
Visualizing Variable-Length Time Series Motifs

 Yuan Li1 Jessica Lin1 Tim Oates2
1George Mason University

2University of Maryland, Baltimore County
 ylif@gmu.edu jessica@cs.gmu.edu oates@cs.umbc.edu

Abstract
The problem of time series motif discovery has received
a lot of attention from researchers in the past decade.
Most existing work on finding time series motifs require
that the length of the motifs be known in advance.
However, such information is not always available. In
addition, motifs of different lengths may co-exist in a
time series dataset. In this work, we develop a motif
visualization system based on grammar induction. We
demonstrate that grammar induction in time series can
effectively identify repeated patterns without prior
knowledge of their lengths. The motifs discovered by
the visualization system are variable- lengths in two
ways. Not only can the inter-motif subsequences have
variable lengths, the intra-motif subsequences also are
not restricted to have identical length—a unique
property that is desirable, but has not been seen in the
literature.

Keywords
Time Series, Motif Discovery, Grammar Induction,
Visualization

1. Introduction
The task of frequent pattern mining is an important
problem that has many applications. In addition to its
own merit of summarizing and compressing data, it is
also a pre-cursor to association rule mining [1].
Furthermore, in bioinformatics, it is well understood that
overrepresented DNA sequences often have biological
significance [6, 8, 10, 28, 32]. A substantial body of
literature has been devoted to techniques to discover
such patterns [1, 2], including sequential patterns on
sequence data.

In previous work, we defined the related concept of
“time series motifs” which are, informally, frequently
repeated patterns. More specifically, a time series motif
is a pattern that consists of two or more similar
subsequences based on some distance threshold [18, 26].
Since then, a great deal of work has been proposed for
the discovery of time series motifs [3, 4, 5, 18, 20, 21,
22, 23, 25, 26, 29, 30, 31]. Figure 1 shows an example
of a time series motif in an insect behavior dataset [23].

This motif consists of four very similar subsequences of
length 109.

Figure 1. A motif of length 109 from an insect dataset. The
top plot shows the entire dataset to present a context for the
motif. The bars below the plot denote the locations of the
motif instances. The original dataset is 16,384 in length.
Most existing work on time series motif discovery,
however, suffers a limitation; that is, they require an
input parameter, the motif length n, to be defined. This
limits the search space for the algorithms; however, it
also implies that the length of motifs (n) must be known
in advance. In addition, frequent patterns of different
lengths might co-exist within the same dataset. To find
all significant patterns with unknown lengths, one would
need to repeat the motif discovery algorithm several
times—each time with a different window size. We also
noticed that a well-cited motif discovery algorithm
produces different sets of motifs even if the input length
differs by just one (e.g. n = 120 vs. n = 121). This raises
the question of whether such precision or exact motif
discovery is necessary, or even desirable. In any case, it
is better to have an algorithm that can automatically
detect significant motifs of unknown, variable lengths,
without exhaustively trying different subsequence
lengths.

A few algorithms were proposed to discover motifs
of variable lengths [21, 25, 30]; however, they either do
so via post-processing, scale poorly, or quantize the
whole data rather than considering overlapping
subsequences, resulting in inaccurate and incomplete
patterns found.

In the preliminary version of this work [16], we
proposed an approach to discover variable-length motifs

by grammar induction [13, 14, 15, 24]. Grammars are
compact generative representations of sets of objects.
These objects are most often strings, as are generated by
grammars in the Chomsky hierarchy, but can also be
more complex structures like trees and graphs. In this
work we are concerned exclusively with string
grammars. Grammar induction (or grammatical
inference, GI) is the process of learning a grammar
given (at least) a sample of strings in the target
grammar’s language.

We argued that a grammar-based algorithm mitigates
the aforementioned shortcomings of existing motif
discovery algorithms, in addition to offering a unique
advantage; that is, it reveals the underlying hierarchical
structures and patterns of the whole data – something
that cannot be achieved by existing motif discovery or
sequential pattern discovery algorithms. Furthermore, a
grammar-based method will allow a more natural
mapping from data to rules [33], and can reveal hidden
hierarchical structures in the data. There has also been
increasing interest in grammar-based methods for
feature extraction, classification and forecasting of time
series [7, 11].

One novel contribution of this work is that we
extended the notion of variable-length motifs.
Intuitively, variable-length motifs is the set of motifs
whose instances are of different lengths. As an example,
in a dataset, there might be one motif A of length 100,
and another motif B of length 250 (assuming no
overlap). In this work, we allow subsequences for the
same motif to have variable lengths as well, e.g. A
might consist of a subsequence A1 of length 109, and
another subsequence A2 of length 101, both of which are
very similar to each other despite their different lengths.

One challenge we encountered is the evaluation of
our methodology. This is partly due to the fact that no
other work exists that achieve comparable goals, and
partly due to the fact that it is difficult to evaluate the
quality of approximate motifs. A common way to
evaluate the approximate solution is to compare it with
the exact solution. However, as mentioned earlier, it is
debatable whether exact motif search is truly desirable;
sometimes a little bit of error allowance might be more
suitable for many real-world applications. As an
example, for gait analysis or activity analysis, it is
uncommon for an object, much less different objects, to
repeat the exact same movements. In addition, since our
algorithm allows both inter-motif and intra-motif
subsequences to have different lengths, it is difficult to
evaluate the patterns objectively, as we have
deliberately removed the exactness from the solution.

We addressed the concerns above and implemented a
variable-length motif visualization tool based on
grammar induction. Unlike existing motif discovery
algorithms, our grammar-based motif visualization

system generates hierarchical rules from the data, and
displays the patterns that form these rules. Clearly, the
length of the rules is unrestricted, and so are the patterns
(motifs) that correspond to the rules.

In summary, our work has the following novel
contributions:
• Our grammar-based motif-discovery algorithm does

not require the motif length to be known in advance.
Our approach can find variable-length motifs
simultaneously, with only one pass through the data.
As we will demonstrate, not only can the inter-motif
subsequences have variable lengths, the intra-motif
subsequences also are not restricted to have identical
length—a unique property that is desirable, but has
not been seen in the literature. While the results
produced by our algorithm are approximate
solutions, it has been shown recently that in many
applications, approximate solutions might be
sufficient or even preferable due to efficiency [4].

• Our algorithm is both time- and space-efficient, and
is suitable for streaming data.

• We developed a grammar visualization system that
allows users to navigate the produced rules (i.e. the
motifs), as well as the instances of the rules (i.e. the
subsequences that form the motifs). Note that, unlike
existing motif discovery algorithms, our notion of
motifs are not defined based on some distance
threshold. Rather, they are determined based on their
symbolic approximation, and on the grammar rules.

• Our greedy approach is efficient; however, in some
cases, we may desire better quality results at the cost
of higher time complexity. We propose a search
algorithm that finds better grammar, and allows
users more flexibility in choosing between the
efficiency and the effectiveness of the algorithm.

The rest of the paper is organized as follows. Section 2
discusses background and related work on time series
motif discovery. Section 3 describes the greedy
grammar induction algorithm that we adapted for our
work. We describe our approach in Section 4, and
demonstrate its utility with a case study on motif
discovery by implementing a grammar visualization
system in Section 5. We discuss the limitation of the
greedy approach in Section 6, and propose a search
algorithm to find better grammar. We conclude and
discuss future work in Section 7.

2. Background and Related Work
In this section, we briefly discuss background and
related work on motif discovery. We begin with
definitions of time series:
Definition 1. Time Series: A time series T = t1,…,tm is
an ordered set of m real-valued variables.

Since we are interested in finding local patterns, we
consider time series subsequences as the basic unit:
Definition 2. Subsequence: Given a time series T of
length m, a subsequence C of T is a subsection of length
n ≤ m of contiguous position from p, that is, C=tp…tp+n-1

for 1 ≤ p ≤ m – n + 1.
The subsequences can be extracted via the use of a
sliding window:
Definition 3. Sliding Window: Given a time series T and
a user-defined subsequence length n, all possible
subsequences can be extracted by sliding a window of
size n across T and considering each subsequence Cp,
for 1 ≤ p ≤ m – n + 1.
A time series motif I thus consists of a set of
subsequences IS. These subsequences, referred to as
intra-motif subsequences, are similar to each other, but
do not necessarily have identical lengths. We will
explain what it means for the subsequences to be similar
in a later section.

Our algorithm will find a set of motifs M, each of
which consists of its own set of intra-motif
subsequences as described above. Subsequences from
different motifs are called the inter-motif subsequences.
2.1 Related Work
In [18], we introduced the concept of time series motifs,
and proposed a sub-quadratic algorithm based on
hashing and matrix approximation to find exact motifs
of a given length. Mueen et al. proposed the first
tractable exact motif discovery algorithm, based on the
notion of early abandonment [23]. Their algorithm is up
to three orders of magnitude faster than the brute-force
algorithm [23]. In some applications, it may be
sufficient or even desirable to have a fast algorithm that
can find approximate motifs [4, 5]. As an example, Chiu
and Keogh proposed probabilistic motif discovery
algorithm based on random projection [5]. Castro and
Azevedo proposed a multiresolution motif discovery
algorithm [4] that is both space and time efficient. Other
approximate motifs algorithms exist [3, 5, 9, 20, 27, 30];
however, one common drawback of all these algorithms
is that they require an input parameter for the motif
length.

3. Greedy Grammar Induction
Given an input string, a common way to compress it or
to induce grammar from it is by using a greedy
approach: repeated patterns are merged, and replaced by
a new symbol as soon as they are seen, thereby reducing
the length of the original sequence and producing a
hierarchical representation that summarizes the structure
of the data. One example of such approach is Sequitur, a
string compression algorithm that infers a context-free
grammar from a sequence of discrete symbols [24].
Although simple in design, Sequitur has been shown to

be competitive with state-of-the-art compression
algorithms [24], maintaining its scalability even for
large sequences. Moreover, Sequitur offers a unique
advantage: it utilizes and identifies the hidden structure
(recurring subsequences) in the input data sequence,
requiring a relatively small memory footprint.

Sequitur works by maintaining two properties:
digram uniqueness and rule utility [24]. The first
property requires that no pair of consecutive symbols
(terminals or non-terminals) appear more than once.
When Sequitur reads a new symbol from the input
sequence, the last two symbols of the sequence read so
far—the new symbol and its predecessor symbol—form
a digram [24]. A table that stores all existing digrams is
maintained. If this new digram already exists in the
digram table, i.e., it appears somewhere in the sequence
already read, Sequitur uses a non-terminal to substitute
these digrams, and, if such a rule does not exist, it forms
a new grammar rule with the non-terminal on the left
hand side. The second property, rule uniqueness,
ensures that each grammar rule is used more than once,
except for the top-level rule, since a grammar rule that
occurs just once is not meaningful and should be
removed. As an example, the input string S1:
“12131213412” can be converted to the following
grammar:
Table 1. Grammar generation process by Sequitur for the
string “12131213412”

Grammar rule Expanded Grammar rule
S1 -> BB4A 12131213412
A -> 12 12
B -> A13 1213

The top-level rule, S1→ BB4A, denotes the input
sequence seen so far. Sequitur is an online algorithm
that generates the grammar incrementally as each
symbol arrives. It is, therefore, ideal for streaming
scenarios. It is both time- and space-efficient, requiring
O(m) time to compress a sequence of size m, and a
compressed sequence is of size O(m) in the worst case
(i.e., no compression), and O(logm) in the best case.
 This greedy grammar induction algorithm (and the
many grammar induction algorithms in general) offers
the following advantages: (1) it creates a compact
summarization of data, from which hierarchical
structures are identified; (2) recurring patterns are
detected automatically, e.g., “1213” in the previous
example; (3) these recurring patterns found can be of
any length; and (4) it is suitable for streaming data since
it constructs the grammars in an incremental fashion.
These benefits suggest that grammar induction may be
used to discover variable-length motifs.

4. Our Approach
Most grammar induction algorithms were originally
designed for discrete data. However, time series are

real-valued data, requiring a pre-processing step to
allow the application of a grammar-based algorithm.
In previous work, we introduced a time series symbolic
representation called Symbolic Aggregate
approXimation (SAX) [17, 19]. While there have been
dozens of symbolic representations proposed for time
series data, SAX has been shown to outperform existing
methods. In addition, SAX has some unique, desirable
properties such as dimensionality reduction, lower-
bounding distance measures, and equiprobable symbols.
For these reasons, we will utilize SAX to discretize our
data.

All time series are z-normalized before
discretization. SAX performs discretization by dividing
the time series into w equal-sized segments. For each
segment, their mean value is computed, and then
mapped to a symbol according to a set of breakpoints
that divide the distribution space into α equiprobable
regions, where α is the alphabet size specified by the
user. If the symbols were not equiprobable, some of the
symbols would occur more frequently than others. As a
result, we would inject a probabilistic bias in the
process. The discretization steps are summarized in
Figure 2.

Figure 2. Example of SAX for a time series. The time series
above is transformed to the string cbccbaab, and the
dimensionality is reduced from 128 to 8.
There are two ways we may discretize a time series:
(a) Whole discretization: Convert each time series to a

single SAX word. Figure 2 shows an example of
whole discretization. The drawback with this
approach is that it often does not capture enough
local details in the data, which are essential for
many pattern discovery tasks such as motif
discovery.

(b) Subsequence discretization: Extract subsequences
of length n from the time series, normalize the
subsequences, and convert each subsequence into a
SAX word. The result is a “bag” of SAX words
generated from (all or selected) subsequences in the
original data.

For subsequence discretization, we need to determine
which subsequences to consider. It is generally a good
idea to consider overlapping subsequences [18], since
non-overlapping subsequences would result in too much
loss in information. This can be achieved by using a
sliding window of length n across the time series. For
most motif discovery algorithms, this is also the length

of the motif to be discovered. For our algorithm,
however, n is just the initial window length; the
algorithm grows the patterns automatically. We
discretize each subsequence individually using SAX,
and then concatenate them to form one single sequence.
The following shows what a transformed sequence, S,
might look like, in which consecutive, overlapping
subsequences are delimited by spaces:
 S = 113 113 123 122 134 113 113 113 123…
Note each SAX word is equivalent to a terminal symbol.
We already mentioned the drawback of whole
discretization; that is, too much detail is lost. A natural
question to ask is, why not discretize individual points,
and convert a time series into a string of equal length?
No doubt such an approach is more efficient than
subsequence discretization, and allows more
straightforward adaptation of existing sequential pattern
mining algorithms. However, since time series are
typically very noisy, particularly those that are
generated at a fast rate (e.g. ECG), discretizing each
time point into a symbol would give each time point
equal weight, including the noise. In the contrary, the
“aggregating” feature of SAX smooths out the
subsequences and removes the noise.
4.1 Numerosity Reduction
One novel contribution of this work is that it allows
intra-motif subsequences to have different lengths. We
achieve this by employing numerosity reduction during
the discretization process [18]. Since neighboring
subsequences are likely to be similar to each other, their
SAX words will likely be the same. If a string occurs
many times consecutively, instead of recording every
single string, we record only the first occurrence of it,
but note the offset of this first occurrence. If the same
string appears again after the appearance of some other
string(s), then we can record it again. The string S thus
becomes:

S1 = 113 113 123 122 134 113 113 113 123
 = 1131 1233 1224 1345 1136 1239
The subscripts denote the offsets of the first occurrences
of the strings. Doing so offers the benefits of eliminating
trivial matches [18], and reducing storage space. As we
will demonstrate later, it turns out that numerosity
reduction is the key that makes variable-length motif
discovery possible.
4.2 Grammar Induction on SAX Words
Once we transform the time series into a discrete
sequence consisted of SAX words, we can induce
grammar, e.g. by Sequitur, on the SAX word sequence.
Each string delimited by ‘ ‘ represents one subsequence
(or a series of subsequences mapped to the same string),
and is treated as a terminal symbol, an atomic unit for
patterns. One possible grammar rule that can be
generated from the above string S1 is A → 113 123. The

patterns occur in S1[1:3] and S1[6:9], respectively
(note the difference in pattern lengths due to numerosity
reduction). Since a grammar rule represents
subsequences (patterns) that occur more than once, it
can be regarded as a motif.
4.3 Mapping Rules to Patterns
Since we discretized the data, we now need to map the
rules and strings back to the time series subsequences to
identify the motifs. The number of rules generated can
be large and, similar to association rules mining [1], not
all rules are interesting or important. Several refinement
steps can be performed on the grammar rules. The
choice of the appropriate refinement depends on the
pattern discovery task at hand. In general, we would
want to rank the rules by their “interestingness.” Several
ranking criteria can be considered, such as the frequency
of patterns represented by the rules, the lengths of the
rules, the pattern variation, the amount of overlap
between patterns, etc. In this work, we rank the rules by
the rule lengths and their frequency of occurrences. We
defer the study of other ranking criteria to future work.
4.4 Experimental Evaluation
Our experimental evaluation consists of two parts: (1) to
demonstrate that it is indeed meaningful to find time
series “grammar”; (2) to demonstrate that grammar
induction in time series can help identify variable-length
motifs. The experiments shown in this paper are
subjective. The reason is that, to the best of our
knowledge, there does not exist any other time series
grammar induction algorithm, or variable-length motif
discovery algorithm that we can meaningfully and fairly
compare our technique to. As a result, our first
experimental evaluation will focus on demonstrating the
potential of using grammar induction for time series
pattern discovery.

Figure 3 shows an ECG dataset, from which the
grammar is induced. As the figure shows, the raw time
series is 1500 in length. The initial window length for
subsequences is 50 (note this is just the initial window
that the patterns grow from). The SAX parameters used
for this example are w = 3 and α = 2. The grammar for
the ECG dataset is shown in Table 2. The column
“Usage” records the number of occurrences for each
rule/pattern.

Figure 3. ECG time series. The patterns extracted from
grammar rule R5 (below) are shown. The initial length is 50.

The instances of rule R5, which represent 3 individual
heartbeats, are highlighted in Figure 3. The lengths of
the subsequences are 288, 286, and 284, respectively,
with the initial window length of 50. These three
subsequences are all mapped to the same string “221
211 212 112 122 112 122 121 221 211 212 112 122 121
221 211 221 211.” Notice the subsequences are of
different lengths, and the lengths are not the same as the
SAX string length. This is due to numerosity reduction –
each SAX “word” can correspond to multiple
(consecutive) subsequences, if their respective SAX
strings are identical and contiguous. The subsequences
can be seen as a “motif”, which we will discuss more in
the next section. Numerosity reduction makes motif
discovery more robust, as we are matching patterns
based on their shapes, even if they do not have the exact
same lengths.

Table 2. Grammar found for the ECG dataset
 Usage Grammar Rule Expanded

0 R0 -> R1 R2 121 R3
R3 R4 R5 R6 R5 R2
211 R6 122 R5 R7
R8 121 R7

221 211 221 211 221 121 122 112 122 112
122 121 221 211 212 112 122 221 211 212
112 122 112 122 121 221 211 212 112 122
121 221 211 221 211 221 211 212 112 122
121 221 211 212 112 221 211 212 112 122
112 122 121 221 211 212 112 122 121 221
211 221 211 221 211 221 211 221 211 212
112 122 121 221 211 212 112 122 221 211
212 112 122 112 122 121 221 211 212 112
122 121 221 211 221 211 221 211 212 112
122 112 122 121 221 211 212 112 121 221
211 212 112 122 112 122 121

20 R1 -> 221 211 221 211
5 R2 -> R1 221 221 211 221
2 R3 -> 122 112 122 112
4 R4 -> R9 R10 122 121 221 211 212 112 122
3 R5 -> R11 R4 121

R2 211
221 211 212 112 122 112 122 121 221 211
212 112 122 121 221 211 221 211

2 R6 -> R10 121 R8 221 211 212 112 122 121 221 211 212 112
2 R7 -> R11 R9 221 211 212 112 122 112 122 121
10 R8 -> R1 212 112 221 211 212 112
6 R9 -> 122 121 122 121
11 R10 -> R8 122 221 211 212 112 122
5 R11 -> R10 112 221 211 212 112 122 112

The rule R5 is composed of three other rules, R11, R4,
and R2, along with two other short patterns “121” and
“211.” We plotted one instance from each of the three
rules, and the result is shown in Figure 4. We can clearly
see that the pattern for R5 is composed from the three
sub-patterns for R11, R4, and R2. The grammar indeed
reveals some hierarchical structure in the data.

Figure 4. The decomposition of one of the motif instances.

We already demonstrate in Figure 3 that a motif can be
found in the ECG dataset by examining the grammar
rules generated. While only one motif is shown (which

are represented by 3 instances) in the figure, Figure 4
shows three shorter-length patterns (motifs) that make
up the longer pattern. These three motifs are captured by
rules R11, R4, and R2, respectively.

5. Visualization
Depending on the complexity of the dataset and the
choices of SAX parameters, the number of rules
generated by our grammar induction algorithm can be
large. In addition, since the algorithm produces
approximate results, it is desirable to have a mechanism
that allows users to easily navigate through the patterns
found. To best evaluate and validate the results, we
implemented a grammar/motif visualization system
based on the methodology proposed. Figure 5 shows a
screen shot of the visualization tool.

The upper left panel shows the input time series, the
“winding” dataset from The UCR Time Series Data
Mining Archive [12]. The upper right corner is the
“control panel”, which allows the user to enter various
options such as SAX parameters, the initial window
size, and sliding window option. If the sliding window
option is selected, then the time series will be
discretized by subsequence discretization, otherwise
whole discretization will be employed. Each button
denotes a step in the algorithm: Load Data, Discretize,
Generate Grammar (motifs). This allows the user to go
back and change parameters without having to reload
the dataset.

Once the data is loaded (and shown in the upper left
panel), the time series is discretized based on the
parameters and sliding window option. The SAX string
(delimited by ‘*’) is shown in the panel right below the
input time series panel. Grammar can then be induced
from the SAX string, and the production rules are shown
in the lower left panel. As the user scrolls down the list
of rules, the rule pointed to by the cursor will be
highlighted, and the subsequences that form the rule will
be plotted in the lower right panel. The corresponding
subsequences will also be highlighted on the input time
series. In this example, the length of the dataset is 2,500.
The SAX parameters are α = 3 and w = 4, the initial
window size is set to 100, and the sliding window option
is turned ON.

Each rule represents one motif, which consists of at
least two subsequences (the rule utility policy governs
that at least two matching subsequences are needed in
order to form a rule). These intra-motif subsequences
are similar in the sense that they all share the same
symbolic approximation and grammar rule. While it is
obvious that the length of each motif depends on its

corresponding grammar rule (hence the variable-length
motifs), the subsequences within each motif can also
have different lengths due to the numerosity reduction
feature.

Placing the cursor on Rule #12: R12 → 2221 2321
R46 3321 3311 reveals the motif shown in the lower
right panel in Figure 5. Following the rule is the number
of occurrences for this pattern (3), the expanded rule
(2221 2321 2331 2321 3321 3311)—which simply
means that the subsequences for the motif all have this
SAX representation—and the offsets for these
subsequences on the SAX string. Their offsets on the
original time series can be easily computed. The
subsequences are approximately 140 in length, although
one is slightly shorter than the other two. There are a
total of 54 rules generated for this example. In the same
run of the algorithm, another motif found is shown in
Figure 6 (Rule #29). The subsequences for this motif
have length of approximately 370. This and the previous
example demonstrate the algorithm’s ability to find
variable-length motifs – motifs with varying lengths are
discovered simultaneously.

Next we will demonstrate the non-sliding-window
option (i.e. whole discretization). The screenshot is
shown in Figure 7. For this option, the original time
series of length 2,500 is discretized into one long SAX
string, with α = 3, and w = 200. While the non-sliding-
window option usually finds fewer patterns (i.e. some
patterns might be missed because they are broken up in
two segments, or they might be shifted in their
respective segments), they also result in fewer rules due
to shorter, less complicated string. There are only 21
rules generated with the non-sliding-window option,
compared to 54 rules with sliding windows. For this
example, we are able to find a motif of length about 480.

Figures 8 and 9 show another example on a different
dataset. The insect behavior dataset introduced in [23]
has length of 18,667. The initial window size is again
set to 100. The SAX parameters are α = 2, and w = 3.
Since the dataset is long and noisy, having a smaller
alphabet size reduces the complexity of the resulting
string, which in turn produces better results. There are a
total of 60 rules. The first motif, shown in Figure 8,
consists of two subsequences of approximately 750 in
length. The second motif, shown in Figure 9, consists of
two subsequences that are about 470 and 490,
respectively, in length. This result is impressive,
considering the initial window length is only 100, and
the SAX approximation is very coarse.

Figure 5. Screenshot of the grammar/motif visualization system on the winding dataset. The motif found is approximately 140 in
length.

Figure 6. Screenshot of the grammar/motif visualization system on the winding dataset. The motif length is about 370.

Figure 7. Screenshot of the grammar/motif visualization system on the winding dataset, without sliding window option. The
motif length is about 470.

Figure 8. Screenshot of the grammar/motif visualization system on the insect dataset. The motif length is about 750

Figure 9. Screenshot of the grammar/motif visualization system on insect dataset. The motif length is between 470 and 49

Some of the rules might be redundant or uninteresting to
users. While such rules may be eliminated by employing
the chosen filtering criteria in the post-processing step as
described in Section 4.3, the visualization capability
allows the user to quickly examine and explore the rules.
In this version, since the goal is to provide the user a
complete picture of the rules found, no rule was
eliminated in the visualization tool.
5.1 Parameter Setting
As shown in our experiments, the parameters do not
need much tuning. For most cases, we chose the
arbitrary window size of 100, α = 2 or 3, and w = 3 or 4.
We find that even though the SAX approximation may
seem coarse, the motifs found are satisfactory. As
mentioned, if the dataset is long and noisy, it may be
better to choose a small alphabet size such as α = 2,
which reduces the complexity of the data. This might
result in more erroneous matches; however, the
visualization capability makes it very easy to visually
prune off these matches.

Note that without numerosity reduction, the pattern
growth would be limited. We are more likely to find
longer patterns if numerosity reduction is used. On the
other hand, with numerosity reduction, there is a higher
chance for erroneous matches (due to the flexible
lengths). Nevertheless, we find that in our experiments,
having the numerosity reduction feature generally
produces better results.

6. Finding Better Grammar
The greedy approach offers many desirable properties
and is efficient for finding grammars, hierarchies, and

regularities in data. Nevertheless, in some cases the
inherent nature of the algorithm prevents it from
meeting our expectations. Specifically, it is not
surprising that the grammar inferred by Sequitur is not
minimal because it is an on-line, greedy algorithm. In
fact, it has been shown that finding the minimal
grammar is an NP-hard problem [15].

The following example illustrates this limitation of
Sequitur. Consider the input string S2 =
(11112131131)4, which consists of four copies of
11112131131. The grammar rules generated by Sequitur
are shown in Table 3:
Table 3. Grammar generation process by Sequitur for the
string (11112131131)4.
Usage Grammar Rules Expanded

0 R0 -> R1 R1 R2 R2
R2 R3 3 1

1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 1 1
1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1

12 R1 -> 1 1 1 1
3 R2 -> R3 R4 R1 1 2 1 3 1 1 3 1 1 1 1 1
4 R3 -> 2 1 R4 2 1 3 1 1
7 R4 -> 3 R1 3 1 1

Sequitur does not identify the fact that the string consists
of 4 copies of the substring “11112131131”, nor does it
identify the longest repeating pattern: “11112131131
11112131131”. This is because Sequitur generates a
grammar rule as soon as a match is found. When
Sequitur sees the last symbol ‘1’ of the first copy of
“11112131131”, and the first symbol ‘1’ of the next
“11112131131”, it determines that 11 is a match for the
existing pattern R1, and replaces 11 with R1. Simply
stated, Sequitur makes the decision on grammar rule
inference using the partial knowledge it has so far, hence
reaching a local optimum.

To ensure that merging is the best action globally, we
would need to keep track of all possibilities: merge or

not merge with each matching diagram. The exhaustive
approach is clearly infeasible, as the number of possible
actions grows exponentially with the number of
matching digrams. Our goal is thus to improve upon the
greedy approach, without having to exhaustively
consider all options. There are many ways to compare
different grammars. For our purposes, we use the size of
the top-level grammar rule as the measure for its quality.
We argue that the size of the top-level rule of a grammar
is a good indication of how well the sequence is
compressed.

We extend the notion of digrams, and define a
trigram to be a set of three symbols that appear
consecutively in a sequence. Each trigram can be
decomposed into two digrams. For instance, the trigram
abc is composed of two digrams ab and bc. We call ab
the left digram, L, and bc the right digram, R.

There are four different types of trigrams we may
encounter:
• Type I: L already exists in the sequence processed

so far; R does not.
• Type II: L does not exist in the sequence processed

so far; R already exists.
• Type III: Both L and R exist in the sequence

processed so far.
• Type IV: Neither L nor R exists in the sequence seen

so far.
For both Type I and Type III trigrams, in which the left
digram L already exist in the digram table, there are two
possible courses of actions. For Type I trigrams, we can
either replace L or keep going without replacing L. For
Type III trigrams, we can either replace L or replace R
(note that replacing R is equivalent to not replacing L).
Sequitur always replaces L for both cases which, as we
have already seen, can prevent longer patterns from
being recognized in the future.
 Having defined trigrams, we can envision a search
tree, in which each node denotes the substring processed
so far. Figure 10 shows the search tree for the string
“11112131131”. The leaf nodes (with bolded rectangles)
store all the possible top-level grammar rules. A node is
split when we encounter a Type I or a Type III trigram,
and the branches are labeled with the new production
rule generated by merging the left or right digram. This
results in two new subtrees, each of which represents
different grammar inference generated from the action
described by the split.

For example, the root node “11112…” is split into 2
nodes. Its left child is “AA213113…”, obtained after
merging the digrams “11”, replacing both occurrences of
“11” with a new non-terminal “A”, and scanning until it
sees “113”, which is a Type III trigram (both “11” and
“13” exist already). Note that Sequitur would greedily
parse “113” as (11)3, i.e. merging “11”. However, in

our search tree, we split the node again, with the left
child representing the merging of “11”, and the right
child representing the merging of “13”. The problem of
finding the best grammar(s) thus becomes searching for
the best path(s) to follow. Sequitur always follows the
leftmost path (i.e. the circled path in the figure), which is
often not the path that produces the best result. In this
example, the path that produces the best grammar is
highlighted.

Figure 10. Grammar search tree for the string “11112131131”
Exhaustive search is clearly intractable, as there are
approximately 2d paths in the tree, where d = (# of Type
I trigrams) + (# of Type III trigrams). As a result, we
cannot actually build the entire tree. We propose a
simple random search algorithm. At each node, we
choose a child at random. In other words, whenever we
read in a Type I or Type III trigram, we flip a coin and
decide whether to merge or not to merge (for Type I), or
to merge the left digram or the right digram (for Type
III). With the exponential search space, this algorithm
will likely require many iterations before we find one
good path. We propose to always visit the leftmost path,
which will lead us to the same grammar generated by
Sequitur. We call this the base grammar. We then
randomly search the rest of the tree for a grammar better
than the base grammar. We divide the search space into
k subtrees, where k = 2L, and L is a user-defined
parameter denoting the tree level where the random
search starts. For example, if L = 2, then k = 4, and
random search is performed in the subtrees rooted at the
nodes on level 2 (assuming the root node is at level 0).
For each subtree except for the first one (in which we
follow the leftmost path), we repeat the search r times.
The parameters L and r can be adjusted according to the
computing resources available. Once all subtrees are
searched, we can either stop the search and return the
best grammar found (including the base grammar), or
we can narrow the search among a few subtrees that
return the highest counts of grammars better than the
base grammar.

Table 4 shows the resulting grammar on the same
string shown in Table 3, using random search. The
parameter L is set to 3, and r is set to 50 (i.e., partition
the search space into 8 subtrees, and run 50 random
searches in each subtree except for the first one). The

best grammar was found after 66 iterations. Out of 350
random iterations, we found 17 grammars that are better
than the base grammar.
Table 4. Grammar generated by our random search. The fact
that the string consists of 4 copies of the substring
“11112131131” is identified.
Usage Grammar Rules Expanded

0 R0 -> R1 R1 1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1
1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1

2 R1 -> R2 R2 1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1
4 R2 -> R3 R3 2 1 3 R4 1 1 1 1 2 1 3 1 1 3 1
12 R3 -> 1 1 1 1
4 R4 -> R3 3 1 1 1 3 1

We compare the grammars induced by Sequitur and
random search algorithm, respectively, on longer
sequences. ECG SAX is a SAX word sequence,
converted from ECG data shown in Figure 3. The
sliding window length is 100, and the SAX parameters
are a = 2, w = 3. The second dataset is a DNA sequence.
For both datasets, random search was run with 3200
iterations. Multiple grammars were found, in both cases,
that are better than the ones from Sequitur. However, for
each dataset, only the best (shortest) one is recorded, in
terms of the length of the top-level rule. From the
results, we can see that while random search can find
better grammars than Sequitur with enough iterations,
the improvement is marginal. It is unclear how close we
are to finding the best grammar, since we did not
examine all possible paths. We are not claiming that
random search is the best search option; in fact, we
believe that better approaches exist. Our experiments
simply show that it is possible to improve the greedy
grammar search by using a tree search algorithm. In fact,
the tree-search-based method allows more flexibility in
choosing between the efficiency of the algorithm and the
quality of the results, whereas the traditional greedy
approach produces fast but suboptimal result.
Table 6. Comparison between the grammars induced by
Sequitur and random search

 # tokens Sequitur first rule
length

Random search first rule
length

ECG SAX 130 20 17
DNA 149 57 51

7. Conclusion and Future Work
In this work, we propose a methodology to find
approximate variable-length time series motif using a
grammar-based compression algorithm. Our algorithm
offers the advantage of discovering hierarchical
structure, regularity and grammar from the data. The
visualization tool further allows the user to navigate
through and explore different motifs of variable lengths
that co-exist in the dataset. Our results show that the
grammar-based approach is able to find some important
motifs and suggest that the new direction of using
grammar-based algorithms for time series pattern
discovery is worth exploring. We also proposed a search
heuristic to improve the quality of induced grammar.

Many future directions are possible. We would like to
analyze the time complexity for the random search
algorithm. The time complexity can be controlled by
limiting the number of iterations. However, with long
sequences, we would possibly need an untenably large
number of iterations in order to make some impact on
the results. Though, in the worst case, the algorithm
resorts to returning the same grammar as Sequitur. We
would like to analyze and approximate the number of
iterations needed and the fraction of all paths that result
in better grammars than the base grammar. We can also
allow different biases on the random search. For
example, it may be possible to adjust the bias
dynamically based on the quality of grammar found so
far. Furthermore, we would like to explore other search
heuristics. For the visualization tool, we would like to
enhance the rule ranking and filtering feature. It is
possible to prune off the false positives by calculating
the distances between the motif instances.

8. References
1. R. Agrawal, T. Imielinski, and A. Swami. (1993).

Mining Association Rules Between Sets of Items in
Large Databases. In Proc. of the 1993 ACM
SIGMOD Int'l Conference on Management of Data.
Washington, D.C. May 26-28, pp. 207-216

2. R. Agrawal and Ramakrishnan Srikant. (1995).
Mining Sequential Patterns. In Proc. of the 11th Int'l
Conference on Data Engineering, Taipei, Taiwan,
March.

3. P. Beaudoin, M. van de Panne, P. Poulin and S.
Coros. (2008) Motion-Motif Graphs. In Proc. of the
Symposium on Computer Animation.

4. Castro, N. and Azevedo, P. (2010). Multiresolution
Motif Discovery in Time Series, in Proc. of the
SIAM Int’l Conference on Data Mining. Columbus,
Ohio, pp. 665-676.

5. Chiu, B. Keogh, E., & Lonardi, S. (2003).
Probabilistic Discovery of Time Series Motifs. In
the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Aug 24-27,
2003. Washington, DC. pp 493-498.

6. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
(1998). Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids: Cambridge
University Press.

7. D. Eads, E. Rosten, D. Helmbold. (2009).
Grammar-guided Feature Extraction for Location-
Based Object Detection. British Machine Vision
Conference. Queen Mary, University of London.
London, UK. September 11.

8. A. Gionis and H. Mannila. (2003). Finding
Recurrent Sources in Sequences. In proceedings of
the 7th Int'l Conference on Research in

Computational Molecular Biology. Berlin,
Germany. pp. 123-130

9. T. Guyet, C. Garbay and M. Dojat. (2007).
Knowledge Construction From Time Series Data
Using a Collaborative Exploration System. Journal
of Biomedical Informatics 40(6): 672-687.

10. D. He. (2006). Using Suffix Tree to Discover
Complex Repetitive Patterns in DNA Sequences,
The 28th Annual Int’l Conference of the IEEE
Engineering in Medicine and Biology Society. New
York, NY. August 30 - September 3.

11. E. Keogh. Personal Communications.
12. E. Keogh. The UCR Time Series Data Mining

Archive.
13. R. Ladner. (2003). Enhanced Sequitur for Finding

Structure in Data. In Proceedings of the 2003 Data
Compression Conference. March 25-27, Snowbird,
UT. pp 425-.

14. P. Langley. (1995). Simplicity and Representation
Change in Grammar Induction. Technical Report.

15. E. Lehman. (2002). Approximation Algorithms for
Grammar-Based Data Compression, PhD thesis,
Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology.

16. Li, Y. and Lin, J. (2010). Approximate Variable-
Length Time Series Motif Discovery Using
Grammar Inference. In Proceedings of the Tenth
international Workshop on Multimedia Data
Mining. Washington, D.C., July 25 - 25.

17. J. Lin, E. Keogh, S. Lonardi, and B. Chiu. (2003). A
Symbolic Representation of Time Series, with
Implications for Streaming Algorithms, Workshop
on Research Issues in Data Mining and Knowledge
Discovery, the 8th ACM SIGMOD. San Diego, CA.

18. J. Lin, E. Keogh, P. Patel, and S. Lonardi. (2002).
Finding Motifs in Time Series, the 2nd Workshop on
Temporal Data Mining, the 8th ACM Int'l
Conference on Knowledge Discovery and Data
Mining. Edmonton, Alberta, Canada. pp. 53-68.

19. J. Lin, E. Keogh, W. Li, and S. Lonardi. (2007).
Experiencing SAX: A Novel Symbolic
Representation of Time Series. Data Mining and
Knowledge Discovery Journal.

20. J. Meng, J.Yuan, M. Hans and Y. Wu. (2008).
Mining Motifs from Human Motion, Proc. of
EUROGRAPHICS.

21. D. Minnen, T. Starner, I. Essa, C. Isbell. (2006).
Activity Discovery: Sparse Motifs from
Multivariate Time Series. Snowbird Learning
Workshop, Snowbird, Utah, April 4-7.

22. D. Minnen, C.L. Isbell, I. Essa, and T. Starner.
(2007). Discovering Multivariate Motifs using
Subsequence Density Estimation and Greedy
Mixture Learning. In the 22nd Conf. on Artificial
Intelligence. Vancouver, B.C., July 22-26.

23. A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B.
Westover. (2009). Exact Discovery of Time Series
Motifs. In proceedings of the 2009 SIAM
International Conference on Data Mining. April 30-
May 2. Sparks, NV.

24. C.G. Nevill-Manning and I.H. Witten. (1997).
Identifying Hierarchical Structure in Sequences: A
linear-time algorithm. Journal of Artificial
Intelligence Research, 7, 67-82.

25. T. Oates. (2002). PERUSE: An Unsupervised
Algorithm for Finding Recurring Patterns in Time
Series. In proceedings of the International
Conference on Data Mining. Maebashi City, Japan.
Dec 9-12. pp. 330-337.

26. P. Patel, E. Keogh, J. Lin, and S. Lonardi.
(2002). Mining Motifs in Massive Time Series
Databases. In Proceedings of the 2002 IEEE
International Conference on Data Mining.
Washington, DC. pp. 370-377.

27. S. Rombo and G. Terracina. (2004). Discovering
Representative Models in Large Time Series
Databases, Proc. of the 6th International Conference
on Flexible Query Answering Systems, pp. 84–97.

28. R. Staden. (1989). Methods for Discovering Novel
Motifs in Nucleic Acid Sequences. Computer
Applications in Biosciences. vol. 5. pp. 293-298.

29. Y. Tanaka and K. Uehara. (2004). Motif Discovery
Algorithm from Motion Data. In proceedings of the
18th Annual Conference of the Japanese Society for
Artificial Intelligence. Kanazawa, Japan. June 2-4.

30. Y. Tanaka, K. Iwamoto, and K. Uehara. (2005).
Discovery of Time-Series Motif from Multi-
Dimensional Data Based on MDL Principle. Mach.
Learn. 58, 2-3, 269-300.

31. H. Tang and S.S. Liao. (2008). Discovering
Original Motifs with Different Lengths From Time
Series. Know.-Based Syst. 21, 7, 666-671.

32. M. Tompa and J. Buhler. (2001). Finding Motifs
Using Random Projections. In proceedings of the 5th
Int'l Conference on Computational Molecular
Biology. Montreal, Canada. Apr 22-25. pp. 67-74

33. M.L. Wong and K.S. Leung. (2000). Data mining
using grammar based genetic programming and
applications. In: Genetic programming, vol. 3. The
Netherlands: Kluwer Academic Publishers.

