
Abstract
Document categorization and classification is of
seminal importance for information retrieval.
During the past decade the growth of Internet has
fundamentally changed the ways that information
is shared, and it has made clear that efficient
methods for searching and exploring vast amounts
of data should be put forward. The largest
challenges associated with information retrieval
are synonymy and high dimensionality. An elegant
and accurate technique to solve both problems
has been presented in the form of Latent Semantic
Analysis (LSI). However, its high computational
cost makes it infeasible for large databases.
Therefore other models such as random
projection have been proposed. A suggestion for
combining these two approaches has also been
proposed. However, best to our knowledge, no
empirical results have been presented on this
“hybrid” method. In this paper we evaluate and
compare these three approaches and discover that
the seemingly promising combination of LSI and
random projection does not always result in faster
running time as expected.

1. Introduction

The demand for efficient storage and retrieval of
multidimensional data such as images or text has
increased drastically over the past decade [12].
These types of data share the characteristics of
having high dimensionality, usually in thousands
or more (for example, the dimensionality of text
data is the size of the vocabulary for the entire
dataset). As the dimensionality of data increases,
query performance diminishes. This problem,
known as the “curse of dimensionality,” has been
given a great deal of attention by researchers, in
an effort to find techniques that process queries in

large databases accurately and efficiently. While
this remains a challenging task, researchers have
found that dimensionality reduction offers a
middle ground, which generally results in faster
computational time, while yielding reasonable
accuracy.

An ideal dimensionality technique has the
capability of efficiently reducing the data into a
lower-dimensional model, while preserving the
properties of the original data. In practice,
however, information is lost as the dimensionality
is reduced. It is therefore desirable to formulate a
method that reduces the dimensionality
efficiently, while preserving as much information
from the original data as possible. One common
way to reduce the dimensionality of data is to
project the data onto a lower-dimensional
subspace [13]. The two methods discussed in this
paper, latent semantic indexing (LSI) and random
projection, are both examples of dimensionality
reduction techniques that project data onto its
subspace.

1.1 Our Contribution

In this paper we provide an experimental
comparison of LSI and random projection. In
addition, we experiment on the hybrid algorithm,
originally proposed by [16], that combines
random projection and LSI. In [16], the authors
show mathematically that this hybrid algorithm
will be able to mitigate the computational cost
associated with LSI. To the best of our
knowledge, there is no experimental
implementation and evaluation of this technique.
This paper provides empirical results and shows
that this seemingly promising idea might not
always be feasible in reality. More specifically,
the use of random projection prior to LSI does not
always result in a faster algorithm than LSI.

Dimensionality Reduction by Random Projection and Latent Semantic
Indexing

Jessica Lin Dimitrios Gunopulos

Department of Computer Science & Engineering

University of California, Riverside
 {jessica, dg}@cs.ucr.edu

The purpose of this paper is not to invalidate
the suggestion made by previous researchers – in
fact, the claim about the combination is perfectly
valid theoretically. Rather, we try to interpret the
discrepancy and possibly determine the factors
that cause the combination method to fail.

The rest of this paper is organized as follows:
Section 2 provides a detailed description of the
dimensionality techniques mentioned above and a
review of related work. In Section 3 we discuss
the motivation of combining these techniques.
We show the empirical results in Section 4 and
discuss some observations made from these
results. In section 5 we apply clustering on the
reduced data and demonstrate the results in terms
of time and accuracy. Finally we conclude and
discuss future work in Section 6.

 2. Background and Related Work
In this section we provide necessary

background on data representation and the
dimensionality reduction techniques used in this
paper.

2.1 Vector Space Model

Before discussing the dimensionality
reduction techniques, it is essential to understand
how the data is represented. All dimensionality
reduction techniques described in this paper use
the same data representation model: the vector-
space model [18].

In the vector-space model, each document is
represented as a vector in the vector space [13].
Each dimension of the vector corresponds to one
word, and the value of each component is the
relative frequency of occurrence for the
corresponding word in the document. As a result,
an m-by-n term-to-document matrix X is
constructed, where m is the number of unique
terms in the text collection, n is the number of
documents, and each element X(i,j) is the
frequency of the ith word occurring in the jth
document.

2.2 LSI by SVD

Singular Value Decomposition (SVD) is a
well-known dimensionality reduction technique.
In the process of SVD, a given rectangular m-
by-n matrix X is decomposed into three matrices
of special forms [9]:

][][][' nrrrrm VSUX ××× ⋅⋅= (1)

where U and V are orthogonal matrices that
contain the left and right singular vectors of X,
respectively, S is the diagonal matrix that contains
the singular values of X, and the subscript r
denotes the number of singular values (i.e. the
rank of X). If the singular values are sorted in
descending order, SVD can project the data onto a
lower, k-dimensional space spanned by their
singular vectors corresponding to the k largest
singular values [9]. The new decomposition
becomes:

][][]['
~~~~

nkkkkm VSUX ××× ⋅⋅=   (2) 

 

The resulting matrix X
~

is an approximation of X, 

and is of rank k [9].  It has been shown that X
~

is 
the best rank-k approximation of the original data 
in the least-squares sense [9].   

More specifically, SVD rotates the axes to 
maximize variance along the first few dimensions, 
which usually contain the most important 
information about the data [9].  The chosen 
dimensions (i.e. the eigenvectors corresponding to 
the k largest singular values) are therefore the best 
axes that result in the minimum sum of squares of 
projection errors.  See Figure 1 for a simple, 2-
dimensional example. 

Latent Semantic Indexing (LSI) utilizes the 
same idea to reduce the high dimensionality of 
text data [5]. It does so by keeping the first k 
largest singular values and omitting the rest.  
While some researchers believe that the choice of 
k is critical to the performance of LSI [5], in our 
experiments we show that LSI can typically 
preserve similarities well with relatively small k 
compared to the original dimensionality. 

 
 



 

 
Figure 1. The axes are rotated to maximize variance 
along the first dimension (x1).  The first dimension is 
chosen because it results in the minimum sum of 
squares of projections errors. 
 

Since LSI is simply a dimensionality 
reduction technique by SVD, for the rest of the 
paper, we will use the terms “LSI” and “SVD” 
interchangeably. 

2.2.1 Document Similarity Models for LSI 

In [5], different document similarity models 

are described.  From the component matrices U
~

, 

S
~

, and V
~

, one can compute the similarities 
between two documents, two terms, or between a 
document and a term.  Since we are only 
interested in finding similarities between 
documents, we explain document-to-document 
similarity model below and direct interested 
readers to [5] for further readings. 
 
Doc-to-Doc similarities: 

Recall that each column represents one 
document in the vector space model.  In Eq. (2), 

the dot product between two columns of X
~

 
indicates the similarity between those two 
documents.  Simple algebra shows that to 
compute the similarity between document i and 
document j, we can simply calculate the dot 
product between the ith and jth rows of the matrix 

.
~~
SV ⋅  

 
 
 

2.2.2  Discussion 

An important aspect of LSI is that it not only 
reduces the dimensionality of data, but it also 
“captures” the hidden (latent) semantic structure 
of the data.  It constructs a semantic space and 
places terms and documents that are highly 
correlated together [5].  It finds the correlations in 
the data by discovering the semantic structure, 
rather than relying solely on the usage of terms in 
a given document.  Consequently, the document 
vectors with overlapping terms are grouped 
together, and the terms from these documents are 
also pulled together.  For example, “car” and 
“automobile” will be placed close to each other 
because they both co-occur in documents related 
to vehicles [5].  With this ability, LSI resolves the 
issues raised by synonymy (i.e. in many cases, 
there exists more than one way to describe a 
certain concept or knowledge; different words can 
have the same meaning) that other information 
retrieval algorithms fail to resolve.  As a result, 
when given a query, a document of related 
concept may be retrieved even if it does not 
contain the exact terms that appear in the query.   

Another advantage of LSI is that it yields high 
accuracy after dimensionality reduction and 
therefore the similarities between documents are 
well preserved. 

One common argument against LSI, however, 
is that it is computationally expensive and 
therefore impractical for large datasets.  For a 
given m-by-n matrix, the time complexity to run 

SVD is )( 2nmO [9].  It has been noted in some 
literature [3, 16] that, if the input matrix is large 
and sparse, then the running time for SVD can be 
reduced to )(cmnO , where c is the average 
number of non-zero entries in a vector (i.e. 
average number of terms in a document).  There 
exist some SVD packages for such large, sparse 
matrices such as SVDPACKC [2], svds in Matlab, 
etc. 

2.3  Random Projection 

Random projection is another powerful 
technique for dimensionality reduction.  The idea 
is deceptively simple: given a matrix X, the 
dimensionality of the data can be reduced by 
projecting it thru the origin onto a lower-

•
•

•

•

•
•

•

•

x

y 

•
•

x1 

y1 

•



 

dimensional subspace, formed by a set of random 
vectors [13]:  
 ][][][ nmmknk XRA ××× ⋅=   (3) 

The k in the subscripts is the desired, reduced 
dimensionality. 

The idea of random projection is motivated by 
the Johnson-Lindenstrauss lemma [11]: 

Theorem 1 (Johnson-Lindenstrauss lemma) 

For any 0 < ε < 1 and any integer n, let k be a 
positive integer such that 

nk k ln)3/2/(4 32 −−≥ εε  (4) 

Then for any set W of n points in dR , there is a 

map kd RRf →:  such that for all u, v ∈  W,  
222

)1()()()1( vuvfufvu −+≤−≤−− εε
     (5) 
In other words, the lemma states that a set of n 
points in high-dimensional Euclidean space can be 

mapped down onto an )/(log 2εnO  dimensional 
subspace such that the distances between the 
points are approximately preserved (i.e. not 
distorted more than a factor of (1 + ε)), for any 0 
< ε < 1 [11].  See [4] for the proof of the lemma.  
Further, this map can be found in randomized 
polynomial time [13].   

2.3.1 Choice of Random Matrix 

There are many proposals for the choice of 
the random matrix.  Typically, the elements in R 
are Gaussian distributed.  Achlioptas [1] has 
proposed two simpler distributions: 

 





−
+

=
2

1

2
1

, .1

.1

probwith

probwith
r ji

  (6) 

 
or 
 









−

+
⋅=

6
1

3
2

6
1

,

.1

.0

.1

3

probwith

probwith

probwith

r ji
 (7) 

    
These simple distributions reduce 

computational time for the calculation of XR ⋅ . 
For the second distribution, the speedup is 

threefold because only one-third of the operations 
are needed [13]. 

2.3.2  Orthogonalization 

Theoretically, if the random vectors are 
orthogonal, then the similarities between the 
original vectors will be preserved exactly [13]. 
Ideally we would want the random matrix to be 
orthogonal but, unfortunately, orthogonalization is 
very costly.  However, Hecht-Nielsen et. al have 
noted that in a high-dimensional space, there exist 
a much larger number of almost orthogonal 
vectors than orthogonal vectors [3, 10, 13].  
Therefore, the random vectors might be 
sufficiently close enough to orthogonal to offer a 
reasonable approximation of the original vectors.   

 
2.3.3 Discussion 

Random projection can be applied on various 
types of data such as text, image, audio, etc.  It is 
based on a simple idea and is efficient to compute, 
yet it yields results that are close approximation 
(to true similarities) that are sufficient enough for 
our purposes.  The process of establishing the 
random k-by-m matrix R and projecting the 
original m-by-n matrix X to the lower-dimensional 
subspace takes )(kmnO  time.  Furthermore, if the 
original data matrix is sparse, as usually the case 
when we work with term-document data, the time 
complexity is reduced to )(kcnO , where c is the 
average number of non-zero entries in a column 
(i.e. the average number of terms in a document) 
[3]. 
 
2.4 Related Work 

Much work has been done on LSI, as well as 
random projection.  Kaski [13] presented 
experimental results using random projection in 
the WEBSOM system.  Bingham and Mannila [3] 
presented experimental results using random 
projection on text and image data.  Papadimitriou 
et al. [16] provides theoretical analysis on LSI and 
suggests that data can be pre-processed with 
random projection prior to LSI to speed up the 
algorithm.  However, to the best of our 
knowledge, no empirical results have been 
presented on combining random projection and 
LSI.  Other projection methods have also been 
proposed.  For example, Sasaki and Kita [19] 



 

proposed using spherical k-means to find the 
concept vectors and apply projection using these 
concept vectors.  However, they used only a very 
small dataset (1033 documents), and it seems that 
in order for their algorithm to outperform other 
vector space models, the number of clusters 
chosen has to be at least 500.  This implies that 
every 2 documents form one concept!  It’s unclear 
how well the concept projection will perform on 
large datasets.   

3. Combining Random Projection 
and LSI: Is it Feasible?  

We have seen the advantages and 
disadvantages for both random projection and 
LSI: random projection is efficient in terms of 
computational time but does not preserve as much 
information as LSI; LSI, on the other hand, is 
computationally expensive, but produces highly-
accurate results, in addition to capturing the 
underlying semantics of the documents.  As 
mentioned earlier, a hybrid algorithm was 
proposed that combines the two approaches to 
benefit from the advantages of both algorithms.  
The algorithm works as follows: first the data is 
pre-processed with random projection to a lower 
dimension k1, then LSI is applied on the reduced, 
lower-dimensional data, to further reduce the data 
to the desired dimension, k2.  This algorithm 
supposedly will improve running time for LSI, 
and accuracy for random projection.  In this paper 
we empirically demonstrate that this unfortunately 
is not the case, and we believe the key factor lies 
in the sparseness of the data. 

As mentioned earlier, the time complexity of 
SVD is )(cmnO for large, sparse datasets.  It is 
reasonable, then, to assume that a lower 
dimensionality will result in faster computation 
time, since it’s dependent of the dimensionality m.  
However, one important property has lost from 
the process of random projection, and that’s the 
sparseness of the data.  The sparseness of the 
original data matrix makes it possible to attempt 
the otherwise costly SVD algorithm.  After the 
reduction, the matrix becomes dense1, and the cost 

                                                 
1 This result is independent of the choice of random matrix.  
We have also tried the simple random distribution (see Eq. 
7), but the resulting matrix is still too dense for the sparse 
SVD routine to perform well. 

for running sparse SVD routine becomes even 
higher than running on the original data!  Another 
factor that contributes to the deterioration of 
efficiency is the memory consumption.  More 
memory is needed to store the reduced matrix in 
the sparse format and to process the 
decomposition.  Even if we have enough memory, 
the high memory consumption is likely to affect 
the efficiency. 

4.  Experimental Study 
We performed a series of experiments using 

the dimensionality reduction techniques 
mentioned in the previous sections.  We used two 
subsets of Reuters categorization text collection 
[15], omitting empty documents and those without 
topic labels.  Common and rare words are 
removed and the vocabulary is stemmed with the 
Porter Stemmer [17].  The words are converted 
into a term-document matrix, in which each entry 
denotes the frequency of the occurrences of the 
corresponding word.  Each document vector is 
normalized to unit length before further 
processing. 

The larger subset has 10377 documents.  
After stemming, the vocabulary size is 12113.  
The term-document matrix is extremely sparse, 
with a density of only 0.004.  The dimensionality 
of the original data (i.e. 12113) is then reduced to 
lower k-dimensions.  The smaller dataset is pre-
processed in a similar fashion, and has 1831 
documents, 5414 terms, and density of 0.008.  We 
conducted a set of experiments with different 
choices of k ∈  {50, 100, 200, 300, 400, 500, and 
600}, and compared their results.  The same 
experiments are repeated for each algorithm: LSI, 
random projection (RP) and the combination of 
random projection and LSI (we will refer to this 
as RP_LSI).  For RP_LSI, we experimented on 
the permutation of different parameters.  First, we 
reduced the dimensionality using random 
projection to k1 ∈  {400, 600}.  We also tried k1 = 
1000, but couldn’t complete the experiment for 
the larger dataset due to memory constraint2.  
From the reduced matrix, we further reduced it to 

                                                 
2 This is done in Matlab, on a machine with 1-GB of 
memory.  Recall the burden on memory for processing large 
dense matrix using the sparse SVD routine.  If k1 = 1000, 
then the input matrix for the sparse SVD routine is a dense 
1000-by-10000 matrix!  



 

k2 ∈  {50, 100, 200, 300} using LSI (and 400 
when k1 = 600). 

4.1   Metrics for Measuring the Similarity 

To measure the accuracy of the results, we 
have to determine how well the similarities are 
preserved during the process of dimensionality 
reduction.  Two commonly used similarity 
measures are the Euclidean distance and the 
cosine of the angle between vectors.  As 
mentioned in section 2.2.1, the similarity between 
two documents can be measured as the dot 
product between two document vectors.  
However, we also included Euclidean distance as 
a distance measure because it’s the criterion based 
on which SVD seeks to optimize [16].   

The purpose for dimensionality reduction is 
apparent – it makes information retrieval faster 
than operating on the original data.  Since k does 
not vary with different reduction techniques, the 
goal for this part of experiments is therefore to 
show how well the reduction techniques preserve 
and reconstruct the original relationship. To 
achieve this, we have to compare the document-
to-document correlation before and after the 
reduction, by calculating the distance between 
them using the measures mentioned above.  We 
randomly selected 100 pairs of documents and 
measured their similarities on the original and 
reduced data matrices.  We repeated the process 
10 times for each experiment, each time with 
random document pairs, and took the average. 
 
4.1.1 Euclidean Distances 

According to the Johnson-Lindenstrauss 
lemma, the expected form of a projection of a unit 
vector onto a random subspace through the 

original is km / [3, 11].  Therefore, to take into 
account the decreased dimensionality of the data, 

the Euclidean distance is scaled by km / . 

4.1.2 Cosine of angle between documents 
(Dot Product) 

The similarity between two document vectors 

jv  and kv  can be determined by computing the 

cosine of angle ϑ between them:                                                                  

kj

kj
m

i kj

kiji
kj

vv

vv

vv

vv
vvsim

⋅
⋅

=
⋅
⋅

== ∑
=0

)cos(),( θ     (8) 

Since we normalize the vectors to unit length 

prior to reduction (i.e. 1== ji vv ), the cosine 

of the angle between them is simply their dot 
product. 
                                                               
4.1.3   Determining Error  

As mentioned earlier, we randomly selected 
100 document pairs, and calculated their distances 
before and after dimensionality reduction.  To 
determine the accuracy, or the amount of 
similarity preserved, we computed the projection 
error ε.  The error is determined by computing the 
correlations of the distance vectors obtained from 
the original and reduced data, respectively. 

The correlation coefficient r can be expressed 
as follows [18]: 

))((
1

yx s

yy

s

xx

n
r

−−= ∑   (9) 

where n is the number of document pairs (i.e. 
100); x and y are the distance vectors computed 
from the original and reduced data, respectively; 

x  and y  are the means of x and y, and Sx and Sy 
are the standard deviations for the distance 
vectors.  After finding the correlation between the 
original and the reduced distances, we can 
determine the error by subtracting the correlation 
from 1:  

ε = 1 – r.  (10) 
 
4.2  Experimental Results 

In this section we show the results from 
different dimensionality reduction algorithms in 
terms of running time and accuracy (measured by 
error ε). 

 
4.2.1   Evaluating the Distances before and     
after Dimensionality Reduction 

Table 1 shows an example of the errors 
resulted from different dimensionality reduction 
methods, from the larger dataset.  The smaller 
dataset produces similar results.  The reduced 
dimensionality is 200.  For RP_LSI, the 



 

dimensionality is first reduced to 600 via random 
projection. 

 LSI RP RP_LSI 
Dot 
Products 

0.0439 0.1088 0.0645 

Euclidean 
Distances 

0.0415 0.0847 0.0500 

Table 1. Errors from different methods.  The parameter 
k for the instance shown here is 200, and k1 = 600 (for 
RP_LSI). 

From Table 1 we observe that RP_LSI yields 
fairly good results, with very small error rate.   

 
4.2.2  Comparing Running time 

Table 2 shows the running time for all 
methods from our experiments for the large 
dataset.  For RP_LSI, dimensionality is first 
reduced to 600 by random projection. 

k LSI RP RP_LSI 

50 145.3 0.91 820.86 
100 384.4 1.93 1476.94 
200 1254.9 4.14 2715.90 
300 2731.5 6.46 3783.8 
400 4334.95 8.75 4843.0 
500 6631.08 11.06 N/A 
600 9368.15 13.34 N/A 

Table 2. Running time for all methods, measured in 
seconds, for the larger dataset.  Note that we did not 
further reduce k to 500 or 600, as it’s not quite as 
meaningful since the data has already been reduced to 
600 with random projection. 

The following figure displays the result presented 
in Table 2.   

Running Time

0

1000

2000

3000

4000

5000

6000

50 100 200 300 400

Reduced Dimension

T
im

e 
(s

ec
)

LSI
Random_Proj
RP_LSI

 
Figure 2.  Running time for all algorithms.  Note that 
for LSI and RP_LSI the running times tend to converge 
as k increases. 

Table 2 and Figure 2 show that while random 
projection takes very little time to compute, 
applying it before LSI makes the total execution 
time even longer than running LSI alone.  These 
results are unexpected and contradict the common 
anticipation for the combination approach.  
However, it seems that the running time tends to 
converge for LSI and RP_LSI as k increases. On 
the other hand, when we run the algorithms on the 
smaller dataset, we get conflicting results.  More 
specifically, we discover that RP_LSI is indeed 
faster than LSI for the smaller dataset.  Table 3 
demonstrates this.  This set of experiment (i.e. for 
the smaller dataset) was run at an earlier date on a 
different machine.  Therefore, the numbers from 
Table 3 should not be compared side-by-side with 
the number in Table 2.  However, examining the 
data within Table 3, we can see that RP_LSI is 
about twice as fast as LSI.  This inconsistency 
suggests that the efficiency of the hybrid 
algorithm is data-dependent.  While random 
projection seems of little utility for our large, 
sparse dataset, it might be useful as a pre-
processing tool for other types of data (i.e. small 
or non-sparse). 

k  LSI RP RP_LSI 

50 130.1 1.1 107.4 
100 379.9 2.1 236.5 
200 1406.8 4.2 677.6 
300 3141.4 6.3 1469.5 
400 5589.2 8.4 2312.3 
500 8918.7 10.5 4205.4 
600 14007.9 12.5 6680.4 

Table 3.  Running time for all methods for the smaller 
dataset. 

4.2.3  Comparing the Error 

Figure 3 and 4 summarize the errors from all 
the algorithms with different similarity measures.  
The results show that the combination method 
produces more accurate results than random 
projection.  LSI typically produces the best 
results, as expected. 
 



 

Error - Euclidean Distance

0

0.05

0.1

0.15
0.2

0.25

0.3

50 100 200 300 400

Reduced Dimension

E
rr

o
r

LSI
Random_Proj
RP_LSI

 
Figure 3. Errors for the Euclidean distance metric.  We 
can see that RP_LSI improves the accuracy of random 
projection. 
 

Error - Dot Product

0

0.1

0.2

0.3

0.4

50 100 200 300 400

Reduced Dimension

E
rr

o
r

LSI
Random_Proj
RP_LSI

 
Figure 4.  Errors for the dot product.  Again,  RP_LSI 
improves the accuracy of random projection. 

Figure 5 shows the error for combining 
random projection and LSI.  The bars in the front 
row are the errors for Euclidean distance, and the 
back row for the dot product.  Each “column” of 
bars along the x-axis denotes the errors from 
different levels of dimensionality reduction: the 
first number in each label is the “intermediate” 
dimensionality resulted from random projection, 
and the second number from LSI (also the final 
dimension).  From the plot we observe that the 
amount of second reduction (i.e. by LSI) is more 
critical than the amount of the first reduction.  
This observation suggests that LSI plays a more 
important role in preserving similarity. 

 

40
0-

50

40
0-

10
0

40
0-

20
0

60
0-

50

60
0-

10
0

60
0-

20
0

do
t p

ro
du

ct

eu
cl

id
ea

n

0

0.05

0.1

0.15

0.2

Dimension: k1-k2

Error - RP_LSI 

 
Figure 5.  Error after combining random projection 
and LSI.  Note the amount of second reduction (k2) 
makes more significant differences than the first 
reduction. 

5. Application Study: Clustering 
Documents 

As the last part of the experiments, we apply 
clustering on the data before and after the 
dimensionality reduction to verify the results from 
the previous section.  The results shown here are 
from the smaller dataset.  Our choice of clustering 
algorithm is k-Means, for its effectiveness and 
considerably lower computational cost as 
compared to other clustering algorithms such as 
hierarchical clustering. There are many variations 
of k-Means, such as the one in [20] that finds the 
global optimum.  For simplicity, we use the 
classic k-Means in this work. 

5.1  Background on K-Means Clustering  

The basic intuition behind k-Means [8, 14] 
(and a more general class of clustering algorithms 
known as iterative refinement algorithms) is to 
partition the dataset by assigning each data point 
to its closest cluster center.  The cluster centers 
can be randomly selected initially.  With each 
subsequent iteration, the centers are re-computed 
and the points are re-distributed. The process is 
repeated until no data point changes cluster 
membership. 

5.2  Clustering Results 

As in previous section, we use Euclidean 
distances and the cosine similarity as the distance 
metrics.  Similar to the spherical k-Means 
algorithm described in [7], the document vectors 
are normalized to unit length before clustering, as 
well as the centroids computed thereafter.  
Clustering is applied before and after 



 

dimensionality reduction.  Since the k-Means 
algorithm seeks to optimize the objective function 
by minimizing the sum of intra-cluster errors, we 
evaluate the quality of clustering by comparing 
the objective functions.  However, since the 
dimensionality of data is reduced when we apply 
the three algorithms, we have to compute the 
objective functions on the original data to make 
the comparison possible.  This can be easily 
achieved by mapping the class labels for the 
document vectors, returned by the k-Means 
algorithm, to the original data space, and 
computing the objective functions using the 
information on clustering assignment.  The 
number of clusters k we choose is 5 (since there 
are roughly 5 main topics from the smaller 
dataset). Since we use random seeds as initial 
centers, we repeat k-means 20 times on each 
experiment and take the average. 

Figure 6 summarizes the accuracy of 
clustering for all techniques, using cosine 
similarity.  Clustering using Euclidean distance 
produces similar results, so the plot is omitted 
here.  The bottom thick line is the objective 
function obtained when clustering the original 
data, and the rest three “curves” show the mapped 
objective function obtained when clustering the 
reduced data.  Though it’s difficult to see, LSI 
produces better results (i.e. smaller objective 
functions) than RP_LSI.  The fact that all data 
vectors, as well as the computed centroids, are 
normalized to unit length might be the reason that 
the mapped objective functions show little 
variation. 

Clustering Accuracy (Cosine)

540.00

545.00

550.00

555.00

560.00

565.00

570.00

575.00

580.00

50 100 200 300 400 500 600

Dimension

O
bj

. F
un

ct
io

n

LSI RP
RP_LSI Original Data

 
Figure 6. Clustering accuracy for cosine similarity.  
The bottom thick line is the objective function for the 
original data.  RP shows significant improvement as 
dimensionality increases, while LSI and RP_LSI show 
very little improvement. 

Figure 7 shows the running time for clustering 
after the dimensionality reduction.  We only show 
the clustering time from one set of experiments 
here because the running time is mostly dependent 
on the dimensionality of the (reduced) dataset (i.e. 
it is invariant of how the data is reduced).  The 
number shown on the y-axis is the fraction of time 
needed to cluster the original data. 

Clustering Time After Dimensionality 
Reduction

0
0.1
0.2
0.3

0.4
0.5

50 100 200 300 400 500 600

Dimension

F
ra

ct
io

n
 o

f 
cl

u
st

er
in

g
 t

im
e 

o
n

 
th

e 
o

ri
g

in
al

 d
at

a

 
Figure 7.  Running time for clustering after 
dimensionality reduction, represented as the fraction of 
clustering time on the original data. 

6.  Conclusions and Future Work 

In this paper we compare two well-known 
dimensionality reduction techniques, random 
projection and latent semantic indexing.  We 
verify the effectiveness of these methods.  We 
also combine LSI with random projection to test 
the “effectiveness” of the combination, though our 
results are inconclusive. In attempt to interpret the 
controversy on the running time, we believe that 
the sparseness of the data plays an important role 
on how SVD performs.  On the other hand, we 
can safely conclude that LSI helps improve the 
accuracy of random projection.   

As mentioned earlier, the purpose of our 
experiments is not to invalidate the suggestion 
made by previous researchers – in fact, the claim 
about the combination is perfectly valid 
theoretically.  Instead, we present this unexpected 
observation in attempt to find the factors that 
cause the combination approach to fail and 
hopefully, as future work, a resolution. 

Furthermore, a more comprehensive set of 
experiments is needed to verify whether the 
sparseness of data is indeed the cause of the 



 

discrepancy on running time.  One way to do that, 
and to eliminate the possibility of implementation 
bias, is to use a different SVD package, such as 
the widely-used SVDPACKC [2].  In addition, we 
can use other dimensionality reduction algorithms 
that preserve the sparseness of the data, and see if 
that helps improve the running time for LSI.   

 

7. References 
[1] D. Achlioptas.  Database-Friendly Random 

Projections.  In Proc. ACM Symp. On the 
Principles of Database Systems, pages 274-
281, 2001. 

[2] M. W. Berry, T. Do, G. W. O’Brien, V. 
Krishna, and S. Varadhan.  SVDPACKC 
(Version 1.0).  User’s Guide.  University of 
Tennessee, April 1993. 

[3] E. Bingham and H. Mannila.  Random 
Projection in Dimensionality Reduction: 
Application to Image and Text Data.  
Knowledge Discovery and Data Mining, 
1998. 

[4] S. Dasgupta and A. Gupta.  An Elementary 
proof of the Johnson-Lindenstrauss lemma.  
Technical Report TR-99-006, International 
Computer Science Institute, Berkeley, 
California, USA, 1999. 

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, 
and T. K.Landauer.  Indexing by Latent 
Semantic Analysis.  Journal of the Am. Soc. 
for Information Science, 41(6):391-407, 
1990. 

[6] M. H. Degroot and M. Schervish.  
Probability and Statistics.  Addison-Wesley 
Publishing. 

[7] I. S. Dhillon and D. S. Modha. Concept 
Decompositions for Large Sparse Text Data 
Using Clustering. Technical Report, IBM 
Almaden Research Center, 1999. 

[8] R. C. Dubes and A. K. Jain, Algorithms for 
Clustering Data.  Prentice Hall, 1988. 

[9] G. H. Golub, C. F. Van Loan.  Matrix 
Computations.  Johns Hopkins Press, 
Baltimore, MD, 1989. 

[10] R. Hecht-Nielsen.  Context Vectors: General 
Purpose Approximate Meaning 
Representations Self-Organized from Raw 

Data.  J. M. Zurada, R. J. Marks II, and C. J. 
Robinson, editors, Computational 
Intelligence: Imitating Life, pages 43-56. 
IEEE Press, 1994. 

[11] W. B. Johnson and J. Lindenstrauss.  
Extensions of Lipshitz Mapping into Hilbert 
Space.  In Conference in modern analysis and 
probability, volumn 26 of Contemporary 
Mathematics, pages 189-206.  Amer. Math. 
Soc., 1984. 

[12] K. V. Kanth, D. Agrawal, and A. Singh.   
Dimensionality Reduction for Similarity 
Searching in Dynamic Databases.  SIGMOD, 
1998.  

[13] S. Kaski.  Dimensionality Reduction by 
Random Mapping.  In Proc. Int. Joint Conf. 
On Neural Networks, volume 1, pages 413-
418, 1998. 

[14] L. Kaufman and P. J. Rousseeuw, Finding 
Groups in Data: An Introduction to Cluster 
Analysis.  John Wiley and Sons, 1990. 

[15] D. Lewis, Reuters-21578 Text Categorization 
Test Collection Distribution 1.0. 
http://www.research.att.com/~lewis 

[16] C. H. Papadimitriou, P. Raghavan, H.   

       Tamaki, and S. Vempala.  Latent Semantic 
Indexing: A Probabilistic Analysis.  In Proc. 
17th ACM Symp. On the Principles of 
Database Systems, pages 159-168, 1998. 

[17] M. Porter.  An algorithm for suffix stripping, 

        Program, 14(3): 130-137, 1980. 
http://www.tartarus.org/~martin/PorterStemmer 

[18] G. Salton, A. Wong, and C. S. Yang.  A 
Vector Space Model for Automatic Indexing. 
Communications of the ACM. 18:613-620, 
1975. 

[19] M. Sasaki and K. Kita. Vector Space 
Information Retrieval Using Concept 
Projection.  In Proc. Of the 19th 
International Conference on Computer 
Processing of Oriental Languages, pp. 73-
76, 2001. 

[20] H. Zha, C. Ding, M. Gu, X. He, and H. 
Simon. Advances in Neural Information 
Processing Systems 14. T. G. Dietterich, S. 
Becker and Z. Ghahramani, editors. MIT 
Press. Cambridge, MA, 2002. 


