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Abstract 
The problem of time series motif discovery has received 
a lot of attention from researchers in the past decade. 
Most existing work on finding time series motifs require 
that the length of the motifs be known in advance. 
However, such information is not always available. In 
addition, motifs of different lengths may co-exist in a 
time series dataset. In this work, we develop a motif 
visualization system based on grammar induction. We 
demonstrate that grammar induction in time series can 
effectively identify repeated patterns without prior 
knowledge of their lengths. The motifs discovered by 
the visualization system are variable- lengths in two 
ways. Not only can the inter-motif subsequences have 
variable lengths, the intra-motif subsequences also are 
not restricted to have identical length—a unique 
property that is desirable, but has not been seen in the 
literature. 
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1. Introduction 
The task of frequent pattern mining is an important 
problem that has many applications. In addition to its 
own merit of summarizing and compressing data, it is 
also a pre-cursor to association rule mining [1]. 
Furthermore, in bioinformatics, it is well understood that 
overrepresented DNA sequences often have biological 
significance [6, 8, 10, 28, 32]. A substantial body of 
literature has been devoted to techniques to discover 
such patterns [1, 2], including sequential patterns on 
sequence data.  

In previous work, we defined the related concept of 
“time series motifs” which are, informally, frequently 
repeated patterns. More specifically, a time series motif 
is a pattern that consists of two or more similar 
subsequences based on some distance threshold [18, 26]. 
Since then, a great deal of work has been proposed for 
the discovery of time series motifs [3, 4, 5, 18, 20, 21, 
22, 23, 25, 26, 29, 30, 31]. Figure 1 shows an example 
of a time series motif in an insect behavior dataset [23]. 

This motif consists of four very similar subsequences of 
length 109. 

 
Figure 1. A motif of length 109 from an insect dataset. The 
top plot shows the entire dataset to present a context for the 
motif. The bars below the plot denote the locations of the 
motif instances. The original dataset is 16,384 in length. 
Most existing work on time series motif discovery, 
however, suffers a limitation; that is, they require an 
input parameter, the motif length n, to be defined. This 
limits the search space for the algorithms; however, it 
also implies that the length of motifs (n) must be known 
in advance. In addition, frequent patterns of different 
lengths might co-exist within the same dataset. To find 
all significant patterns with unknown lengths, one would 
need to repeat the motif discovery algorithm several 
times—each time with a different window size. We also 
noticed that a well-cited motif discovery algorithm 
produces different sets of motifs even if the input length 
differs by just one (e.g. n = 120 vs. n = 121). This raises 
the question of whether such precision or exact motif 
discovery is necessary, or even desirable. In any case, it 
is better to have an algorithm that can automatically 
detect significant motifs of unknown, variable lengths, 
without exhaustively trying different subsequence 
lengths.  

A few algorithms were proposed to discover motifs 
of variable lengths [21, 25, 30]; however, they either do 
so via post-processing, scale poorly, or quantize the 
whole data rather than considering overlapping 
subsequences, resulting in inaccurate and incomplete 
patterns found. 

In the preliminary version of this work [16], we 
proposed an approach to discover variable-length motifs 



by grammar induction [13, 14, 15, 24]. Grammars are 
compact generative representations of sets of objects.  
These objects are most often strings, as are generated by 
grammars in the Chomsky hierarchy, but can also be 
more complex structures like trees and graphs.  In this 
work we are concerned exclusively with string 
grammars.  Grammar induction (or grammatical 
inference, GI) is the process of learning a grammar 
given (at least) a sample of strings in the target 
grammar’s language. 

We argued that a grammar-based algorithm mitigates 
the aforementioned shortcomings of existing motif 
discovery algorithms, in addition to offering a unique 
advantage; that is, it reveals the underlying hierarchical 
structures and patterns of the whole data – something 
that cannot be achieved by existing motif discovery or 
sequential pattern discovery algorithms. Furthermore, a 
grammar-based method will allow a more natural 
mapping from data to rules [33], and can reveal hidden 
hierarchical structures in the data. There has also been 
increasing interest in grammar-based methods for 
feature extraction, classification and forecasting of time 
series [7, 11].  

One novel contribution of this work is that we 
extended the notion of variable-length motifs. 
Intuitively, variable-length motifs is the set of motifs 
whose instances are of different lengths. As an example, 
in a dataset, there might be one motif A of length 100, 
and another motif B of length 250 (assuming no 
overlap). In this work, we allow subsequences for the 
same motif to have variable lengths as well, e.g. A 
might consist of a subsequence A1 of length 109, and 
another subsequence A2 of length 101, both of which are 
very similar to each other despite their different lengths.  

One challenge we encountered is the evaluation of 
our methodology. This is partly due to the fact that no 
other work exists that achieve comparable goals, and 
partly due to the fact that it is difficult to evaluate the 
quality of approximate motifs. A common way to 
evaluate the approximate solution is to compare it with 
the exact solution. However, as mentioned earlier, it is 
debatable whether exact motif search is truly desirable; 
sometimes a little bit of error allowance might be more 
suitable for many real-world applications. As an 
example, for gait analysis or activity analysis, it is 
uncommon for an object, much less different objects, to 
repeat the exact same movements. In addition, since our 
algorithm allows both inter-motif and intra-motif 
subsequences to have different lengths, it is difficult to 
evaluate the patterns objectively, as we have 
deliberately removed the exactness from the solution. 

We addressed the concerns above and implemented a 
variable-length motif visualization tool based on 
grammar induction. Unlike existing motif discovery 
algorithms, our grammar-based motif visualization 

system generates hierarchical rules from the data, and 
displays the patterns that form these rules. Clearly, the 
length of the rules is unrestricted, and so are the patterns 
(motifs) that correspond to the rules. 

In summary, our work has the following novel 
contributions: 
• Our grammar-based motif-discovery algorithm does 

not require the motif length to be known in advance. 
Our approach can find variable-length motifs 
simultaneously, with only one pass through the data. 
As we will demonstrate, not only can the inter-motif 
subsequences have variable lengths, the intra-motif 
subsequences also are not restricted to have identical 
length—a unique property that is desirable, but has 
not been seen in the literature. While the results 
produced by our algorithm are approximate 
solutions, it has been shown recently that in many 
applications, approximate solutions might be 
sufficient or even preferable due to efficiency [4]. 

• Our algorithm is both time- and space-efficient, and 
is suitable for streaming data. 

• We developed a grammar visualization system that 
allows users to navigate the produced rules (i.e. the 
motifs), as well as the instances of the rules (i.e. the 
subsequences that form the motifs). Note that, unlike 
existing motif discovery algorithms, our notion of 
motifs are not defined based on some distance 
threshold. Rather, they are determined based on their 
symbolic approximation, and on the grammar rules. 

• Our greedy approach is efficient; however, in some 
cases, we may desire better quality results at the cost 
of higher time complexity. We propose a search 
algorithm that finds better grammar, and allows 
users more flexibility in choosing between the 
efficiency and the effectiveness of the algorithm. 

The rest of the paper is organized as follows. Section 2 
discusses background and related work on time series 
motif discovery. Section 3 describes the greedy 
grammar induction algorithm that we adapted for our 
work. We describe our approach in Section 4, and 
demonstrate its utility with a case study on motif 
discovery by implementing a grammar visualization 
system in Section 5. We discuss the limitation of the 
greedy approach in Section 6, and propose a search 
algorithm to find better grammar. We conclude and 
discuss future work in Section 7. 

2. Background and Related Work 
In this section, we briefly discuss background and 
related work on motif discovery. We begin with 
definitions of time series: 
Definition 1. Time Series: A time series T = t1,…,tm is 
an ordered set of m real-valued variables. 



Since we are interested in finding local patterns, we 
consider time series subsequences as the basic unit: 
Definition 2. Subsequence: Given a time series T of 
length m, a subsequence C of T is a subsection of length 
n ≤ m of contiguous position from p, that is, C=tp…tp+n-1 

for 1 ≤ p ≤ m – n + 1. 
The subsequences can be extracted via the use of a 
sliding window: 
Definition 3. Sliding Window: Given a time series T and 
a user-defined subsequence length n, all possible 
subsequences can be extracted by sliding a window of 
size n across T and considering each subsequence Cp, 
for 1 ≤ p ≤ m – n + 1. 
A time series motif I thus consists of a set of 
subsequences IS. These subsequences, referred to as 
intra-motif subsequences, are similar to each other, but 
do not necessarily have identical lengths. We will 
explain what it means for the subsequences to be similar 
in a later section. 

Our algorithm will find a set of motifs M, each of 
which consists of its own set of intra-motif 
subsequences as described above. Subsequences from 
different motifs are called the inter-motif subsequences.  
2.1 Related Work 
In [18], we introduced the concept of time series motifs, 
and proposed a sub-quadratic algorithm based on 
hashing and matrix approximation to find exact motifs 
of a given length. Mueen et al. proposed the first 
tractable exact motif discovery algorithm, based on the 
notion of early abandonment [23]. Their algorithm is up 
to three orders of magnitude faster than the brute-force 
algorithm [23]. In some applications, it may be 
sufficient or even desirable to have a fast algorithm that 
can find approximate motifs [4, 5]. As an example, Chiu 
and Keogh proposed probabilistic motif discovery 
algorithm based on random projection [5]. Castro and 
Azevedo proposed a multiresolution motif discovery 
algorithm [4] that is both space and time efficient. Other 
approximate motifs algorithms exist [3, 5, 9, 20, 27, 30]; 
however, one common drawback of all these algorithms 
is that they require an input parameter for the motif 
length. 

3. Greedy Grammar Induction 
Given an input string, a common way to compress it or 
to induce grammar from it is by using a greedy 
approach: repeated patterns are merged, and replaced by 
a new symbol as soon as they are seen, thereby reducing 
the length of the original sequence and producing a 
hierarchical representation that summarizes the structure 
of the data. One example of such approach is Sequitur, a 
string compression algorithm that infers a context-free 
grammar from a sequence of discrete symbols [24]. 
Although simple in design, Sequitur has been shown to 

be competitive with state-of-the-art compression 
algorithms [24], maintaining its scalability even for 
large sequences. Moreover, Sequitur offers a unique 
advantage: it utilizes and identifies the hidden structure 
(recurring subsequences) in the input data sequence, 
requiring a relatively small memory footprint. 

Sequitur works by maintaining two properties: 
digram uniqueness and rule utility [24]. The first 
property requires that no pair of consecutive symbols 
(terminals or non-terminals) appear more than once. 
When Sequitur reads a new symbol from the input 
sequence, the last two symbols of the sequence read so 
far—the new symbol and its predecessor symbol—form 
a digram [24]. A table that stores all existing digrams is 
maintained. If this new digram already exists in the 
digram table, i.e., it appears somewhere in the sequence 
already read, Sequitur uses a non-terminal to substitute 
these digrams, and, if such a rule does not exist, it forms 
a new grammar rule with the non-terminal on the left 
hand side. The second property, rule uniqueness, 
ensures that each grammar rule is used more than once, 
except for the top-level rule, since a grammar rule that 
occurs just once is not meaningful and should be 
removed. As an example, the input string S1: 
“12131213412” can be converted to the following 
grammar:   
Table 1. Grammar generation process by Sequitur for the 
string “12131213412” 

Grammar rule Expanded Grammar rule 
S1 -> BB4A 12131213412 
A -> 12 12 
B -> A13 1213 

The top-level rule, S1→ BB4A, denotes the input 
sequence seen so far. Sequitur is an online algorithm 
that generates the grammar incrementally as each 
symbol arrives. It is, therefore, ideal for streaming 
scenarios. It is both time- and space-efficient, requiring 
O(m) time to compress a sequence of size m, and a 
compressed sequence is of size O(m) in the worst case 
(i.e., no compression), and O(logm) in the best case. 
 This greedy grammar induction algorithm (and the 
many grammar induction algorithms in general) offers 
the following advantages: (1) it creates a compact 
summarization of data, from which hierarchical 
structures are identified; (2) recurring patterns are 
detected automatically, e.g., “1213” in the previous 
example; (3) these recurring patterns found can be of 
any length; and (4) it is suitable for streaming data since 
it constructs the grammars in an incremental fashion. 
These benefits suggest that grammar induction may be 
used to discover variable-length motifs. 

4. Our Approach 
Most grammar induction algorithms were originally 
designed for discrete data. However, time series are 



real-valued data, requiring a pre-processing step to 
allow the application of a grammar-based algorithm.  
In previous work, we introduced a time series symbolic 
representation called Symbolic Aggregate 
approXimation (SAX) [17, 19]. While there have been 
dozens of symbolic representations proposed for time 
series data, SAX has been shown to outperform existing 
methods. In addition, SAX has some unique, desirable 
properties such as dimensionality reduction, lower-
bounding distance measures, and equiprobable symbols. 
For these reasons, we will utilize SAX to discretize our 
data. 

All time series are z-normalized before 
discretization. SAX performs discretization by dividing 
the time series into w equal-sized segments. For each 
segment, their mean value is computed, and then 
mapped to a symbol according to a set of breakpoints 
that divide the distribution space into α equiprobable 
regions, where α is the alphabet size specified by the 
user. If the symbols were not equiprobable, some of the 
symbols would occur more frequently than others. As a 
result, we would inject a probabilistic bias in the 
process. The discretization steps are summarized in 
Figure 2.  

 
Figure 2. Example of SAX for a time series. The time series 
above is transformed to the string cbccbaab, and the 
dimensionality is reduced from 128 to 8. 
There are two ways we may discretize a time series: 
(a) Whole discretization: Convert each time series to a 

single SAX word. Figure 2 shows an example of 
whole discretization. The drawback with this 
approach is that it often does not capture enough 
local details in the data, which are essential for 
many pattern discovery tasks such as motif 
discovery.  

(b) Subsequence discretization: Extract subsequences 
of length n from the time series, normalize the 
subsequences, and convert each subsequence into a 
SAX word. The result is a “bag” of SAX words 
generated from (all or selected) subsequences in the 
original data. 

For subsequence discretization, we need to determine 
which subsequences to consider. It is generally a good 
idea to consider overlapping subsequences [18], since 
non-overlapping subsequences would result in too much 
loss in information. This can be achieved by using a 
sliding window of length n across the time series. For 
most motif discovery algorithms, this is also the length 

of the motif to be discovered. For our algorithm, 
however, n is just the initial window length; the 
algorithm grows the patterns automatically. We 
discretize each subsequence individually using SAX, 
and then concatenate them to form one single sequence. 
The following shows what a transformed sequence, S, 
might look like, in which consecutive, overlapping 
subsequences are delimited by spaces:  
        S = 113 113 123 122 134 113 113 113 123… 
Note each SAX word is equivalent to a terminal symbol. 
We already mentioned the drawback of whole 
discretization; that is, too much detail is lost. A natural 
question to ask is, why not discretize individual points, 
and convert a time series into a string of equal length? 
No doubt such an approach is more efficient than 
subsequence discretization, and allows more 
straightforward adaptation of existing sequential pattern 
mining algorithms. However, since time series are 
typically very noisy, particularly those that are 
generated at a fast rate (e.g. ECG), discretizing each 
time point into a symbol would give each time point 
equal weight, including the noise. In the contrary, the 
“aggregating” feature of SAX smooths out the 
subsequences and removes the noise. 
4.1 Numerosity Reduction 
One novel contribution of this work is that it allows 
intra-motif subsequences to have different lengths. We 
achieve this by employing numerosity reduction during 
the discretization process [18]. Since neighboring 
subsequences are likely to be similar to each other, their 
SAX words will likely be the same. If a string occurs 
many times consecutively, instead of recording every 
single string, we record only the first occurrence of it, 
but note the offset of this first occurrence. If the same 
string appears again after the appearance of some other 
string(s), then we can record it again. The string S thus 
becomes: 

S1 = 113 113 123 122 134 113 113 113 123 
           = 1131 1233 1224 1345 1136 1239 
The subscripts denote the offsets of the first occurrences 
of the strings. Doing so offers the benefits of eliminating 
trivial matches [18], and reducing storage space. As we 
will demonstrate later, it turns out that numerosity 
reduction is the key that makes variable-length motif 
discovery possible. 
4.2 Grammar Induction on SAX Words 
Once we transform the time series into a discrete 
sequence consisted of SAX words, we can induce 
grammar, e.g. by Sequitur, on the SAX word sequence. 
Each string delimited by ‘ ‘ represents one subsequence 
(or a series of subsequences mapped to the same string), 
and is treated as a terminal symbol, an atomic unit for 
patterns. One possible grammar rule that can be 
generated from the above string S1 is A → 113 123. The 



patterns occur in S1[1:3] and S1[6:9], respectively 
(note the difference in pattern lengths due to numerosity 
reduction). Since a grammar rule represents 
subsequences (patterns) that occur more than once, it 
can be regarded as a motif. 
4.3 Mapping Rules to Patterns 
Since we discretized the data, we now need to map the 
rules and strings back to the time series subsequences to 
identify the motifs. The number of rules generated can 
be large and, similar to association rules mining [1], not 
all rules are interesting or important. Several refinement 
steps can be performed on the grammar rules. The 
choice of the appropriate refinement depends on the 
pattern discovery task at hand. In general, we would 
want to rank the rules by their “interestingness.” Several 
ranking criteria can be considered, such as the frequency 
of patterns represented by the rules, the lengths of the 
rules, the pattern variation, the amount of overlap 
between patterns, etc. In this work, we rank the rules by 
the rule lengths and their frequency of occurrences. We 
defer the study of other ranking criteria to future work. 
4.4 Experimental Evaluation 
Our experimental evaluation consists of two parts: (1) to 
demonstrate that it is indeed meaningful to find time 
series “grammar”; (2) to demonstrate that grammar 
induction in time series can help identify variable-length 
motifs. The experiments shown in this paper are 
subjective. The reason is that, to the best of our 
knowledge, there does not exist any other time series 
grammar induction algorithm, or variable-length motif 
discovery algorithm that we can meaningfully and fairly 
compare our technique to. As a result, our first 
experimental evaluation will focus on demonstrating the 
potential of using grammar induction for time series 
pattern discovery.  

Figure 3 shows an ECG dataset, from which the 
grammar is induced. As the figure shows, the raw time 
series is 1500 in length. The initial window length for 
subsequences is 50 (note this is just the initial window 
that the patterns grow from). The SAX parameters used 
for this example are w = 3 and α = 2. The grammar for 
the ECG dataset is shown in Table 2. The column 
“Usage” records the number of occurrences for each 
rule/pattern. 

 
Figure 3. ECG time series. The patterns extracted from 
grammar rule R5 (below) are shown. The initial length is 50. 

The instances of rule R5, which represent 3 individual 
heartbeats, are highlighted in Figure 3. The lengths of 
the subsequences are 288, 286, and 284, respectively, 
with the initial window length of 50. These three 
subsequences are all mapped to the same string “221 
211 212 112 122 112 122 121 221 211 212 112 122 121 
221 211 221 211.” Notice the subsequences are of 
different lengths, and the lengths are not the same as the 
SAX string length. This is due to numerosity reduction – 
each SAX “word” can correspond to multiple 
(consecutive) subsequences, if their respective SAX 
strings are identical and contiguous. The subsequences 
can be seen as a “motif”, which we will discuss more in 
the next section. Numerosity reduction makes motif 
discovery more robust, as we are matching patterns 
based on their shapes, even if they do not have the exact 
same lengths.  

Table 2. Grammar found for the ECG dataset 
 Usage    Grammar Rule    Expanded 

0 R0 -> R1 R2 121 R3 
R3 R4 R5 R6 R5 R2 
211 R6 122 R5 R7 
R8 121 R7 

221 211 221 211 221 121 122 112 122 112 
122 121 221 211 212 112 122 221 211 212 
112 122 112 122 121 221 211 212 112 122 
121 221 211 221 211 221 211 212 112 122 
121 221 211 212 112 221 211 212 112 122 
112 122 121 221 211 212 112 122 121 221 
211 221 211 221 211 221 211 221 211 212 
112 122 121 221 211 212 112 122 221 211 
212 112 122 112 122 121 221 211 212 112 
122 121 221 211 221 211 221 211 212 112 
122 112 122 121 221 211 212 112 121 221 
211 212 112 122 112 122 121 

20 R1 -> 221 211 221 211 
5 R2 -> R1 221 221 211 221 
2 R3 -> 122 112 122 112 
4 R4 -> R9 R10 122 121 221 211 212 112 122 
3 R5 -> R11 R4 121 

R2 211 
221 211 212 112 122 112 122 121 221 211 
212 112 122 121 221 211 221 211 

2 R6 -> R10 121 R8 221 211 212 112 122 121 221 211 212 112 
2 R7 -> R11 R9 221 211 212 112 122 112 122 121 
10 R8 -> R1 212 112 221 211 212 112 
6 R9 -> 122 121 122 121 
11 R10 -> R8 122 221 211 212 112 122 
5 R11 -> R10 112 221 211 212 112 122 112 

The rule R5 is composed of three other rules, R11, R4, 
and R2, along with two other short patterns “121” and 
“211.” We plotted one instance from each of the three 
rules, and the result is shown in Figure 4. We can clearly 
see that the pattern for R5 is composed from the three 
sub-patterns for R11, R4, and R2. The grammar indeed 
reveals some hierarchical structure in the data. 

 
Figure 4. The decomposition of one of the motif instances. 

We already demonstrate in Figure 3 that a motif can be 
found in the ECG dataset by examining the grammar 
rules generated. While only one motif is shown (which 



are represented by 3 instances) in the figure, Figure 4 
shows three shorter-length patterns (motifs) that make 
up the longer pattern. These three motifs are captured by 
rules R11, R4, and R2, respectively.   

5. Visualization 
Depending on the complexity of the dataset and the 
choices of SAX parameters, the number of rules 
generated by our grammar induction algorithm can be 
large. In addition, since the algorithm produces 
approximate results, it is desirable to have a mechanism 
that allows users to easily navigate through the patterns 
found. To best evaluate and validate the results, we 
implemented a grammar/motif visualization system 
based on the methodology proposed. Figure 5 shows a 
screen shot of the visualization tool. 

The upper left panel shows the input time series, the 
“winding” dataset from The UCR Time Series Data 
Mining Archive [12]. The upper right corner is the 
“control panel”, which allows the user to enter various 
options such as SAX parameters, the initial window 
size, and sliding window option. If the sliding window 
option is selected, then the time series will be 
discretized by subsequence discretization, otherwise 
whole discretization will be employed. Each button 
denotes a step in the algorithm: Load Data, Discretize, 
Generate Grammar (motifs). This allows the user to go 
back and change parameters without having to reload 
the dataset.  

Once the data is loaded (and shown in the upper left 
panel), the time series is discretized based on the 
parameters and sliding window option. The SAX string 
(delimited by ‘*’) is shown in the panel right below the 
input time series panel. Grammar can then be induced 
from the SAX string, and the production rules are shown 
in the lower left panel. As the user scrolls down the list 
of rules, the rule pointed to by the cursor will be 
highlighted, and the subsequences that form the rule will 
be plotted in the lower right panel. The corresponding 
subsequences will also be highlighted on the input time 
series. In this example, the length of the dataset is 2,500. 
The SAX parameters are α = 3 and w = 4, the initial 
window size is set to 100, and the sliding window option 
is turned ON.   

Each rule represents one motif, which consists of at 
least two subsequences (the rule utility policy governs 
that at least two matching subsequences are needed in 
order to form a rule). These intra-motif subsequences 
are similar in the sense that they all share the same 
symbolic approximation and grammar rule. While it is 
obvious that the length of each motif depends on its 

corresponding grammar rule (hence the variable-length 
motifs), the subsequences within each motif can also 
have different lengths due to the numerosity reduction 
feature.  

Placing the cursor on Rule #12: R12 → 2221 2321 
R46 3321 3311 reveals the motif shown in the lower 
right panel in Figure 5. Following the rule is the number 
of occurrences for this pattern (3), the expanded rule 
(2221 2321 2331 2321 3321 3311)—which simply 
means that the subsequences for the motif all have this 
SAX representation—and the offsets for these 
subsequences on the SAX string. Their offsets on the 
original time series can be easily computed. The 
subsequences are approximately 140 in length, although 
one is slightly shorter than the other two. There are a 
total of 54 rules generated for this example. In the same 
run of the algorithm, another motif found is shown in 
Figure 6 (Rule #29). The subsequences for this motif 
have length of approximately 370. This and the previous 
example demonstrate the algorithm’s ability to find 
variable-length motifs – motifs with varying lengths are 
discovered simultaneously. 

Next we will demonstrate the non-sliding-window 
option (i.e. whole discretization). The screenshot is 
shown in Figure 7. For this option, the original time 
series of length 2,500 is discretized into one long SAX 
string, with α = 3, and w = 200. While the non-sliding-
window option usually finds fewer patterns (i.e. some 
patterns might be missed because they are broken up in 
two segments, or they might be shifted in their 
respective segments), they also result in fewer rules due 
to shorter, less complicated string. There are only 21 
rules generated with the non-sliding-window option, 
compared to 54 rules with sliding windows. For this 
example, we are able to find a motif of length about 480. 

Figures 8 and 9 show another example on a different 
dataset. The insect behavior dataset introduced in [23] 
has length of 18,667. The initial window size is again 
set to 100. The SAX parameters are α = 2, and w = 3. 
Since the dataset is long and noisy, having a smaller 
alphabet size reduces the complexity of the resulting 
string, which in turn produces better results. There are a 
total of 60 rules. The first motif, shown in Figure 8, 
consists of two subsequences of approximately 750 in 
length. The second motif, shown in Figure 9, consists of 
two subsequences that are about 470 and 490, 
respectively, in length. This result is impressive, 
considering the initial window length is only 100, and 
the SAX approximation is very coarse.  

 



 
Figure 5. Screenshot of the grammar/motif visualization system on the winding dataset. The motif found is approximately 140 in 
length.
 

 
Figure 6. Screenshot of the grammar/motif visualization system on the winding dataset. The motif length is about 370.



 
Figure 7. Screenshot of the grammar/motif visualization system on the winding dataset, without sliding window option. The 
motif  length is about 470.

 
Figure 8. Screenshot of the grammar/motif visualization system on the insect dataset. The motif length is about 750



 
Figure 9. Screenshot of the grammar/motif visualization system on insect dataset. The motif length is between 470 and 49

Some of the rules might be redundant or uninteresting to 
users. While such rules may be eliminated by employing 
the chosen filtering criteria in the post-processing step as 
described in Section 4.3, the visualization capability 
allows the user to quickly examine and explore the rules. 
In this version, since the goal is to provide the user a 
complete picture of the rules found, no rule was 
eliminated in the visualization tool. 
5.1 Parameter Setting 
As shown in our experiments, the parameters do not 
need much tuning. For most cases, we chose the 
arbitrary window size of 100, α = 2 or 3, and w = 3 or 4. 
We find that even though the SAX approximation may 
seem coarse, the motifs found are satisfactory. As 
mentioned, if the dataset is long and noisy, it may be 
better to choose a small alphabet size such as α = 2, 
which reduces the complexity of the data. This might 
result in more erroneous matches; however, the 
visualization capability makes it very easy to visually 
prune off these matches.  

Note that without numerosity reduction, the pattern 
growth would be limited. We are more likely to find 
longer patterns if numerosity reduction is used. On the 
other hand, with numerosity reduction, there is a higher 
chance for erroneous matches (due to the flexible 
lengths). Nevertheless, we find that in our experiments, 
having the numerosity reduction feature generally 
produces better results. 

6. Finding Better Grammar 
The greedy approach offers many desirable properties 
and is efficient for finding grammars, hierarchies, and  

regularities in data. Nevertheless, in some cases the 
inherent nature of the algorithm prevents it from 
meeting our expectations. Specifically, it is not 
surprising that the grammar inferred by Sequitur is not 
minimal because it is an on-line, greedy algorithm. In 
fact, it has been shown that finding the minimal 
grammar is an NP-hard problem [15]. 

The following example illustrates this limitation of 
Sequitur. Consider the input string S2 = 
(11112131131)4, which consists of four copies of 
11112131131. The grammar rules generated by Sequitur 
are shown in Table 3: 
Table 3. Grammar generation process by Sequitur for the 
string (11112131131)4.  
Usage   Grammar Rules  Expanded 

0 R0 -> R1 R1 R2 R2 
R2 R3 3 1 

1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 1 1 
1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 

12 R1 -> 1 1 1 1 
3 R2 -> R3 R4 R1 1 2 1 3 1 1 3 1 1 1 1 1 
4 R3 -> 2 1 R4 2 1 3 1 1 
7 R4 -> 3 R1 3 1 1 

Sequitur does not identify the fact that the string consists 
of 4 copies of the substring “11112131131”, nor does it 
identify the longest repeating pattern: “11112131131 
11112131131”. This is because Sequitur generates a 
grammar rule as soon as a match is found. When 
Sequitur sees the last symbol ‘1’ of the first copy of 
“11112131131”, and the first symbol ‘1’ of the next 
“11112131131”,  it determines that 11 is a match for the 
existing pattern R1, and replaces 11 with R1. Simply 
stated, Sequitur makes the decision on grammar rule 
inference using the partial knowledge it has so far, hence 
reaching a local optimum.  

To ensure that merging is the best action globally, we 
would need to keep track of all possibilities: merge or 



not merge with each matching diagram. The exhaustive 
approach is clearly infeasible, as the number of possible 
actions grows exponentially with the number of 
matching digrams. Our goal is thus to improve upon the 
greedy approach, without having to exhaustively 
consider all options. There are many ways to compare 
different grammars. For our purposes, we use the size of 
the top-level grammar rule as the measure for its quality. 
We argue that the size of the top-level rule of a grammar 
is a good indication of how well the sequence is 
compressed.  

We extend the notion of digrams, and define a 
trigram to be a set of three symbols that appear 
consecutively in a sequence. Each trigram can be 
decomposed into two digrams. For instance, the trigram 
abc is composed of two digrams ab and bc. We call ab 
the left digram, L, and bc the right digram, R.  

There are four different types of trigrams we may 
encounter: 
• Type I:  L already exists in the sequence processed 

so far; R does not. 
• Type II: L does not exist in the sequence processed 

so far; R already exists. 
• Type III: Both L and R exist in the sequence 

processed so far. 
• Type IV: Neither L nor R exists in the sequence seen 

so far. 
For both Type I and Type III trigrams, in which the left 
digram L already exist in the digram table, there are two 
possible courses of actions. For Type I trigrams, we can 
either replace L or keep going without replacing L. For 
Type III trigrams, we can either replace L or replace R 
(note that replacing R is equivalent to not replacing L). 
Sequitur always replaces L for both cases which, as we 
have already seen, can prevent longer patterns from 
being recognized in the future.  
 Having defined trigrams, we can envision a search 
tree, in which each node denotes the substring processed 
so far. Figure 10 shows the search tree for the string 
“11112131131”. The leaf nodes (with bolded rectangles) 
store all the possible top-level grammar rules. A node is 
split when we encounter a Type I or a Type III trigram, 
and the branches are labeled with the new production 
rule generated by merging the left or right digram. This 
results in two new subtrees, each of which represents 
different grammar inference generated from the action 
described by the split. 

For example, the root node “11112…” is split into 2 
nodes. Its left child is “AA213113…”, obtained after 
merging the digrams “11”, replacing both occurrences of 
“11” with a new non-terminal “A”, and scanning until it 
sees “113”, which is a Type III trigram (both “11” and 
“13” exist already). Note that Sequitur would greedily 
parse “113” as (11)3, i.e. merging “11”. However, in 

our search tree, we split the node again, with the left 
child representing the merging of “11”, and the right 
child representing the merging of “13”. The problem of 
finding the best grammar(s) thus becomes searching for 
the best path(s) to follow. Sequitur always follows the 
leftmost path (i.e. the circled path in the figure), which is 
often not the path that produces the best result. In this 
example, the path that produces the best grammar is 
highlighted. 

 
Figure 10. Grammar search tree for the string “11112131131” 
Exhaustive search is clearly intractable, as there are 
approximately 2d paths in the tree, where d = (# of Type 
I trigrams) + (# of Type III trigrams). As a result, we 
cannot actually build the entire tree. We propose a 
simple random search algorithm. At each node, we 
choose a child at random. In other words, whenever we 
read in a Type I or Type III trigram, we flip a coin and 
decide whether to merge or not to merge (for Type I), or 
to merge the left digram or the right digram (for Type 
III). With the exponential search space, this algorithm 
will likely require many iterations before we find one 
good path. We propose to always visit the leftmost path, 
which will lead us to the same grammar generated by 
Sequitur. We call this the base grammar. We then 
randomly search the rest of the tree for a grammar better 
than the base grammar. We divide the search space into 
k subtrees, where k = 2L, and L is a user-defined 
parameter denoting the tree level where the random 
search starts. For example, if L = 2, then k = 4, and 
random search is performed in the subtrees rooted at the 
nodes on level 2 (assuming the root node is at level 0). 
For each subtree except for the first one (in which we 
follow the leftmost path), we repeat the search r times. 
The parameters L and r can be adjusted according to the 
computing resources available. Once all subtrees are 
searched, we can either stop the search and return the 
best grammar found (including the base grammar), or 
we can narrow the search among a few subtrees that 
return the highest counts of grammars better than the 
base grammar.  

Table 4 shows the resulting grammar on the same 
string shown in Table 3, using random search. The 
parameter L is set to 3, and r is set to 50 (i.e., partition 
the search space into 8 subtrees, and run 50 random 
searches in each subtree except for the first one). The 



best grammar was found after 66 iterations. Out of 350 
random iterations, we found 17 grammars that are better 
than the base grammar.  
Table 4. Grammar generated by our random search. The fact 
that the string consists of 4 copies of the substring 
“11112131131” is identified. 
Usage   Grammar Rules   Expanded 

0 R0 -> R1 R1 1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 
1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 

2 R1 -> R2 R2 1 1 1 1 2 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 
4 R2 -> R3 R3 2 1 3 R4 1 1 1 1 2 1 3 1 1 3 1 
12 R3 -> 1 1 1 1 
4 R4 -> R3 3 1 1 1 3 1 

We compare the grammars induced by Sequitur and 
random search algorithm, respectively, on longer 
sequences. ECG SAX is a SAX word sequence, 
converted from ECG data shown in Figure 3. The 
sliding window length is 100, and the SAX parameters 
are a = 2, w = 3. The second dataset is a DNA sequence. 
For both datasets, random search was run with 3200 
iterations. Multiple grammars were found, in both cases, 
that are better than the ones from Sequitur. However, for 
each dataset, only the best (shortest) one is recorded, in 
terms of the length of the top-level rule. From the 
results, we can see that while random search can find 
better grammars than Sequitur with enough iterations, 
the improvement is marginal. It is unclear how close we 
are to finding the best grammar, since we did not 
examine all possible paths. We are not claiming that 
random search is the best search option; in fact, we 
believe that better approaches exist. Our experiments 
simply show that it is possible to improve the greedy 
grammar search by using a tree search algorithm. In fact, 
the tree-search-based method allows more flexibility in 
choosing between the efficiency of the algorithm and the 
quality of the results, whereas the traditional greedy 
approach produces fast but suboptimal result.  
Table 6. Comparison between the grammars induced by 
Sequitur and random search 

 # tokens Sequitur first rule 
length 

Random search first rule 
length 

ECG SAX 130 20 17 
DNA 149 57 51 

7. Conclusion and Future Work 
In this work, we propose a methodology to find 
approximate variable-length time series motif using a 
grammar-based compression algorithm. Our algorithm 
offers the advantage of discovering hierarchical 
structure, regularity and grammar from the data. The 
visualization tool further allows the user to navigate 
through and explore different motifs of variable lengths 
that co-exist in the dataset. Our results show that the 
grammar-based approach is able to find some important 
motifs and suggest that the new direction of using 
grammar-based algorithms for time series pattern 
discovery is worth exploring. We also proposed a search 
heuristic to improve the quality of induced grammar. 

Many future directions are possible. We would like to 
analyze the time complexity for the random search 
algorithm. The time complexity can be controlled by 
limiting the number of iterations. However, with long 
sequences, we would possibly need an untenably large 
number of iterations in order to make some impact on 
the results. Though, in the worst case, the algorithm 
resorts to returning the same grammar as Sequitur. We 
would like to analyze and approximate the number of 
iterations needed and the fraction of all paths that result 
in better grammars than the base grammar. We can also 
allow different biases on the random search. For 
example, it may be possible to adjust the bias 
dynamically based on the quality of grammar found so 
far. Furthermore, we would like to explore other search 
heuristics. For the visualization tool, we would like to 
enhance the rule ranking and filtering feature. It is 
possible to prune off the false positives by calculating 
the distances between the motif instances. 
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