
A Wavelet-Based Anytime Algorithm for K-Means Clustering of
Time Series

Michail Vlachos Jessica Lin Eamonn Keogh Dimitrios Gunopulos

ABSTRACT

The emergence of the field of data mining in the last
decade has sparked an increasing interest in
clustering of time series. Although there has been
much research on clustering in general, most classic
machine learning and data mining algorithms do not
work well for time series due to their unique
structure. In particular, the high dimensionality, very
high feature correlation, and the (typically) large
amount of noise that characterize time series data
present a difficult challenge. In this work we address
these challenges by introducing a novel anytime
version of k-Means clustering algorithm for time
series. The algorithm works by leveraging off the
multi-resolution property of wavelets. In particular,
an initial clustering is performed with a very coarse
resolution representation of the data. The results
obtained from this “quick and dirty” clustering are
used to initialize a clustering at a slightly finer level
of approximation. This process is repeated until the
clustering results stabilize or until the
“approximation” is the raw data. In addition to
casting k-Means as an anytime algorithm, our
approach has two other very unintuitive properties.
The quality of the clustering is often better than the
batch algorithm, and even if the algorithm is run to
completion, the time taken is typically much less than
the time taken by the original algorithm. We explain,
and empirically demonstrate these surprising and
desirable properties with comprehensive experiments
on several publicly available real data sets.

Keywords
Time Series, Data Mining, Clustering, Anytime
Algorithms

1. INTRODUCTION

The emergence of the field of data mining in the
last decade has sparked an increase of interest in
clustering of time series [12, 16, 20, 21, 22, 33]. Such
clustering is useful in its own right as a method to
summarize and visualize massive datasets [34]. In
addition, clustering is often used as a subroutine in
other data mining algorithms such as similarity search
[26, 30], classification [22] and the discovery of
association rules [9]. Applications of these
algorithms cover a wide range of activities found in
finance, meteorology, industry, medicine etc.

Although there has been much research on
clustering in general [5], the unique structure of time
series means that most classic machine learning and
data mining algorithms do not work well for time
series. In particular, the high dimensionality, very
high feature correlation, and the (typically) large
amount of noise that characterize time series data
present a difficult challenge [21].

In this work we address these challenges by
introducing a novel anytime version of the popular k-
Means clustering algorithm [15, 27] for time series.
Anytime algorithms are algorithms that trade
execution time for quality of results [19]. Their utility
for data mining has been documented at length
elsewhere [5, 31].

The algorithm works by leveraging off the multi-
resolution property of wavelets [11]. In particular, an
initial clustering is performed with a very coarse
representation of the data. The results obtained from
this “quick and dirty” clustering are used to initialize
a clustering at a finer level of approximation. This
process is repeated until the clustering results

Computer Science & Engineering Department
University of California - Riverside

Riverside, CA 92521

{mvlachos, jessica, eamonn, dg}@cs.ucr.edu

stabilize or until the “approximation” is the original
“raw” data. The clustering is said to stabilize when
the objects do not change membership from the last
iteration, or when the change of membership does not
improve the clustering results. Our approach allows
the user to interrupt and terminate the process at any
level. In addition to casting the k-Means algorithm as
an anytime algorithm, our approach has two other
very unintuitive properties. The quality of the
clustering is often better than the batch algorithm, and
even if the algorithm is run to completion, the time
taken is typically much less than the time taken by the
batch algorithm. We explain, and empirically
demonstrate these surprising and desirable properties
with comprehensive experiments on several publicly
available real data sets.

The rest of this paper is organized as follows. In
Section 2 we review related work, and introduce the
necessary background on the wavelet transform and
k-Means clustering. In Section 3, we introduce our
algorithm. Section 4 contains a comprehensive
comparison of our algorithm to classic k-Means on
real datasets. In Section 5 we summarize our findings
and offer suggestions for future work.

2. BACKGROUND AND RELATED WORK

Since our work draws on the confluence of
clustering, wavelets and anytime algorithms, we
provide the necessary background on these areas in
this section.

2.1 Background on Clustering

One of the most widely used clustering
approaches is hierarchical clustering, due to the great
visualization power it offers [22]. Hierarchical
clustering produces a nested hierarchy of similar
groups of objects, according to a pairwise distance
matrix of the objects. One of the advantages of this
method is its generality, since the user does not need
to provide any parameters such as the number of
clusters. However, its application is limited to only
small datasets, due to its quadratic (or higher order)
computational complexity.

A faster method to perform clustering is k-Means
[5, 27]. The basic intuition behind k-Means (and a
more general class of clustering algorithms known as
iterative refinement algorithms) is shown in Table 1:

Algorithm k-Means

1. Decide on a value for k.

2. Initialize the k cluster centers (randomly, if
necessary).

3. Decide the class memberships of the N
objects by assigning them to the nearest
cluster center.

4. Re-estimate the k cluster centers, by assuming
the memberships found above are correct.

5. If none of the N objects changed membership
in the last iteration, exit. Otherwise goto 3.

Table 1: An outline of the k-Means algorithm.

The k-Means algorithm for N objects has a
complexity of O(kNrD) [27], with k the number of
clusters specified by the user, r the number of
iterations until convergence, and D the dimensionality
of the points. The shortcomings of the algorithm are
its tendency to favor spherical clusters, and the fact
that the knowledge on the number of clusters, k, is
required in advance. The latter limitation can be
mitigated by placing the algorithm in a loop, and
attempting all values of k within a large range.
Various statistical tests can then be used to determine
which value of k is most parsimonious. Since k-
Means is essentiality a hill-climbing algorithm, it is
guaranteed to converge on a local but not necessarily
global optimum. In other words, the choices of the
initial centers are critical to the quality of results.
Nevertheless, in spite of these undesirable properties,
for clustering large datasets of time-series, k-Means is
preferable due to its faster running time.

In order to scale the various clustering methods to
massive datasets, one can either reduce the number of
objects, N, by sampling [5], or reduce the
dimensionality of the objects [1, 6, 14, 25, 29, 35, 36,
22, 23]. In the case of time-series, the objective is to
find a representation at a lower dimensionality that
preserves the original information and describes the
original shape of the time-series data as closely as
possible. Many approaches have been suggested in
the literature, including the Discrete Fourier
Transform (DFT) [1, 14], Singular Value
Decomposition [25], Adaptive Piecewise Constant
Approximation [23], Piecewise Aggregate
Approximation (PAA) [7, 36], Piecewise Linear
Approximation [22] and the Discrete Wavelet

Transform (DWT) [6, 29]. While all these
approaches have shared the ability to produce a high
quality reduced-dimensionality approximation of
time series, wavelets are unique in that their
representation of data is intrinsically multi-
resolution. This property is critical to our proposed
algorithm and will be discussed in detail in the next
section.

Although we choose the Haar wavelet for this
work, the algorithm can generally utilize any
wavelet basis. The preference for the Haar wavelet
is mainly based on its simplicity and its wide usage
in the data mining community.

2.2 Background on Wavelets

Wavelets are mathematical functions that represent
data or other functions in terms of the averages and
differences of a prototype function, called the
analyzing or mother wavelet [11]. In this sense,
they are similar to the Fourier transform. One
fundamental difference is that wavelets are localized
in time. In other words, some of the wavelet
coefficients represent small, local subsections of the
data being studied, as opposed to Fourier
coefficients, which always represent global
contributions to the data. This property is very

useful for multi-resolution analysis of data. The
first few coefficients contain an overall, coarse
approximation of the data; additional coefficients
can be perceived as "zooming-in" to areas of high
detail. Figure 1 and 2 illustrate this idea.

The Haar Wavelet decomposition works by
averaging two adjacent values on the time series
function at a given resolution to form a smoothed,
lower-dimensional signal, and the resulting
coefficients are simply the differences between the
values and their averages [6]. The coefficients can
also be computed by averaging the differences
between each pair of adjacent values. The
coefficients are crucial for reconstructing the
original sequence, as they store the detailed
information lost in the smoothed signal. For
example, suppose we have a time series data T = (2
8 1 5 9 7 2 6). Table 2 shows the decomposition at
different resolutions. As a result, the Haar wavelet
decomposition is the collection of the coefficients at
all resolutions, with the overall average being its
first component: (5 –1 1 2 –3 –2 1 –2). It is clear to
see that the decomposition is completely reversible
and the original sequence can be reconstructed from
the coefficients. For example, to get the signal of
the second level, we compute 5 ± (-1) = (4, 6).

0 80 160 240 320 400 480 560

Haar 0
Haar 1
Haar 2
Haar 3
Haar 4
Haar 5
Haar 6
Haar 7

A

B

Figure 1: The Haar Wavelet representation can be
visualized as an attempt to approximate a time series
with a linear combination of basis functions. In this
case, time series A is transformed to B by Haar wavelet
decomposition, and the dimensionality is reduced from
512 to 8.

Figure 2: The Haar Wavelet can represent data at
different levels of resolution. Above we see a raw time
series, with increasingly finer wavelet approximations
below.

Resolution Averages Differences
(coefficients)

8 (2 8 1 5 9 7 2 6)

4 (5 3 8 4) (-3 –2 1 –2)

2 (4 6) (1 2)

1 5 -1

Recently there has been an explosion of interest
in using wavelets for time series data mining.
Researchers have introduced several non-Euclidean,
wavelet-based distance measures [20, 33]. Chan and
Fu [6] have demonstrated that Euclidean distance
indexing with wavelets is competitive to Fourier-
based techniques [14].

2.3 Background on Anytime Algorithms

Anytime algorithms are algorithms that trade
execution time for quality of results [19]. In
particular, an anytime algorithm always has a best-
so-far answer available, and the quality of the
answer improves with execution time. The user may
examine this answer at any time, and choose to
terminate the algorithm, temporarily suspend the
algorithm, or allow the algorithm to run to
completion.

The usefulness of anytime algorithms for data
mining has been extensively documented [5, 31].
Suppose a batch version of an algorithm takes a
week to run (not an implausible scenario in data
mining massive data sets). It would be highly
desirable to implement the algorithm as an anytime
algorithm. This would allow a user to examine the
best current answer after an hour or so as a “sanity
check” of all assumptions and parameters. As a
simple example, suppose the user had accidentally
set the value of K to 50 instead of the desired value
of 5. Using a batch algorithm the mistake would not
be noted for a week, whereas using an anytime
algorithm the mistake could be noted early on and
the algorithm restarted with little cost.

The motivating example above could have been
eliminated by user diligence! More generally,
however, data mining algorithms do require the user
to make choices of several parameters, and an

anytime implementation of k-Means would allow
the user to interact with the entire data mining
process in a more efficient way.

2.4 Related Work

Bradley et. al. [5] suggest a generic technique
for scaling the k-Means clustering algorithms to
large databases by attempting to identify regions of
the data that are compressible, that must be retained
in main memory, and regions that may be discarded.
However, the generality of the method contrasts
with our algorithm’s explicit exploitation of the
structure of the data type of interest.

Our work is more similar in spirit to the
dynamic time warping similarity search technique
introduced by Chu et. al. [7]. The authors speed up
linear search by examining the time series at
increasingly finer levels of approximation.

3. OUR APPROACH – THE I-kMEANS
ALGORITHM

As noted in Section 2.1, the complexity of the k-
Means algorithm is O(kNrD), where D is the
dimensionality of data points (or the length of a
sequence, as in the case of time-series). For a
dataset consisting of long time-series, the D factor
can burden the clustering task significantly. This
overhead can be alleviated by reducing the data
dimensionality.

Another major drawback of the k-Means
algorithm derives from the fact that the clustering
quality is greatly dependant on the choice of initial
centers (i.e., line 2 of Table 1). As mentioned
earlier, the k-Means algorithm guarantees local, but
not necessarily global optimization. Poor choices of
the initial centers, therefore, can degrade the quality
of clustering solution and result in longer execution
time (See [15] for an excellent discussion of this
issue). Our algorithm addresses these two problems
associated with k-Means, in addition to offering the
capability of an anytime algorithm, which allows the
user to interrupt and terminate the program at any
stage.

We propose using the wavelet decomposition to
perform clustering at increasingly finer levels of the
decomposition, while displaying the gradually
refined clustering results periodically to the user.

 Table 2. Haar Wavelet Decomposition on time series
 (2 8 1 5 9 7 2 6)

We compute the Haar Wavelet decomposition for all
time-series data in the database. The complexity of
this transformation is linear to the dimensionality of
each object; therefore, the running time is
reasonable even for large databases. The process of
decomposition can be performed off-line, and the
time series data can be stored in the Haar
decomposition format, which takes the same amount
of space as the original sequence. One important
property of the decomposition is that it is a lossless
transformation, since the original sequence can
always be reconstructed from the decomposition.

Once we compute the Haar decomposition, we
perform the k-Means clustering algorithm, starting
at the second level (each object at level i has 2(i-1)
dimensions) and gradually progress to finer levels.
Since the Haar decomposition is completely
reversible, we can reconstruct the approximation
data from the coefficients at any level and perform
clustering on these data. We call the new clustering
algorithm I-kMeans, where I stands for
“interactive.” Figure 3 illustrates this idea.

.........

.........

Level 1

Level 2

Level n

Time Series 1

.........

.........

.........

.........

.........

Time Series 2 Time Series k

Level 3

points for kmeans
at level 2

points for kmeans
at level 3

Figure 3. k-Means is performed on each level on the
reconstructed data from the Haar wavelet decomposition,
starting with the second level.

The intuition behind this algorithm originates
from the observation that the general shape of a time
series sequence can often be approximately captured
at a lower resolution. As shown in Figure 2, the
shape of the time series is well preserved, even at
very coarse approximations. Because of this
desirable feature of wavelets, clustering results
typically stabilize at a low resolution, thus saving
time by eliminating the need to run at full resolution
(the raw data). The pseudo-code of the algorithm is
provided in Table 3.

The algorithm achieves the speed-up by doing
the vast majority of reassignments (Line 3 in Table
1), at the lower resolutions, where the costs of

distance calculations are considerably lower. As we
gradually progress to finer resolutions, we already
start with good initial centers (the choices of initial
centers will be discussed later in this section).
Therefore, the number of iterations r until
convergence will typically be much lower.

The I-kMeans algorithm allows the user to
monitor the quality of clustering results as the
program executes. The user can interrupt the
program at any level, or wait until the execution
terminates once the clustering results stabilize. One
surprising and highly desirable finding from the
experimental results (as shown in the next section),
is that even if the program is run to completion
(until the last level, with full resolution), the total
execution time is generally less than that of
clustering on raw data.

Algorithm I-kMeans

1. Decide on a value for k.

2. Initialize the k cluster centers (randomly, if
necessary).

3. Run the k-Means algorithm on the leveli
representation of the data

4. Use final centers from leveli as initial centers
for leveli+1. This is achieved by projecting the
k centers returned by k-Means algorithm for
the 2i space in the 2i+1 space.

5. If none of the N objects changed membership
in the last iteration, exit. Otherwise goto 3.

Table 3: An outline of the I-kMeans algorithm.

As mentioned earlier, on every level except for
the starting level (i.e. level 2), which uses random
initial centers, the initial centers are selected based
on the final centers from the previous level. More
specifically, the final centers computed at the end of
level i will be used as the initial centers on level
i+1. Since the length of the data reconstructed from
the Haar decomposition doubles as we progress to
the next level, we project the centers computed at
the end of level i onto level i+1 by doubling each
coordinate of the centers. This way, they match the
dimensionality of the points on level i+1. For
example, if one of the final centers at the end of
level 2 is (0.5, 1.2), then the initial center used for
this cluster on level 3 is (0.5, 0.5, 1.2, 1.2). This
approach resolves the dilemma associated with the

choice of initial centers, which is crucial to the
quality of clustering results [15]. It also contributes
to the fact that our algorithm often produces better
clustering results than the k-Means algorithm.

4. EXPERIMENTAL EVALUATION

To show that our approach is superior to the k-
Means algorithm for clustering time series, we
performed a series of experiments on publicly
available real datasets. For completeness, we ran
the I-kMeans algorithm for all levels of
approximation, and recorded the cumulative
execution time and clustering accuracy at each level.
In reality, however, the algorithm stabilizes in early
stages and can automatically terminate much sooner.
We compare the results with that of k-Means on the
original data. Since both algorithms start with
random initial centers, we execute each algorithm
100 times with different centers. However, for
consistency we ensure that for each execution, both
algorithms are seeded with the same set of initial
centers. After each execution, we compute the error
(more details will be provided in Section 4.2) and
the execution time on the clustering results. We
compute and report the averages at the end of each
experiment. We believe that by taking the average,
we achieve better objectiveness than taking the best
(minimum), since in reality, we would not have the
knowledge of the correct clustering results, or the
“oracle,” to compare against our results (as the case
with one of our test datasets).

4.1 Datasets and Methodology

We tested on two publicly available, real
datasets. The dataset cardinalities range from 1,000
to 8,000. The length of each time series has been set
to 512 on one dataset, and 1024 on the other. Each
time series is z-normalized to have mean value of 0
and standard deviation of 1.

• JPL: This dataset consists of readings from
various inertial sensors from Space Shuttle mission
STS-57. The data is particularly appropriate for our
experiments since the use of redundant backup
sensors means that some of the data is very highly
correlated. In addition, even sensors that measure
orthogonal features (i.e. the X and Y axis) may
become temporarily correlated during a particular
maneuver; for example, a “roll reversal” [13]. Thus,

the data has an interesting mixture of dense and
sparse clusters. To generate datasets of increasingly
larger cardinalities, we extracted time series of
length 512, at random starting points of each
sequence from the original data pool.

• Heterogeneous: This dataset is generated
from a mixture of 10 real time series data from the
UCR Time Series Data Mining Archive [24]. Figure
4 shows how the data is generated, and figure 5
shows the 10 time-series we use as seeds. We
produced variations of the original patterns by
adding small time warping (2-3% of the series
length), and interpolated Gaussian noise. Gaussian
noisy peaks are interpolated using splines to create
smooth random variations.

200 400 600 800 1000

200

400

600

800

1000

Original Trajectory

200 400 600 800 1000

−100

0

100

200

300

Noise − Interpolating Gaussian Peaks

200 400 600 800 1000

200

400

600

800

1000

Adding time−warping

200 400 600 800 1000

200

400

600

800

1000

1200

Final Copy = Original + Noise + Time Shift

Final
Original

In the Heterogeneous dataset, we know that the
number of clusters (k) is 10. However, for the JPL
dataset, we lack this information. Finding k is an
open problem for the k-Means algorithm and is out
of scope of this paper. To determine the optimal k
for k-Means, we attempt different values of k,
ranging from 2 to 8. Nonetheless, our algorithm
out-performs the k-Means algorithm regardless of k.
In this paper we only show the results with k equals
to 5. Figure 6 shows that our algorithm produces
the same results as does the hierarchical clustering
algorithm, which is generally more costly.

Figure 4: Generation of variations on the heterogeneous
data. We produced variations of the original patterns by
adding small time warping (2-3% of the series length),
and interpolated Gaussian noise. Gaussian noisy peaks
are interpolated using splines to create smooth random
variations.

200 400 600 800 1000

−1

0

1

2

burst

200 400 600 800 1000
−4

−2

0

2

earthquake

200 400 600 800 1000

−2

−1

0

1

2

infrasound

200 400 600 800 1000

−6

−4

−2

0

koski
e
cg

200 400 600 800 1000

−1

0

1

2

memory

200 400 600 800 1000
−3

−2

−1

0

1

ocean

200 400 600 800 1000
−1

0

1

2

power
d
ata

200 400 600 800 1000

−2

−1

0

1

random
w
alk

200 400 600 800 1000

0

2

4

sunspot

200 400 600 800 1000

−2

−1

0

1

2

3

tide

a

a

a

c

c

c

b

b

b

d

d

d

e

e

e

4.2 Error of Clustering Results

In this section we compare the clustering quality
for the I-kMeans and the classic k-Means algorithm.

Since we generated the heterogeneous datasets
from a set of given time series data, we have the
knowledge of correct clustering results in advance. In
this case, we can simply compute the clustering error
by summing up the number of incorrectly classified
objects for each cluster c and then dividing by the
dataset cardinality.

data

iedmisclassif
k

c

c∑
== 1 error clustering (1)

The error is computed at the end of each level.
The label of each final cluster is assigned according
to the majority of objects that originally belonged to
the same cluster. For example, if a final cluster
consists of 490 objects from cluster A and 10 objects
from cluster B, the latter objects are going to be
considered misclassified. However, we would like to

Figure 6: On the left-hand side, we show three instances
from each cluster discovered by the I-kMeans algorithm.
We can visually verify that our algorithm produces
intuitive results. On the right-hand side, we show that
hierarchical clustering (using average linkage) discovers
the exact same clusters. However, hierarchical clustering
is more costly than our algorithm.

Figure 5: Real time series data from UCR Time Series Data Mining Archive. We use these time series
as seeds to create our Heterogeneous dataset.

emphasize that in reality, the correct clustering results
would not be available in advance. The incorporation
of such known results in our error calculation merely
serves the purpose of demonstrating the quality of
both algorithms.

For the JPL dataset, we do not have prior
knowledge of correct clustering results (which
conforms more closely to real-life cases). Lacking
this information, we cannot use the above formula to
determine the error.

Since the k-Means algorithm seeks to optimize
the objective function by minimizing the sum of
squared intra-cluster errors, we evaluate the quality of
clustering by using the objective functions. However,
since the I-kMeans algorithm involves data with
smaller dimensionality except for the last level, we
have to compute the objective functions on the raw
data, in order to compare with the k-Means algorithm.
We show that the objective functions obtained from
the I-kMeans algorithm are better than those from the
k-Means algorithm. The results are consistent with
the work of [8], in which the authors show that
dimensionality reduction reduces the chances of the
algorithm being trapped in a local minimum.
Furthermore, even with the additional step of
computing the objective functions from the original
data, the I-kMeans algorithm still takes less time to
execute than the k-Means algorithm.

2 8

32

12
8

51
2

1000
2000

4000
80000

0.5

1

Fraction

Dimensionality

Data
Size

I-kMeans Error As Fraction of k-Means
(Heterogeneous)

In figures 7 and 8, we show the errors/objective
functions from the I-kMeans algorithm as a fraction
of those obtained from the k-Means algorithm. As we
can see from the plots, our algorithm stabilizes at
early stages and consistently results in smaller error
than the classis k-Means algorithm.

2 8

32

12
8

5
12

1000
2000

4000
8000

0.00

0.50

1.00

Fraction

Dimensionality

Data
Size

I-kMeans Obj Function As Fraction to k-Means
(JPL)

4.3 Running Time

In figures 9 and 10, we present the cumulative
running time for each level on the I-kMeans
algorithm as a fraction to the k-Means algorithm.
The cumulative running time for any level i is the
total running time from the starting level (level 2) to
level i. In most cases, even if the I-kMeans algorithm
is run to completion, the total running time is still less
than that of the k-Means algorithm. We attribute this
improvement to the good choices of initial centers for
successive levels after the starting level, since they
result in very few iterations until convergence.
Nevertheless, we have already shown in the previous
section that the I-kMeans algorithm finds the best
result in relatively early stage and does not need to
run through all levels. Figure 7: Error of I-kMeans algorithm on the

Heterogeneous dataset, presented as fraction of the error
from the k-Means algorithm. Our algorithm results in
smaller error than the k-Means after the second stage (i.e. 4
dimensions), and stabilizes typically after the third stage
(i.e. 8 dimensions).

Figure 8: Objective functions of I-kMeans algorithm on
the JPL dataset, presented as fraction of error from the k-
Means algorithm. Again, our algorithm results in
smaller objective functions (i.e. better clustering results)
than the k-Means, and stabilizes typically after the
second stage (i.e. 4 dimensions).

2 8

32

12
8

51
2

1000
2000

4000
80000

0.3

0.6

0.9

1.2

Fraction

Dimensionality

Data
Size

Cumulative Time As Fraction of k-Means
(Heterogeneous)

2 8

32

1
28

51
2

1000
2000

4000
8000

0.00
0.20
0.40
0.60
0.80
1.00

Fraction

Dimensionality

Data
Size

I-kMeans Cumulative Time As Fraction to k-
Means (JPL)

4.4 I-kMeans Algorithm vs. k-Means Algorithm

In this section (Fig. 11 and 12), rather than
showing the error/objective function on each level, as
in Section 4.2, we present only the error/objective
function returned by the I-kMeans algorithm when it
stabilizes or, in the case of JPL dataset, outperforms
the k-Means algorithm in terms of the objective
function. We also present the time taken for the I-
kMeans algorithm to stabilize. We compare the
results to those of the k-Means algorithm. From the
figures we can observe that our algorithm achieves
better clustering accuracy at significantly faster
response time.

I-kMeans Alg vs. Kmeans Alg (Heterogeneous)

0

0.2

0.4

0.6

0.8

1

1000 2000 4000 8000

Data Size

E
rr

o
r

0

10

20

30

40

50

T
im

e
(s

ec
o

n
d

s)

error_I-kM eans error_kmeans

time_I-kM eans time_kmeans

I-kMeans Alg vs K-Means Alg (JPL)

0

50

100

150

1000 2000 4000 8000

Data Size

O
b

j.
F

cn
 (

x1
0,

00
0)

0

20

40

60

80

obj. fcn_I-kM eans obj. fcn_k-Means

time_I-kM eans time_k-Means

Figure 13 shows the average level where the I-
kMeans algorithm stabilizes or, in the case of JPL,
outperforms the k-Means algorithm in terms of
objective function. Since the length of the time series
data is 1024 in the Heterogeneous dataset, there are
11 levels. Note that the JPL dataset has only 10
levels since the length of the time series data is only
512. We skip level 1, in which the data has only one
dimension (the average of the time series) and is the
same for all sequences, since the data has been
normalized (zero mean). Each level i has 2(i-1)
dimensions. From the plot we can see that our
algorithm generally stabilizes at levels 3-6 for the
Heterogeneous dataset and at levels 2-4 for the JPL

Figure 9: Cumulative running time for the Heterogeneous
dataset. Our algorithm typically cuts the running time by
half as it does not need to run through all levels to retrieve
the best results.

Figure 11: The I-kMeans algorithm is highly
competitive with the k-Means algorithm. The errors and
execution time are significantly smaller.

Figure 10: Cumulative running time for the JPL dataset.
Our algorithm typically takes only 30% of time. Even if
it is run to completion, the cumulative running time is still
50% less than that of the k-Means algorithm!

Figure 12: I-kMeans vs. k-Means algorithms in terms of
objective function and running time for JPL dataset. Our
algorithm outperforms the k-Means algorithm. The
running time remains small for all data sizes because the
algorithm terminates at very early stages.

dataset. In other words, the I-kMeans algorithm
operates on data with a maximum dimensionality of
32 and 8, respectively, rather than 1024 and 512.

Avg Level until Stabilization (1~11)

1
3
5
7
9

11

1000 2000 4000 8000

Data Size

L
ev

el
s Heterogeneous

JPL

5. CONCLUSIONS AND FUTURE WORK

We have presented an approach to perform
incremental clustering of time-series at various
resolutions using the Haar wavelet transform. Using
k-Means as our clustering algorithm, we reuse the
final centers at the end of each resolution as the initial
centers for the next level of resolution. This
approach resolves the dilemma associated with the
choices of initial centers for k-Means and
significantly improves the execution time and
clustering quality. Our experimental results indicate
that this approach yields faster execution time than
the traditional k-Means approach, in addition to
improving the clustering quality of the algorithm.
Since it conforms with the observation that time
series data can be described with coarser resolutions
while still preserving a general shape, the anytime
algorithm stabilizes at very early stages, eliminating
the needs to operate on high resolutions. In addition,
the anytime algorithm allows the user to terminate the
program at any stage.

In future work we plan to investigate the
following:

• Extending our algorithm to other iterative
refinement clustering techniques, especially the
EM-algorithm.

• Extending our algorithm to other data types, for
example, both histograms and images can be
successfully represented with wavelets [11, 33].

• Examining the possibility of re-using the results
(i.e. objective functions that determine the quality
of clustering results) from the previous stages to
eliminate the need to re-compute all the distances.

• Generalizing our approach to a broader class of
algorithms and decompositions. For example,
even though we have used the wavelet
decomposition in this work, our algorithm can be
easily generalized to Fourier coefficients as well.

 6. REFERENCES

[1] Agrawal, R., Faloutsos, C. & Swami, A. (1993).
Efficient similarity search in sequence databases.
In proceedings of the 4th Int'l Conference on
Foundations of Data Organization and
Algorithms. Chicago, IL, Oct 13-15. pp 69-84.

[2] André-Jönsson, H. & Badal. D. (1997). Using
signature files for querying time-series data. In
proceedings of Principles of Data Mining and
Knowledge Discovery, 1st European Symposium.
Trondheim, Norway, Jun 24-27. pp 211-220.

[3] Bay, S. (1999). UCI Repository of Kdd databases
[http://kdd.ics.uci.edu/]. Irvine, CA: University of
California, Department of Information and
Computer Science

[4] Bozkaya, T., Yazdani, N. & Ozsoyoglu, Z. M.
(1997). Matching and indexing sequences of
different lengths. In proceedings of the 6th Int'l
Conference on Information and Knowledge
Management. Las Vegas, NV, Nov 10-14. pp
128-135.

[5] Bradley, P., Fayyad, U., & Reina, C. (1998).
Scaling clustering algorithms to large databases.
In proceedings of the 4th Int'l Conference on
Knowledge Discovery and Data Mining. New
York, NY, Aug 27-31. pp 9-15.

[6] Chan, K. & Fu, A. W. (1999). Efficient time
series matching by wavelets. In proceedings of
the 15th IEEE Int'l Conference on Data
Engineering. Sydney, Australia, Mar 23-26. pp
126-133.

[7] Chu, S., Keogh, E., Hart, D., Pazzani, M. (2002).
Iterative Deepening Dynamic Time Warping for

Figure 15: Average level until stabilization. The
algorithm generally stabilizes between level 3 and level 6
for Heterogeneous dataset, and between level 2 and 4 for
the JPL dataset. So it operates on data with a maximum
dimensionality of 32 instead of 1024, and 8 instead of 512,
respectively.

Time Series. In proceedings of the 2nd SIAM
International Conference on Data Mining.

[8] Ding, C., He, X., Zha, H. & Simon, H. (2002).
Adaptive Dimension Reduction for Clustering
High Dimensional Data. In proceedings of the 2nd
IEEE International Conference on Data Mining.
Dec 9-12. Maebashi, Japan. pp 147-154.

[9] Das, G., Gunopulos, D. & Mannila, H. (1997).
Finding similar time series. In proceedings of
Principles of Data Mining and Knowledge
Discovery, 1st European Symposium. Trondheim,
Norway, Jun 24-27. pp 88-100.

[10] Das, G., Lin, K., Mannila, H., Renganathan, G. &
Smyth, P. (1998). Rule discovery from time
series. In proceedings of the 4th Int'l Conference
on Knowledge Discovery and Data Mining. New
York, NY, Aug 27-31. pp 16-22.

[11] Daubechies, I. (1992). Ten Lectures on Wavelets.
Number 61 in CBMS-NSF regional conference
series in applied mathematics, Society for
Industrial and Applied Mathematics,
Philadelphia.

[12] Debregeas, A. & Hebrail, G. (1998). Interactive
interpretation of kohonen maps applied to curves.
In proceedings of the 4th Int'l Conference of
Knowledge Discovery and Data Mining. New
York, NY, Aug 27-31. pp 179-183.

[13] Dumoulin, J. (1998). NSTS 1988 News
Reference Manual. http://www.fas.org/spp/civil/sts/

[14] Faloutsos, C., Ranganathan, M. &
Manolopoulos, Y. (1994). Fast subsequence
matching in time-series databases. In proceedings
of the ACM SIGMOD Int'l Conference on
Management of Data. Minneapolis, MN, May 25-
27. pp 419-429.

[15] Fayyad, U., Reina, C. &. Bradley. P (1998).
Initialization of iterative refinement clustering
algorithms. In Proceedings of the 4th
International Conference on Knowledge
Discovery and Data Mining. New York, NY,
Aug 27-31. pp 194-198.

[16] Gavrilov, M., Anguelov, D., Indyk, P. &
Motwani, R. (2000). Mining the stock market:
which measure is best? In proceedings of the 6th
ACM Int'l Conference on Knowledge Discovery
and Data Mining. Boston, MA, Aug 20-23. pp
487-496.

[17] Ge, X. & Smyth, P. (2000). Deformable markov
model templates for time-series pattern matching.
In proceedings of the 6th ACM SIGKDD Int'l
Conference on Knowledge Discovery and Data
Mining. Boston, MA, Aug 20-23. pp 81-90.

[18] Geurts, P. (2001). Pattern extraction for time
series classification. In proceedings of Principles
of Data Mining and Knowledge Discovery, 5th
European Conference. Freiburg, Germany, Sept
3-5. pp 115-127.

[19] Grass, J. & Zilberstein, S. (1996). Anytime
algorithm development tools. Sigart Artificial
Intelligence. Vol 7, No. 2, April. ACM Press.

[20] Huhtala, Y., Kärkkäinen, J. & Toivonen, H.
(1999). Mining for similarities in aligned time
series using wavelets. Data Mining and
Knowledge Discovery: Theory, Tools, and
Technology, SPIE Proceedings Series, Vol. 3695.
Orlando, FL, Apr. pp 150-160.

[21] Kalpakis, K., Gada, D. & Puttagunta, V. (2001).
Distance measures for effective clustering of
ARIMA time-series. In proceedings of the IEEE
Int'l Conference on Data Mining. San Jose, CA,
Nov 29-Dec 2. pp 273-280.

[22] Keogh, E. & Pazzani, M. (1998). An enhanced
representation of time series which allows fast
and accurate classification, clustering and
relevance feedback. In proceedings of the 4th Int'l
Conference on Knowledge Discovery and Data
Mining. New York, NY, Aug 27-31. pp 239-241.

[23] Keogh, E., Chakrabarti, K., Pazzani, M. &
Mehrotra, S. (2001). Locally adaptive
dimensionality reduction for indexing large time
series databases. In proceedings of ACM
SIGMOD Conference on Management of Data.
Santa Barbara, CA. pp 151-162.

[24] Keogh, E. & Folias, T. (2002). The UCR Time
Series Data Mining Archive
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.
html].

[25] Korn, F., Jagadish, H. & Faloutsos, C. (1997).
Efficiently supporting ad hoc queries in large
datasets of time sequences. In proceedings of the
ACM SIGMOD Int'l Conference on Management
of Data. Tucson, AZ, May 13-15. pp 289-300.

[26] Li, C., Yu, P. S. & Castelli, V. (1998). MALM: a
framework for mining sequence database at

multiple abstraction levels. In proceedings of the
7th ACM CIKM Int'l Conference on Information
and Knowledge Management. Bethesda, MD,
Nov 3-7. pp 267-272.

[27] McQueen, J. (1967). Some methods for
classification and analysis of multivariate
observation. L. Le Cam and J. Neyman (Eds.), 5th
Berkeley Symp. Math. Stat. Prob., 1,pp 281-297.

[28] Ng, Y., Jordan, M. & Weiss, Y.(2001). On
Spectral clustering: analysis and an algorithm..
Advances in Neural Information Processing
Systems 14.

[29] Popivanov, I. & Miller, R. J. (2002). Similarity
search over time series data using wavelets. In
proceedings of the 18th Int'l Conference on Data
Engineering. San Jose, CA, Feb 26-Mar 1. pp
212-221.

[30] Qu, Y., Wang, C. & Wang, X. S. (1998).
Supporting fast search in time series for
movement patterns in multiples scales. In
proceedings of the 7th ACM CIKM Int'l
Conference on Information and Knowledge
Management. Bethesda, MD, Nov 3-7. pp 251-
258.

[31] Smyth, P,. Wolpert, D. (1997). Anytime
exploratory data analysis for massive data sets. In
proceedings of the 3rd Int'l Conference on
Knowledge Discovery and Data Mining. Newport
Beach, CA. pp 54-60

[32] Shahabi, C., Tian, X. & Zhao, W. (2000). TSA-
tree: a wavelet based approach to improve the
efficiency of multi-level surprise and trend
queries. In proceedings of the 12th Int'l
Conference on Scientific and Statistica Database
Management. Berlin, Germany, Jul 26-28. pp 55-
68.

[33] Struzik, Z. & Siebes, A. (1999). The Haar
wavelet transform in the time series similarity
paradigm. In proceedings of Principles of Data
Mining and Knowledge Discovery, 3rd European
Conference. Prague, Czech Republic, Sept 15-18.
pp 12-22.

[34] Wijk, J.J. van, E. van Selow.(1999). Cluster and
calendar-based visualization of time series data.
In Proceedings 1999 IEEE Symposium on
Information Visualization (InfoVis'99), IEEE
Computer Society, pp 4-9.

[35] Wu, Y., Agrawal, D. & El Abbadi, A. (2000). A
comparison of DFT and DWT based similarity
search in time-series databases. In proceedings of
the 9th ACM CIKM Int'l Conference on
Information and Knowledge Management.
McLean, VA, Nov 6-11. pp 488-495.

[36] Yi, B. & Faloutsos, C. (2000). Fast time sequence
indexing for arbitrary lp norms. In proceedings of
the 26th Int'l Conference on Very Large
Databases. Cairo, Egypt, Sept 10-14. pp 385-
394.l Database Management. Berlin, Germany,
Jul 26-28. pp 55-68.

