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ABSTRACT 
 

The emergence of the field of data mining in the last 
decade has sparked an increasing interest in 
clustering of time series.  Although there has been 
much research on clustering in general, most classic 
machine learning and data mining algorithms do not 
work well for time series due to their unique 
structure. In particular, the high dimensionality, very 
high feature correlation, and the (typically) large 
amount of noise that characterize time series data 
present a difficult challenge.  In this work we address 
these challenges by introducing a novel anytime 
version of k-Means clustering algorithm for time 
series.  The algorithm works by leveraging off the 
multi-resolution property of wavelets. In particular, 
an initial clustering is performed with a very coarse 
resolution representation of the data.  The results 
obtained from this “quick and dirty” clustering are 
used to initialize a clustering at a slightly finer level 
of approximation.  This process is repeated until the 
clustering results stabilize or until the 
“approximation” is the raw data.  In addition to 
casting k-Means as an anytime algorithm, our 
approach has two other very unintuitive properties.  
The quality of the clustering is often better than the 
batch algorithm, and even if the algorithm is run to 
completion, the time taken is typically much less than 
the time taken by the original algorithm.  We explain, 
and empirically demonstrate these surprising and 
desirable properties with comprehensive experiments 
on several publicly available real data sets.  
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1.  INTRODUCTION  

The emergence of the field of data mining in the 
last decade has sparked an increase of interest in 
clustering of time series [12, 16, 20, 21, 22, 33].  Such 
clustering is useful in its own right as a method to 
summarize and visualize massive datasets [34].  In 
addition, clustering is often used as a subroutine in 
other data mining algorithms such as similarity search 
[26, 30], classification [22] and the discovery of 
association rules [9].  Applications of these 
algorithms cover a wide range of activities found in 
finance, meteorology, industry, medicine etc.  

Although there has been much research on 
clustering in general [5], the unique structure of time 
series means that most classic machine learning and 
data mining algorithms do not work well for time 
series.  In particular, the high dimensionality, very 
high feature correlation, and the (typically) large 
amount of noise that characterize time series data 
present a difficult challenge [21].  

In this work we address these challenges by 
introducing a novel anytime version of the popular k-
Means clustering algorithm [15, 27] for time series.  
Anytime algorithms are algorithms that trade 
execution time for quality of results [19]. Their utility 
for data mining has been documented at length 
elsewhere [5, 31].  

The algorithm works by leveraging off the multi-
resolution property of wavelets [11].  In particular, an 
initial clustering is performed with a very coarse 
representation of the data.  The results obtained from 
this “quick and dirty” clustering are used to initialize 
a clustering at a finer level of approximation.  This 
process is repeated until the clustering results 
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stabilize or until the “approximation” is the original 
“raw” data.  The clustering is said to stabilize when 
the objects do not change membership from the last 
iteration, or when the change of membership does not 
improve the clustering results.  Our approach allows 
the user to interrupt and terminate the process at any 
level.  In addition to casting the k-Means algorithm as 
an anytime algorithm, our approach has two other 
very unintuitive properties.  The quality of the 
clustering is often better than the batch algorithm, and 
even if the algorithm is run to completion, the time 
taken is typically much less than the time taken by the 
batch algorithm.  We explain, and empirically 
demonstrate these surprising and desirable properties 
with comprehensive experiments on several publicly 
available real data sets.  

The rest of this paper is organized as follows. In 
Section 2 we review related work, and introduce the 
necessary background on the wavelet transform and 
k-Means clustering. In Section 3, we introduce our 
algorithm.  Section 4 contains a comprehensive 
comparison of our algorithm to classic k-Means on 
real datasets.  In Section 5 we summarize our findings 
and offer suggestions for future work.  

2.  BACKGROUND AND RELATED WORK  

Since our work draws on the confluence of 
clustering, wavelets and anytime algorithms, we 
provide the necessary background on these areas in 
this section.  

2.1 Background on Clustering  

One of the most widely used clustering 
approaches is hierarchical clustering, due to the great 
visualization power it offers [22]. Hierarchical 
clustering produces a nested hierarchy of similar 
groups of objects, according to a pairwise distance 
matrix of the objects.  One of the advantages of this 
method is its generality, since the user does not need 
to provide any parameters such as the number of 
clusters.  However, its application is limited to only 
small datasets, due to its quadratic (or higher order) 
computational complexity.  

A faster method to perform clustering is k-Means 
[5, 27].  The basic intuition behind k-Means (and a 
more general class of clustering algorithms known as 
iterative refinement algorithms) is shown in Table 1:  

 

Algorithm k-Means 

1. Decide on a value for k. 

2. Initialize the k cluster centers (randomly, if 
necessary). 

3. Decide the class memberships of the N 
objects by assigning them to the nearest 
cluster center. 

4. Re-estimate the k cluster centers, by assuming 
the memberships found above are correct. 

5. If none of the N objects changed membership 
in the last iteration, exit. Otherwise goto 3. 

Table 1: An outline of the k-Means algorithm. 

The k-Means algorithm for N objects has a 
complexity of O(kNrD) [27], with k the number of 
clusters specified by the user, r the number of 
iterations until convergence, and D the dimensionality 
of the points. The shortcomings of the algorithm are 
its tendency to favor spherical clusters, and the fact 
that the knowledge on the number of clusters, k, is 
required in advance. The latter limitation can be 
mitigated by placing the algorithm in a loop, and 
attempting all values of k within a large range. 
Various statistical tests can then be used to determine 
which value of k is most parsimonious. Since k-
Means is essentiality a hill-climbing algorithm, it is 
guaranteed to converge on a local but not necessarily 
global optimum.  In other words, the choices of the 
initial centers are critical to the quality of results. 
Nevertheless, in spite of these undesirable properties, 
for clustering large datasets of time-series, k-Means is 
preferable due to its faster running time.  

In order to scale the various clustering methods to 
massive datasets, one can either reduce the number of 
objects, N, by sampling [5], or reduce the 
dimensionality of the objects [1, 6, 14, 25, 29, 35, 36, 
22, 23].  In the case of time-series, the objective is to 
find a representation at a lower dimensionality that 
preserves the original information and describes the 
original shape of the time-series data as closely as 
possible.  Many approaches have been suggested in 
the literature, including the Discrete Fourier 
Transform (DFT) [1, 14], Singular Value 
Decomposition [25], Adaptive Piecewise Constant 
Approximation [23], Piecewise Aggregate 
Approximation (PAA) [7, 36], Piecewise Linear 
Approximation [22] and the Discrete Wavelet



 

Transform (DWT) [6, 29].  While all these 
approaches have shared the ability to produce a high 
quality reduced-dimensionality approximation of 
time series, wavelets are unique in that their 
representation of data is intrinsically multi-
resolution.  This property is critical to our proposed 
algorithm and will be discussed in detail in the next 
section.  

Although we choose the Haar wavelet for this 
work, the algorithm can generally utilize any 
wavelet basis.  The preference for the Haar wavelet 
is mainly based on its simplicity and its wide usage 
in the data mining community.   

2.2 Background on Wavelets  

Wavelets are mathematical functions that represent 
data or other functions in terms of the averages and 
differences of a prototype function, called the 
analyzing or mother wavelet [11].  In this sense, 
they are similar to the Fourier transform.  One 
fundamental difference is that wavelets are localized 
in time.  In other words, some of the wavelet 
coefficients represent small, local subsections of the 
data being studied, as opposed to Fourier 
coefficients, which always represent global 
contributions to the data. This property is very 

useful for multi-resolution analysis of data.  The 
first few coefficients contain an overall, coarse 
approximation of the data; additional coefficients 
can be perceived as "zooming-in" to areas of high 
detail. Figure 1 and 2 illustrate this idea. 

The Haar Wavelet decomposition works by 
averaging two adjacent values on the time series 
function at a given resolution to form a smoothed, 
lower-dimensional signal, and the resulting 
coefficients are simply the differences between the 
values and their averages [6]. The coefficients can 
also be computed by averaging the differences 
between each pair of adjacent values. The 
coefficients are crucial for reconstructing the 
original sequence, as they store the detailed 
information lost in the smoothed signal.  For 
example, suppose we have a time series data T = (2 
8 1 5 9 7 2 6).  Table 2 shows the decomposition at 
different resolutions.  As a result, the Haar wavelet 
decomposition is the collection of the coefficients at 
all resolutions, with the overall average being its 
first component: (5 –1 1 2 –3 –2 1 –2).  It is clear to 
see that the decomposition is completely reversible 
and the original sequence can be reconstructed from 
the coefficients.  For example, to get the signal of 
the second level, we compute 5 ± (-1) = (4, 6).  
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Figure 1: The Haar Wavelet representation can be 
visualized as an attempt to approximate a time series 
with a linear combination of basis functions.  In this 
case, time series A is transformed to B by Haar wavelet 
decomposition, and the dimensionality is reduced from 
512 to 8.  

Figure 2: The Haar Wavelet can represent data at 
different levels of resolution.  Above we see a raw time 
series, with increasingly finer wavelet approximations 
below. 
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Recently there has been an explosion of interest 
in using wavelets for time series data mining. 
Researchers have introduced several non-Euclidean, 
wavelet-based distance measures [20, 33]. Chan and 
Fu [6] have demonstrated that Euclidean distance 
indexing with wavelets is competitive to Fourier-
based techniques [14]. 

2.3 Background on Anytime Algorithms  

Anytime algorithms are algorithms that trade 
execution time for quality of results [19].  In 
particular, an anytime algorithm always has a best-
so-far answer available, and the quality of the 
answer improves with execution time.  The user may 
examine this answer at any time, and choose to 
terminate the algorithm, temporarily suspend the 
algorithm, or allow the algorithm to run to 
completion.  

The usefulness of anytime algorithms for data 
mining has been extensively documented [5, 31]. 
Suppose a batch version of an algorithm takes a 
week to run (not an implausible scenario in data 
mining massive data sets).  It would be highly 
desirable to implement the algorithm as an anytime 
algorithm.  This would allow a user to examine the 
best current answer after an hour or so as a “sanity 
check” of all assumptions and parameters. As a 
simple example, suppose the user had accidentally 
set the value of K to 50 instead of the desired value 
of 5. Using a batch algorithm the mistake would not 
be noted for a week, whereas using an anytime 
algorithm the mistake could be noted early on and 
the algorithm restarted with little cost.  

The motivating example above could have been 
eliminated by user diligence! More generally, 
however, data mining algorithms do require the user 
to make choices of several parameters, and an 

anytime implementation of k-Means would allow 
the user to interact with the entire data mining 
process in a more efficient way.  

2.4 Related Work  

Bradley et. al. [5] suggest a generic technique 
for scaling the k-Means clustering algorithms to 
large databases by attempting to identify regions of 
the data that are compressible, that must be retained 
in main memory, and regions that may be discarded.  
However, the generality of the method contrasts 
with our algorithm’s explicit exploitation of the 
structure of the data type of interest.  

Our work is more similar in spirit to the 
dynamic time warping similarity search technique 
introduced by Chu et. al. [7].  The authors speed up 
linear search by examining the time series at 
increasingly finer levels of approximation.  

3.  OUR APPROACH – THE I-kMEANS 
ALGORITHM 

As noted in Section 2.1, the complexity of the k-
Means algorithm is O(kNrD), where D is the 
dimensionality of data points (or the length of a 
sequence, as in the case of time-series).  For a 
dataset consisting of long time-series, the D factor 
can burden the clustering task significantly.  This 
overhead can be alleviated by reducing the data 
dimensionality.  

Another major drawback of the k-Means 
algorithm derives from the fact that the clustering 
quality is greatly dependant on the choice of initial 
centers (i.e., line 2 of Table 1). As mentioned 
earlier, the k-Means algorithm guarantees local, but 
not necessarily global optimization. Poor choices of 
the initial centers, therefore, can degrade the quality 
of clustering solution and result in longer execution 
time (See [15] for an excellent discussion of this 
issue).  Our algorithm addresses these two problems 
associated with k-Means, in addition to offering the 
capability of an anytime algorithm, which allows the 
user to interrupt and terminate the program at any 
stage.  

We propose using the wavelet decomposition to 
perform clustering at increasingly finer levels of the 
decomposition, while displaying the gradually 
refined clustering results periodically to the user.  

   Table 2. Haar Wavelet Decomposition on time series  
   (2 8 1 5 9 7 2 6) 
 



We compute the Haar Wavelet decomposition for all 
time-series data in the database. The complexity of 
this transformation is linear to the dimensionality of 
each object; therefore, the running time is 
reasonable even for large databases. The process of 
decomposition can be performed off-line, and the 
time series data can be stored in the Haar 
decomposition format, which takes the same amount 
of space as the original sequence. One important 
property of the decomposition is that it is a lossless 
transformation, since the original sequence can 
always be reconstructed from the decomposition.  

Once we compute the Haar decomposition, we 
perform the k-Means clustering algorithm, starting 
at the second level (each object at level i has 2(i-1) 
dimensions) and gradually progress to finer levels.  
Since the Haar decomposition is completely 
reversible, we can reconstruct the approximation 
data from the coefficients at any level and perform 
clustering on these data. We call the new clustering 
algorithm I-kMeans, where I stands for 
“interactive.”  Figure 3 illustrates this idea.  
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Figure 3. k-Means is performed on each level on the 
reconstructed data from the Haar wavelet decomposition, 
starting with the second level.  

The intuition behind this algorithm originates 
from the observation that the general shape of a time 
series sequence can often be approximately captured 
at a lower resolution. As shown in Figure 2, the 
shape of the time series is well preserved, even at 
very coarse approximations.  Because of this 
desirable feature of wavelets, clustering results 
typically stabilize at a low resolution, thus saving 
time by eliminating the need to run at full resolution 
(the raw data). The pseudo-code of the algorithm is 
provided in Table 3. 

The algorithm achieves the speed-up by doing 
the vast majority of reassignments (Line 3 in Table 
1), at the lower resolutions, where the costs of 

distance calculations are considerably lower. As we 
gradually progress to finer resolutions, we already 
start with good initial centers (the choices of initial 
centers will be discussed later in this section).  
Therefore, the number of iterations r until 
convergence will typically be much lower. 

The I-kMeans algorithm allows the user to 
monitor the quality of clustering results as the 
program executes.  The user can interrupt the 
program at any level, or wait until the execution 
terminates once the clustering results stabilize.  One 
surprising and highly desirable finding from the 
experimental results (as shown in the next section), 
is that even if the program is run to completion 
(until the last level, with full resolution), the total 
execution time is generally less than that of 
clustering on raw data. 

Algorithm I-kMeans 

1. Decide on a value for k. 

2. Initialize the k cluster centers (randomly, if 
necessary). 

3. Run the k-Means algorithm on the leveli 
representation of the data 

4. Use final centers from leveli as initial centers 
for leveli+1. This is achieved by projecting the 
k centers returned by k-Means algorithm for 
the 2i space in the 2i+1 space. 

5. If none of the N objects changed membership 
in the last iteration, exit. Otherwise goto 3. 

Table 3: An outline of the I-kMeans algorithm. 

As mentioned earlier, on every level except for 
the starting level (i.e. level 2), which uses random 
initial centers, the initial centers are selected based 
on the final centers from the previous level.  More 
specifically, the final centers computed at the end of 
level i will be used as the initial centers on level 
i+1.  Since the length of the data reconstructed from 
the Haar decomposition doubles as we progress to 
the next level, we project the centers computed at 
the end of level i onto level i+1 by doubling each 
coordinate of the centers. This way, they match the 
dimensionality of the points on level i+1. For 
example, if one of the final centers at the end of 
level 2 is (0.5, 1.2), then the initial center used for 
this cluster on level 3 is (0.5, 0.5, 1.2, 1.2).  This 
approach resolves the dilemma associated with the 



choice of initial centers, which is crucial to the 
quality of clustering results [15].  It also contributes 
to the fact that our algorithm often produces better 
clustering results than the k-Means algorithm. 

4.  EXPERIMENTAL EVALUATION  

To show that our approach is superior to the k-
Means algorithm for clustering time series, we 
performed a series of experiments on publicly 
available real datasets.  For completeness, we ran 
the I-kMeans algorithm for all levels of 
approximation, and recorded the cumulative 
execution time and clustering accuracy at each level.  
In reality, however, the algorithm stabilizes in early 
stages and can automatically terminate much sooner.  
We compare the results with that of k-Means on the 
original data.  Since both algorithms start with 
random initial centers, we execute each algorithm 
100 times with different centers.  However, for 
consistency we ensure that for each execution, both 
algorithms are seeded with the same set of initial 
centers.  After each execution, we compute the error 
(more details will be provided in Section 4.2) and 
the execution time on the clustering results.  We 
compute and report the averages at the end of each 
experiment.  We believe that by taking the average, 
we achieve better objectiveness than taking the best 
(minimum), since in reality, we would not have the 
knowledge of the correct clustering results, or the 
“oracle,” to compare against our results (as the case 
with one of our test datasets). 

4.1 Datasets and Methodology  

We tested on two publicly available, real 
datasets.  The dataset cardinalities range from 1,000 
to 8,000.  The length of each time series has been set 
to 512 on one dataset, and 1024 on the other.  Each 
time series is z-normalized to have mean value of 0 
and standard deviation of 1.  

• JPL: This dataset consists of readings from 
various inertial sensors from Space Shuttle mission 
STS-57. The data is particularly appropriate for our 
experiments since the use of redundant backup 
sensors means that some of the data is very highly 
correlated.  In addition, even sensors that measure 
orthogonal features (i.e. the X and Y axis) may 
become temporarily correlated during a particular 
maneuver; for example, a “roll reversal” [13].  Thus, 

the data has an interesting mixture of dense and 
sparse clusters.  To generate datasets of increasingly 
larger cardinalities, we extracted time series of 
length 512, at random starting points of each 
sequence from the original data pool.   

• Heterogeneous: This dataset is generated 
from a mixture of 10 real time series data from the 
UCR Time Series Data Mining Archive [24].  Figure 
4 shows how the data is generated, and figure 5 
shows the 10 time-series we use as seeds. We 
produced variations of the original patterns by 
adding small time warping (2-3% of the series 
length), and interpolated Gaussian noise. Gaussian 
noisy peaks are interpolated using splines to create 
smooth random variations.   
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In the Heterogeneous dataset, we know that the 
number of clusters (k) is 10.  However, for the JPL 
dataset, we lack this information.  Finding k is an 
open problem for the k-Means algorithm and is out 
of scope of this paper.  To determine the optimal k 
for k-Means, we attempt different values of k, 
ranging from 2 to 8.  Nonetheless, our algorithm 
out-performs the k-Means algorithm regardless of k.  
In this paper we only show the results with k equals 
to 5.  Figure 6 shows that our algorithm produces 
the same results as does the hierarchical clustering 
algorithm, which is generally more costly. 

Figure 4: Generation of variations on the heterogeneous 
data.  We produced variations of the original patterns by 
adding small time warping (2-3% of the series length), 
and interpolated Gaussian noise. Gaussian noisy peaks 
are interpolated using splines to create smooth random 
variations.   
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4.2 Error of Clustering Results   

In this section we compare the clustering quality 
for the I-kMeans and the classic k-Means algorithm. 

Since we generated the heterogeneous datasets 
from a set of given time series data, we have the 
knowledge of correct clustering results in advance.  In 
this case, we can simply compute the clustering error 
by summing up the number of incorrectly classified 
objects for each cluster c and then dividing by the 
dataset cardinality.  

data

iedmisclassif
k

c

c∑
== 1 error  clustering                (1) 

 

The error is computed at the end of each level.  
The label of each final cluster is assigned according 
to the majority of objects that originally belonged to 
the same cluster. For example, if a final cluster 
consists of 490 objects from cluster A and 10 objects 
from cluster B, the latter objects are going to be 
considered misclassified.  However, we would like to 

Figure 6:  On the left-hand side, we show three instances 
from each cluster discovered by the I-kMeans algorithm.  
We can visually verify that our algorithm produces 
intuitive results.  On the right-hand side, we show that 
hierarchical clustering (using average linkage) discovers 
the exact same clusters.  However, hierarchical clustering 
is more costly than our algorithm. 

Figure 5: Real time series data from UCR Time Series Data Mining Archive.  We use these time series 
as seeds to create our Heterogeneous dataset. 

 



emphasize that in reality, the correct clustering results 
would not be available in advance.  The incorporation 
of such known results in our error calculation merely 
serves the purpose of demonstrating the quality of 
both algorithms. 

For the JPL dataset, we do not have prior 
knowledge of correct clustering results (which 
conforms more closely to real-life cases).  Lacking 
this information, we cannot use the above formula to 
determine the error. 

Since the k-Means algorithm seeks to optimize 
the objective function by minimizing the sum of 
squared intra-cluster errors, we evaluate the quality of 
clustering by using the objective functions.  However, 
since the I-kMeans algorithm involves data with 
smaller dimensionality except for the last level, we 
have to compute the objective functions on the raw 
data, in order to compare with the k-Means algorithm.    
We show that the objective functions obtained from 
the I-kMeans algorithm are better than those from the 
k-Means algorithm.  The results are consistent with 
the work of [8], in which the authors show that 
dimensionality reduction reduces the chances of the 
algorithm being trapped in a local minimum.  
Furthermore, even with the additional step of 
computing the objective functions from the original 
data, the I-kMeans algorithm still takes less time to 
execute than the k-Means algorithm.   
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In figures 7 and 8, we show the errors/objective 
functions from the I-kMeans algorithm as a fraction 
of those obtained from the k-Means algorithm.  As we 
can see from the plots, our algorithm stabilizes at 
early stages and consistently results in smaller error 
than the classis k-Means algorithm. 
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4.3 Running Time 

In figures 9 and 10, we present the cumulative 
running time for each level on the I-kMeans 
algorithm as a fraction to the k-Means algorithm.  
The cumulative running time for any level i is the 
total running time from the starting level (level 2) to 
level i.  In most cases, even if the I-kMeans algorithm 
is run to completion, the total running time is still less 
than that of the k-Means algorithm.  We attribute this 
improvement to the good choices of initial centers for 
successive levels after the starting level, since they 
result in very few iterations until convergence.  
Nevertheless, we have already shown in the previous 
section that the I-kMeans algorithm finds the best 
result in relatively early stage and does not need to 
run through all levels. Figure 7: Error of I-kMeans algorithm on the 

Heterogeneous dataset, presented as fraction of the error 
from the k-Means algorithm.  Our algorithm results in 
smaller error than the k-Means after the second stage (i.e. 4 
dimensions), and stabilizes typically after the third stage 
(i.e. 8 dimensions). 

Figure 8: Objective functions of I-kMeans algorithm on 
the JPL dataset, presented as fraction of error from the k-
Means algorithm.  Again, our algorithm results in 
smaller objective functions (i.e. better clustering results) 
than the k-Means, and stabilizes typically after the 
second stage (i.e. 4 dimensions). 
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4.4 I-kMeans Algorithm vs. k-Means Algorithm 

In this section (Fig. 11 and 12), rather than 
showing the error/objective function on each level, as 
in Section 4.2, we present only the error/objective 
function returned by the I-kMeans algorithm when it 
stabilizes or, in the case of JPL dataset, outperforms 
the k-Means algorithm in terms of the objective 
function.  We also present the time taken for the I-
kMeans algorithm to stabilize.  We compare the 
results to those of the k-Means algorithm.  From the 
figures we can observe that our algorithm achieves 
better clustering accuracy at significantly faster 
response time. 
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Figure 13 shows the average level where the I-
kMeans algorithm stabilizes or, in the case of JPL, 
outperforms the k-Means algorithm in terms of 
objective function.  Since the length of the time series 
data is 1024 in the Heterogeneous dataset, there are 
11 levels.  Note that the JPL dataset has only 10 
levels since the length of the time series data is only 
512.  We skip level 1, in which the data has only one 
dimension (the average of the time series) and is the 
same for all sequences, since the data has been 
normalized (zero mean).  Each level i has 2(i-1) 
dimensions.  From the plot we can see that our 
algorithm generally stabilizes at levels 3-6 for the 
Heterogeneous dataset and at levels 2-4 for the JPL 

Figure 9: Cumulative running time for the Heterogeneous 
dataset.  Our algorithm typically cuts the running time by 
half as it does not need to run through all levels to retrieve 
the best results. 

Figure 11: The I-kMeans algorithm is highly 
competitive with the k-Means algorithm.  The errors and 
execution time are significantly smaller. 

Figure 10: Cumulative running time for the JPL dataset.  
Our algorithm typically takes only 30% of time.  Even if 
it is run to completion, the cumulative running time is still 
50% less than that of the k-Means algorithm! 

Figure 12: I-kMeans vs. k-Means algorithms in terms of 
objective function and running time for JPL dataset.  Our 
algorithm outperforms the k-Means algorithm.  The 
running time remains small for all data sizes because the 
algorithm terminates at very early stages.  



dataset.  In other words, the I-kMeans algorithm 
operates on data with a maximum dimensionality of 
32 and 8, respectively, rather than 1024 and 512. 
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5.  CONCLUSIONS AND FUTURE WORK 

We have presented an approach to perform 
incremental clustering of time-series at various 
resolutions using the Haar wavelet transform. Using 
k-Means as our clustering algorithm, we reuse the 
final centers at the end of each resolution as the initial 
centers for the next level of resolution.  This 
approach resolves the dilemma associated with the 
choices of initial centers for k-Means and 
significantly improves the execution time and 
clustering quality.  Our experimental results indicate 
that this approach yields faster execution time than 
the traditional k-Means approach, in addition to 
improving the clustering quality of the algorithm.  
Since it conforms with the observation that time 
series data can be described with coarser resolutions 
while still preserving a general shape, the anytime 
algorithm stabilizes at very early stages, eliminating 
the needs to operate on high resolutions.  In addition, 
the anytime algorithm allows the user to terminate the 
program at any stage.  

In future work we plan to investigate the 
following: 

•  Extending our algorithm to other iterative 
refinement clustering techniques, especially the 
EM-algorithm.  

•  Extending our algorithm to other data types, for 
example, both histograms and images can be 
successfully represented with wavelets [11, 33]. 

•  Examining the possibility of re-using the results 
(i.e. objective functions that determine the quality 
of clustering results) from the previous stages to 
eliminate the need to re-compute all the distances. 

•  Generalizing our approach to a broader class of 
algorithms and decompositions.  For example, 
even though we have used the wavelet 
decomposition in this work, our algorithm can be 
easily generalized to Fourier coefficients as well.  
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