introduced with the aim to discover 
previously unknown patterns with little or no knowledge about the data; it pro- 
vides an overall visual summary, and potentially reveal hidden structures in the 
data. This approach first transforms the time series into a symbolic representa- 
tion, and encodes the data in a modified suffix tree in which the frequency and 
other properties of patterns are mapped onto colors and other visual proper- 
ties. Note that even though the tree structure needs the data to be discrete, the 
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original time series data is not. Using a time-series discretization introduced 
in (Lin et al., 2003), continuous data can be transformed into discrete domain, 
with certain desirable properties such as lower-bounding distance, dimension- 
ality reduction, etc. While frequently occumng patterns can be detected by 
thick branches in VizTree, simple anomalous patterns can be detected by un- 
usually thin branches. Figure 5 1.1 1 demonstrates both motif discovery and 
simple anomaly detection on ECG data. 

Figure 51.11. ECG data with anomaly is shown. While the subsequence tree can be used to 
identify motifs, it can be used for simple anomaly detection as well 

3.6 Anomaly Detection 
In time series Data Mining and monitoring, the problem of detecting anoma- 

lous/surprising/nove1 patterns has attracted much attention (Dasgupta and For- 
rest, 1999; Ma and Perkins, 2003; Shahabi et al., 2000). In contrast to subse- 
quence matching, anomaly detection is identification of previously unknown 
patterns. The problem is particularly difficult because what constitutes an 
anomaly can greatly differ depending on the task at hand. In a general sense, an 
anomalous behavior is one that deviates from "normal" behavior. While there 
have been numerous definitions given for anomalous or surprising behaviors, 
the one given by (Keogh et al., 2002) is unique in that it requires no explicit for- 
mulation of what is anomalous. Instead, the authors simply define an anoma- 
lous pattern as on "whose frequency of occurrences differs substantially from 
that expected, given previously seen data". The problem of anomaly detection 
in time series has been generalized to include the detection of surprising or in- 
teresting patterns (which are not necessarily anomalies). Anomaly detection is 
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closely related to Summarization, as discussed in the previous section. Figure 
5 1.12 illustrates the idea. 

Figure 51.12. An example of anomaly detection from the MIT-BM Noise Stress Test 
Database. Here, we show only a subsection containing the two most interesting events de- 
tected by the compression-based algorithm (Keogh et al., 2004) (the thicker the line, the more 
interesting the subsequence). The gray markers are independent annotations by a cardiologist 
indicating Premature Ventricular Contractions. 

3.7 Segmentation 
Segmentation in time series is often referred to as a dimensionality reduc- 

tion algorithm. Although the segments created could be polynomials of an 
arbitrary degree, the most common representation of the segments is of linear 
functions. Intuitively, a Piecewise Linear Representation (PLR) refers to the 
approximation of a time series Q, of length n, with K straight lines. Figure 
5 1.13 contains an example. 

Figure 51.13. An example of a time series segmentation with its piecewise linear representa- 
tion 

Because K is typically much smaller than n, this representation makes the 
storage, transmission, and computation of the data more efficient. 

Although appearing under different names and with slightly different im- 
plementation details, most time series segmentation algorithms can be grouped 
into one of the following three categories. 

Sliding-Windows (SW): A segment is grown until it exceeds some error 
bound. The process repeats with the next data point not included in the 
newly approximated segment. 
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rn Top-Down (TD): The time series is recursively partitioned until some 
stopping criteria is met. 

rn Bottom-Up (BU): Starting from the finest possible approximation, seg- 
ments are merged until some stopping criteria are met. 

We can measure the quality of a segmentation algorithm in several ways, the 
most obvious of which is to measure the reconstruction error for a fixed number 
of segments. The reconstruction error is simply the Euclidean distance between 
the original data and the segmented representation. While most work in this 
area has consider static cases, recently researchers have consider obtaining and 
maintaining segmentations on streaming data sources (Palpanas et al., 2004) 

4. Time Series Representations 
As noted in the previous section, time series datasets are typically very large, 

for example, just eight hours of electroencephalogram data can require in ex- 
cess of a gigabyte of storage. Rather than analyzing or finding statistical prop- 
erties on time series data, time series data miners' goal is more towards discov- 
ering useful information from the massive amount of data efficiently. This is a 
problem because for almost all Data Mining tasks, most of the execution time 
spent by algorithm is used simply to move data from disk into main memory. 
This is acknowledged as the major bottleneck in Data Mining because many 
naYve algorithms require multiple accesses of the data. As a simple example, 
imagine we are attempting to do k-means clustering of a dataset that does not 
fit into main memory. In this case, every iteration of the algorithm will require 
that data in main memory to be swapped. This will result in an algorithm that 
is thousands of times slower than the main memory case. 

With this in mind, a generic framework for time series Data Mining has 
emerged. The basic idea (similar to GEMINI framework) can be summarized 
in Table 51.1. 

Table 51.1. A generic time series Data Mining approach. 

1) Create an approximation of the data, which will fit in main memory, yet retains 
the essential features of interest. 

2) Approximately solve the problem at hand in main memory. 
3) Make (hopefully very few) accesses to the original data on disk to confirm 

the solution obtained in Step 2, or to modify the solution so it agrees with the 
solution we would have obtained on the original data. 

As with most problems in computer science, the suitable choice of represen- 
tationlapproximation greatly affects the ease and efficiency of time series Data 
Mining. It should be clear that the utility of this framework depends heavily 
on the quality of the approximation created in Step 1). If the approximation 
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is very faithful to the original data, then the solution obtained in main mem- 
ory is likely to be the same as, or very close to, the solution we would have 
obtained on the original data. The handful of disk accesses made in Step 2) 
to confirm or slightly modify the solution will be inconsequential, compared 
to the number of disks accesses required if we had worked on the original 
data. With this in mind, there has been a huge interest in approximate repre- 
sentation of time series, and various solutions to the diverse set of problems 
frequently operate on high-level abstraction of the data, instead of the origi- 
nal data. This includes the Discrete Fourier Transform (DFT) (Agrawal et al., 
1993), the Discrete Wavelet Transform (DWT) (Chan and Fu, 1999; Kahveci 
and Singh, 2001; Wu et al., 2000), Piecewise Linear, and Piecewise Con- 
stant models (PAA) (Keogh et al., 2001; Yi and Faloutsos, 2000), Adaptive 
Piecewise Constant Approximation (APCA) (Keogh et al., 2001), and Singu- 
lar Value Decomposition (SVD) (Kanth et al., 1998; Keogh et al., 2001; Korn 
et al., 1997). 

Figure 5 1.14 illustrates a hierarchy of the representations proposed in the 
literature. 

Time Series 
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Figure 51.14. A hierarchy of time series representations 

It may seem paradoxical that, after all the effort to collect and store the 
precise values of a time series, the exact values are abandoned for some high 
level approximation. However, there are two important reasons why this is so. 

We are typically not interested in the exact values of each time series data 
point. Rather, we are interested in the trends, shapes and patterns contained 
within the data. These may best be captured in some appropriate high-level 
representation. 

As a practical matter, the size of the database may be much larger than we 
can effectively deal with. In such instances, some transformation to a lower 
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dimensionality representation of the data may allow more efficient storage, 
transmission, visualization, and computation of the data. 

While it is clear no one representation can be superior for all tasks, the 
plethora of work on mining time series has not produced any insight into how 
one should choose the best representation for the problem at hand and data of 
interest. Indeed the literature is not even consistent on nomenclature. For ex- 
ample, one time series representation appears under the names Piecewise Flat 
Approximation (Faloutsos et al., 1997), Piecewise Constant Approximation 
(Keogh et al., 2001) and Segmented Means (Yi and Faloutsos, 2000). 

To develop the reader's intuition about the various time series representa- 
tions, we have discussed and illustrated some of the well-known representa- 
tions in the following subsections below. 

4.1 Discrete Fourier Ransform 
The first technique suggested for dimensionality reduction of time series 

was the Discrete Fourier Transform (DFT) (Agrawal et al., 1993). The ba- 
sic idea of spectral decomposition is that any signal, no matter how complex, 
can be represented by the super position of a finite number of sinelcosine 
waves, where each wave is represented by a single complex number known 
as a Fourier coefficient. A time series represented in this way is said to be 
in the frequency domain. A signal of length n  can be decomposed into n/2  
sinelcosine waves that can be recombined into the original signal. However, 
many of the Fourier coefficients have very low amplitude and thus contribute 
little to reconstructed signal. These low amplitude coefficients can be dis- 
carded without much loss of information thereby saving storage space. 

To perform the dimensionality reduction of a time series C of length n  into 
a reduced feature space of dimensionality N ,  the Discrete Fourier Transform 
of C is calculated. The transformed vector of coefficients is truncated at N/2.  
The reason the truncation takes place at N / 2  and not at N is that each coeffi- 
cient is a complex number, and therefore we need one dimension each for the 
imaginary and real parts of the coefficients. 

Figure 51.15. A visualization of the DFT dimensionality reduction technique 
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Given this technique to reduce the dimensionality of data from n to N, and 
the existence of the lower bounding distance measure, we can simply "slot in" 
the DFT into the GEMINI framework. The time taken to build the entire index 
depends on the length of the queries for which the index is built. When the 
length is an integral power of two, an efficient algorithm can be employed. 

This approach, while initially appealing, does have several drawbacks. 
None of the implementations presented thus far can guarantee no false dis- 
missals. Also, the user is required to input several parameters, including the 
size of the alphabet, but it is not obvious how to choose the best (or even 
reasonable) values for these parameters. Finally, none of the approaches sug- 
gested will scale very well to massive data since they require clustering all data 
objects prior to the discretizing step. 

4.2 Discrete Wavelet Transform 
Wavelets are mathematical functions that represent data or other functions 

in terms of the sum and difference of a prototype function, so called the "ana- 
lyzing" or "mother" wavelet. In this sense, they are similar to DFT. However, 
one important difference is that wavelets are localized in time, i.e. some of 
the wavelet coefficients represent small, local subsections of the data being 
studied. This is in contrast to Fourier coefficients that always represent global 
contribution to the data. This property is very useful for Multiresolution Anal- 
ysis (MRA) of the data. The first few coefficients contain an overall, coarse 
approximation of the data; addition coefficients can be imagined as "zooming- 
in" to areas of high detail, as illustrated in Figure 5 1.16. 

Figure 51.16. A visualization of the DWT dimensionality reduction technique 

Recently, there has been an explosion of interest in using wavelets for data 
compression, filtering, analysis, and other areas where Fourier methods have 
previously been used. Chan and Fu (1999) produced a breakthrough for time 
series indexing with wavelets by producing a distance measure defined on 
wavelet coefficients which provably satisfies the lower bounding requirement. 
The work is based on a simple, but powerful type of wavelet known as the 
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Haar Wavelet. The Discrete Haar Wavelet Transform (DWT) can be calculated 
efficiently and an entire dataset can be indexed in O(mn). 

DTW does have some drawbacks, however. It is only defined for sequence 
whose length is an integral power of two. Although much work has been under- 
taken on more flexible distance measures using Haar wavelet (Huhtala et al., 
1995; Struzik and Siebes, 1999), none of those techniques are indexable. 

4.3 Singular Value Decomposition 
Singular Value Decomposition (SVD) has been successfully used for index- 

ing images and other multimedia objects (Kanth et al., 1998; Wu et al., 1996) 
and has been proposed for time series indexing (Chan and Fu, 1999; Korn 
et al., 1997). 

Singular Value Decomposition is similar to DET and DWT in that it rep- 
resents the shape in terms of a linear combination of basis shapes, as shown 
in 51.17. However, SVD differs from DFT and DWT in one very important 
aspect. SVD and DWT are local; they examine one data object at a time and 
apply a transformation. These transformations are completely independent of 
the rest of the data. In contrast, SVD is a global transformation. The entire 
dataset is examined and is then rotated such that the first axis has the maxi- 
mum possible variance, the second axis has the maximum possible variance 
orthogonal to the first, the third axis has the maximum possible variance or- 
thogonal to the first two, etc. The global nature of the transformation is both a 
weakness and strength from an indexing point of view. 

Figure 51.1 7. A visualization of the SVD dimensionality reduction technique. 

SVD is the optimal transform in several senses, including the following: if 
we take the SVD of some dataset, then attempt to reconstruct the data, SVD 
is the optimal (linear) transform that minimizes reconstruction error (Ripley, 
1996). Given this, we should expect SVD to perform very well for the indexing 
task. 
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4.4 Piecewise Linear Approximation 
The idea of using piecewise linear segments to approximate time series dates 

back to 1970s (Pavlidis and Horowitz, 1974). This representation has numer- 
ous advantages, including data compression and noise filtering. There are nu- 
merous algorithms available for segmenting time series, many of which were 
pioneered by (Pavlidis and Horowitz, 1974). Figure 51.18 shows an example 
of a time series represented by piecewise linear segments. 

Figure 51.18. A visualization of the PLA dimensionality reduction technique 

An open question is how to best choose K, the "optimal" number of seg- 
ments used to represent a particular time series. This problem involves a trade- 
off between accuracy and compactness, and clearly has no general solution. 

4.5 Piecewise Aggregate Approximation 
The recent work (Keogh et al., 2001; Yi and Faloutsos, 2000) (indepen- 

dently) suggest approximating a time series by dividing it into equal-length 
segments and recording the mean value of the data points that fall within the 
segment. The authors use different names for this representation. For clar- 
ity here, we refer to it as Piecewise Aggregate Approximation (PAA). This 
representation reduces the data from n dimensions to N dimensions by divid- 
ing the time series into N equi-sized 'frames'. The mean value of the data 
falling within a frame is calculated, and a vector of these values becomes the 
data reduced representation. When N = n, the transformed representation is 
identical to the original representation. When N = 1, the transformed rep- 
resentation is simply the mean of the original sequence. More generally, the 
transformation produces a piecewise constant approximation of the original 
sequence, hence the name, Piecewise Aggregate Approximation (PAA). This 
representation is also capable of handling queries of variable lengths. 

In order to facilitate comparison of PAA with other dimensionality reduc- 
tion techniques discussed earlier, it is useful to visualize it as approximating a 
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Figure 51.19. A visualization of the PAA dimensionality reduction technique 

sequence with a linear combination of box functions. Figure 51.19 illustrates 
this idea. 

This simple technique is surprisingly competitive with the more sophisti- 
cated transform. In addition, the fact that each segment in PAA is of the same 
length facilitates indexing of this representation. 

4.6 Adaptive Piecewise Constant Approximation 
As an extension to the PAA representation, Adaptive Piecewise Constant 

Approximation (APCA) is introduced (Keogh et al., 2001). This representation 
allows the segments to have arbitrary lengths, which in turn needs two numbers 
per segment. The first number records the mean value of all the data points in 
segment, and the second number records the length of the segment. 

It is difficult to make any intuitive guess about the relative performance 
of this technique. On one hand, PAA has the advantage of having twice as 
many approximating segments. On the other hand, APCA has the advantage 
of being able to place a single segment in an area of low activity and many 
segments in areas of high activity. In addition, one has to consider the structure 
of the data in question. It is possible to construct artificial datasets, where one 
approach has an arbitrarily large reconstruction error, while the other approach 
has reconstruction error of zero. 

In general, finding the optimal piecewise polynomial representation of a 
time series requires a o ( N ~ ~ )  dynamic programming algorithm (Faloutsos 
et al., 1997). For most purposed, however, an optimal representation is not re- 
quired. Most researchers, therefore, use a greedy suboptimal approach instead 
(Keogh and Smyth, 1997). In (Keogh et al., 2001), the authors utilize an orig- 
inal algorithm which produces high quality approximations in O(nlog(n) ) .  
The algorithm works by first converting the problem into a wavelet compres- 
sion problem, for which there are well-known optimal solutions, then convert- 
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Figure 51.20. A visualization of the APCA dimensionality reduction technique 

ing the solution back to the APCA representation and (possible) making minor 
modification. 

4.7 Symbolic Aggregate Approximation (SAX) 
Symbolic Aggregate Approximation is a novel symbolic representation for 

time series recently introduced by (Lin et al., 2003), which has been shown to 
preserve meaningful information from the original data and produce competi- 
tive results for classifying and clustering time series. 

The basic idea of SAX is to convert the data into a discrete format, with a 
small alphabet size. In this case, every part of the representation contributes 
about the same amount of information about the shape of the time series. To 
convert a time series into symbols, it is first normalized, and two steps of dis- 
cretization will be performed. First, a time series T of length n is divided into 
w equal-sized segments; the values in each segment are then approximated and 
replaced by a single coefficient, which is their average. Aggregating these w 
coefficients form the Piecewise Aggregate Approximation (PAA) representa- 
tion of T. Next, to convert the PAA coefficients to symbols, we determine 
the breakpoints that divide the distribution space into a equiprobable regions, 
where a is the alphabet size specified by the user (or it could be determined 
from the Minimum Description Length). In other words, the breakpoints are 
determined such that the probability of a segment falling into any of the regions 
is approximately the same. If the symbols are not equi-probable, some of the 
substrings would be more probable than others. Consequently, we would inject 
a probabilistic bias in the process. In (Crochemore et al., 1994), Crochemore 
et al. show that a suffix tree automation algorithm is optimal if the letters are 
equiprobable. 

Once the breakpoints are determined, each region is assigned a symbol. The 
PAA coefficients can then be easily mapped to the symbols corresponding to 
the regions in which they reside. The symbols are assigned in a bottom-up 
fashion, i.e. the PAA coefficient that falls in the lowest region is converted to 
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"a", in the one above to "b", and so forth. Figure 51.21 shows an example 
of a time series being converted to string baabccbc. Note that the general 
shape of the time series is still preserved, in spite of the massive amount of 
dimensionality reduction, and the symbols are equiprobable. 

Figure 51.21. A visualization of the SAX dimensionality reduction technique 

To reiterate the significance of time series representation, Figure 5 1.22 il- 
lustrates four of the most popular representations. 

Given the plethora of different representations, it is natural to ask which 
is best. Recall that the more faithful the approximation, the less clarification 
disks accesses we will need to make in Step 3 of Table 51.1. In the example 
shown in Figure 5 1.22, the discrete Fourier approach seems to model the orig- 
inal data the best. However, it is easy to imagine other time series where an- 
other approach might work better. There have been many attempts to answer 
the question of which is the best representation, with proponents advocating 
their favorite technique (Chakrabarti et al., 2002; Faloutsos et al., 1994; Popi- 
vanov et al., 2002; Rafiei et al., 1998). The literature abounds with mutually 
contradictory statements such as "Several wavelets outperform the . . . DFT' 
(Popivanov et al., 2002), "DFT-base and DWT-based techniques yield com- 
parable results" (Wu et al., 2000), "Haar wavelets perform . . . better than 
DFT" (Kahveci and Singh, 2001). However, an extensive empirical compar- 
ison on 50 diverse datasets suggests that while some datasets favor a particu- 
lar approach, overall, there is little difference between the various approaches 
in terms of their ability to approximate the data (Keogh and Kasetty, 2002). 
There are however, other important differences in the usability of each ap- 
proach (Chakrabarti et al., 2002). We will consider some representative exam- 
ples of strengths and weaknesses below. 

The wavelet transform is often touted as an ideal representation for time se- 
ries Data Mining, because the first few wavelet coefficients contain information 
about the overall shape of the sequence while the higher order coefficients con- 
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Discrete Fourier 
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Figure 51.22. Four popular representations of time series. For each graphic, we see a raw time 
series of length 128. Below it, we see an approximation using 118 of the original space. In each 
case, the representation can be seen as a linear combination of basis functions. For example, 
the Discrete Fourier representation can be seen as a linear combination of the four sinelcosine 
waves shown in the bottom of the graphics. 
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tain information about localized trends (Popivanov et al., 2002; Shahabi et al., 
2000). This multiresolution property can be exploited by some algorithms, and 
contrasts with the Fourier representation in which every coefficient represents 
a contribution to the global trend (Faloutsos et al., 1994; Rafiei et al., 1998). 
However, wavelets do have several drawbacks as a Data Mining representation. 
They are only defined for data whose length is an integer power of two. In con- 
trast, the Piecewise Constant Approximation suggested by (Yi and Faloutsos, 
2000), has exactly the fidelity of resolution of as the Haar wavelet, but is de- 
fined for arbitrary length time series. In addition, it has several other useful 
properties such as the ability to support several different distance measures (Yi 
and Faloutsos, 2000), and the ability to be calculated in an incremental fashion 
as the data arrives (Chakrabarti et al., 2002). One important feature of all the 
above representations is that they are real valued. This somewhat limits the 
algorithms, data structures, and definitions available for them. For example, in 
anomaly detection, we cannot meaningfully define the probability of observing 
any particular set of wavelet coefficients, since the probability of observing any 
real number is zero. Such limitations have lead researchers to consider using a 
symbolic representation of time series (Lin et al., 2003). 

5. Summary 
In this chapter, we have reviewed some major tasks in time series data min- 

ing. Since time series data are typically very large, discovering information 
from these massive data becomes a challenge, which leads to the enormous 
research interests in approximating the data in reduced representation. The 
dimensionality reduction of the data has now become the heart of time series 
Data Mining and is the primary step to efficiently deal with Data Mining tasks 
for massive data. We review some of important time series representations 
proposed in the literature. We would like to emphasize that the key step in any 
successful time series Data Mining endeavor always lies in choosing the right 
representation for the task at hand. 

Notes 
1. In unusual situations, it might be more appropriate not to normalize the data, e.g. when offset and 

amplitude changes are important. 
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