
Approximate Variable-Length Time Series Motif Discovery
Using Grammar Inference

Yuan Li
Computer Science Department

George Mason University
Fairfax, VA

ylif@gmu.edu

Jessica Lin
Computer Science Department

George Mason University
Fairfax, VA

jessica@cs.gmu.edu

ABSTRACT

The problem of identifying frequently occurring patterns,
or motifs, in time series data has received a lot of attention
in the past few years. Most existing work on finding time
series motifs require that the length of the patterns be
known in advance. However, such information is not
always available. In addition, motifs of different lengths
may co-exist in a time series dataset. In this work, we
propose a novel approach, based on grammar induction, for
approximate variable-length time series motif discovery.
Our algorithm offers the advantage of discovering
hierarchical structure, regularity and grammar from the
data. The preliminary results are promising. They show that
the grammar-based approach is able to find some important
motifs, and suggest that the new direction of using
grammar-based algorithms for time series pattern discovery
might be worth exploring.

Keywords
Time Series, Frequent Patterns, Grammar Induction

1. INTRODUCTION

The vast growth of disk technology in the past decade has
enabled us to store large multimedia databases, such as
audio, video, images, time series, etc. While storage is no
longer an impediment, it has become increasingly apparent
that efficient techniques are needed for humans to quickly
browse through, understand, and discover interesting
patterns from the data.
Like other multimedia data types, time series data are
ubiquitous. They are prevalent in almost every aspect of

human life. Some examples of such data include speech,
electrocardiogram (ECG) signals, radar signals, seismic
activities, etc. In addition to the conventional definition of
time series, i.e., measurements taken over time, recently, it
has been shown that certain other multimedia data, e.g.,
images and shapes [48, 49], and XML [19], can be
converted to time series and mined with promising results.
Figure 1 shows an example of how shapes can be converted
to time series.

Figure 1. A shape is converted to time series. Image courtesy of
Eamonn Keogh [24].

There has been a great amount of interest in mining time
series data in the past decades. Most of the work in time
series research has concentrated on solving classic data
mining tasks such as similarity search, classification, and
clustering [24]. There is relatively little work on learning
hierarchy, structure, and patterns from time series data. At
first glance, it seems a surprising oversight, as learning
patterns and structures from data can provide valuable
insights on the regularity and hidden semantics of the data
and its underlying generative process. In addition,
understanding the structure of data can potentially help
solve the aforementioned data mining tasks. Such
algorithms, e.g. grammar induction [25, 26, 28, 39, 40],
have received decades of attention in the natural language
and text processing communities. In this paper, we focus on
one specific pattern discovery task that can benefit from
learning hierarchy and structure from data, namely,
frequent pattern mining [10, 12, 30, 32, 33, 35, 44, 45, 46].
The task of frequent pattern mining is an important
problem that has many applications. In addition to its own

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MDMKDD’10, July 25, 2010, Washington DC, U.S.A.
Copyright 2010 ACM 978-1-4503-0220-3…$10.00.

merit of summarizing and compressing data, it is also a pre-
cursor to association rule mining [2]. Furthermore, in
bioinformatics, it is well understood that overrepresented
DNA sequences often have biological significance [8, 16,
20, 23, 43, 47]. A substantial body of literature has been
devoted to techniques to discover such patterns [2, 4],
including sequential patterns on sequence data.
In a previous work, we defined the related concept of “time
series motif” [30], which are frequently occurring patterns
in time series data. Since then, a great deal of work has
been proposed for the discovery of time series motifs [10,
12, 30, 32, 33, 35, 44, 45, 46]. Figure 2 shows an example
of a time series motif in an insect behavior dataset1.

Figure 2. A motif of length 109 from an insect dataset. The top
plots show the entire dataset to present a context for the motifs.
The bars below the plots denote the locations of the motifs. The
original dataset is 16,384 in length.

Identifying time series motifs is a much more complex
problem than finding frequent sequential patterns, as the
task of sequential pattern mining is often performed on
discrete data. Existing algorithms on finding frequent
itemsets in transaction data [2], and on finding sequential
patterns in sequence data [4] are not suitable for time series
motif discovery for one or more of the following reasons:
(1) They focus on discrete data, whereas time series are
continuous, real-valued data. (2) They are iterative methods
and typically require multiple database scans. (3) They are
designed for static databases [43].
Intuitively, one may try to convert a real-valued time series
data into a data format for which existing off-the-shelf
algorithms can be applied. One way to achieve this is to
discretize each data value in the time series. However, the
problem with this approach is that time series data are
typically noisy, and considering every single point as an
“event” would result in a noisy string that inaccurately
reflects the noises as true patterns in the data. A better
alternative is to consider subsequences instead. However,
this approach poses another challenge: we simply cannot

1 Information on the insect dataset can be found in [35].

know in advance which subsequences are frequent. As a
result, we need to consider every possible subsequence in
the data. Considering all subsequences of any length, with
overlaps, is undoubtedly a tedious task. To alleviate the
complexity, most existing work [12, 30, 34, 35] thus
require an input parameter: a pre-defined motif length n.
This limits the search space for the algorithms; however, it
also implies that the length of motifs (n) must be known in
advance. In addition, frequent patterns of different lengths
might co-exist within the same dataset. In order to find all
significant patterns with unknown lengths, one would need
to repeat the motif discovery algorithm several times—each
time with a different window size. It is more desirable to
have an algorithm that can automatically detect significant
motifs of variable, previously unknown lengths, without
exhaustively trying different subsequence lengths.
In this work, we propose to utilize a grammar-based
compression algorithm, Sequitur [37], that can
automatically and efficiently identify frequent patterns and
hierarchical structure in data. We believe that a grammar-
based approach [25, 28, 37, 50] is suitable and
advantageous for our task due to several reasons. First,
producing a (relatively) small set of interpretable rules from
a massive dataset is a desirable goal of data mining.
Clearly, a grammar-based method will allow a more natural
mapping from data to rules [51], and can reveal the hidden
hierarchical structures in the data. There has also been
increasing interest in grammar-based methods for feature
extraction, classification and forecasting of time series [17,
53]. Furthermore, as mentioned earlier, it is important to
consider every subsequence in the time series when trying
to identify motifs.
While this work is still at its early stage, the preliminary
results are promising. Specifically, they show that the
grammar-based approach has the potential to identify some
important motifs in time series.
The rest of the paper is organized as follows. Section 2
discusses background and related work on time series
motifs and grammar induction. Section 3 describes the
grammar induction algorithm, Sequitur, that we adapt in
this work. We describe our approach in Section 4. Section 5
presents some preliminary results using grammar-based
approach to find variable-length motifs. We conclude in
Section 6 and discuss future work.

2. BACKGROUND AND RELATED WORK

In this section, we briefly discuss background and related
work on time series similarity search.
For concreteness, we begin with definitions of time series:
Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.
Since we are interested in finding local patterns, we
consider time series subsequences as the basic unit:

Definition 2. Subsequence: Given a time series T of length
m, a subsequence C of T is a subsection of length n ≤ m of
contiguous position from p, that is, C = tp…tp+n-1 for 1 ≤ p ≤
m – n + 1.
Since all subsequences may potentially be the candidates
for motifs, any algorithm would have to extract and
consider all of them. This can be achieved via the use of a
sliding window:
Definition 4. Sliding Window: Given a time series T and a
user-defined subsequence length n, all possible
subsequences can be extracted by sliding a window of size
n across T and considering each subsequence Cp, for 1 ≤ p
≤ m – n + 1.
Figure 3 summarizes the definitions mentioned above.

Figure 3. Subsequences of length 50 are extracted from a time
series T via a sliding window.
Next, we briefly discuss related work on time series motif
discovery and grammar induction techniques.

2.1 Related Work
2.1.1 Time Series Motifs
In [30], we defined time series motif C as the subsequence
in T that has the highest count of non-trivial matches, that
is, subsequences that are within ε units of distance away
from C. We proposed a sub-quadratic algorithm to find
exact motifs of a given length. Mueen et al proposed an
algorithm named MK that is an improvement from the
brute-force exact motif discovery algorithm [35]. The
intuition behind MK is that the linear ordering of
subsequence provides some useful heuristic information
that guides motif search. The observation is that if two
subsequences are close in the original space, they must also
be close in the linear ordering.
In some applications, it may be sufficient or even desirable
to have a fast algorithm that can find approximate motifs
[12]. As an example, Chiu and Keogh proposed
probabilistic motif discovery algorithm based on random
projection [12]. The advantage of probabilistic motif
discovery algorithm is its efficiency. Other approximate
motifs algorithms exist [10, 12, 32, 42, 45, 52]; however,
one common drawback for all these algorithms is that they
require an input parameter for the motif length.
A few algorithms were proposed to discover motifs of
variable lengths [33, 38, 45]; however, they either do so via
post-processing, scale poorly, or quantize the whole data
rather than considering overlapping subsequences, resulting

in inaccurate and incomplete patterns found.
Some work has been proposed to find motifs from
multivariate time series. Minnen and Isbell proposed a
multivariate motifs discovery algorithm by using
subsequence density estimation and greedy mixture
learning [34]. They present motif discovery as the problem
of locating regions of high density in the space of all time
series subsequences. This algorithm locates an over-
complete set of candidate motif seeds by identifying
subsequences located near high density regions at first, then
it adopts a greedy mixture learning framework to select the
correct motifs from over-complete set of candidate motif
seeds and to find the additional motif occurrences.

2.1.2 Grammar Induction
Grammatical induction, also known as grammatical
inference, refers to the process of learning regular
grammars or automata. Broadly speaking, a learner is
required to induce a grammar from some data which are
sequential or structured (strings, words, trees, terms or
limited forms of graphs) [13]. Contrary to the tradition
decision rule problem, which seeks a descriptive model,
grammatical induction may be said to seek a generative
model. There are a wide variety of algorithms for
grammatical induction. RPNI (Regular Positive and
Negative Grammatical Inference) [40], proposed by Oncina
and Garcia, is a polynomial time algorithm to identify a
DFA consistent with a given sample, but there are some
open problems for this algorithm both on time complexity
and definition of characteristic set. Angluin identifies the
smallest k-reversible language, a subset of the class of
regular languages, that contains any finite positive sample
in O(n3), where n is the sum of length of the strings in the
sample [6, 39]. Active learning is a learning model
proposed by Angluin [7], where the learner can ask string
membership and grammar equivalence queries to an oracle.
The membership and equivalence queries form a Minimal
Adequate Teacher. In this model of learning, the algorithm
L* identifies regular languages with a polynomial number
of queries. Another grammar inference algorithm, GRIDS
[26], guides search through a space of context-free
grammars by using a simplicity metric. Due to the use of
Minimum Description Length (MDL) for scoring and
selecting the most plausible grammars, GRIDS tend to find
simple grammars [26].

3. SEQUITUR

We plan to investigate how to extract patterns using
techniques that identify hierarchies and frequent sequences.
Although aimed at compressing discrete sequences of data,
there are algorithms that can be used as a proof-of-concept
for our preliminary study. For instance, Sequitur [37] is a
string compression algorithm that infers a context-free
grammar from a sequence of discrete symbols [37]. It has

been adopted in various domains due to the many nice
properties it offers: it has been used to find repeated DNA
sequences [11, 50] and repeated function call sequences
[27], and to segment time series [9]. The main premise is
that repeated subsequences are replaced by a grammatical
rule that generates the subsequence, thereby reducing the
length of the original sequence, and producing a
hierarchical representation that summarizes the structure of
the data. Although simple in design, Sequitur has been
shown to be competitive with the state-of-the-art
compression algorithms [37], maintaining its scalability
even for large sequences. Moreover, Sequitur offers a
unique advantage—it utilizes and identifies the hidden
structure (recurring subsequences) in the input data
sequence, requiring relatively small memory footprint. Due
to these reasons, we choose Sequitur in this work to
demonstrate the utility of using grammar-based
compression algorithms to find patterns in time series data.
Sequitur works by maintaining two properties: digram
uniqueness and rule utility [37]. The first property governs
that no pair of consecutive symbols (terminals or non-
terminals) can appear more than once. When Sequitur reads
a new symbol from the input sequence, the last two
symbols of the sequence read so far—the new symbol and
its predecessor symbol—form a digram [37]. A table that
stores all existing digrams is maintained. If this new digram
already exists in the digram table, i.e., it appears
somewhere in the sequence already read, Sequitur uses a
non-terminal to substitute these digrams, and, if such rule2
has not yet existed, it forms a new grammar rule with the
non-terminal on the left hand side. The second property,
rule uniqueness, ensures that each grammar rule be used
more than once except for the top-level rule, since a
grammar rule that occurs just once is not meaningful and
should be removed. As an example, the input string S1:
“12131213412” can be converted to the following
grammar:

Grammar rule Expanded Grammar rule
S1 -> BB4A 12131213412
A -> 12 12
B -> A13 1213

The top-level grammar rule, S1→ BB4A, denotes the
sequence seen so far. Sequitur is an online algorithm that
generates the grammar incrementally as each symbol
arrives. It is, therefore, ideal for the streaming scenarios. It
is both time- and space-efficient, requiring O(m) time to
compress a sequence of size m, and a compressed sequence
is of size O(m) in the worst case (i.e., no compression), and

2 Note the “rules” here should not be confused with the sequential

or association rules. The “rules” here refer to those that are
generated by the algorithm. It is equivalent to the concept of
frequent itemsets in association rule mining.

O(logm) in the best case [37].
The main advantages of Sequitur (or many grammar-

induction algorithms in general) are three-fold: (1) it
identifies recurring patterns automatically, e.g., “1213” in
the previous example, as well as hierarchical structure; (2)
the recurring patterns found can be of any lengths; and (3)
it is suitable for streaming data since it constructs the
grammars in an incremental fashion. These benefits suggest
that we may be able to adapt it to find variable-length
motifs for time series. We describe how we achieve this in
the next section.

4. FINDING APPROXIMATE VARIABLE-
LENGTH MOTIFS BY SEQUITUR

We propose an algorithm that finds approximate variable-
length motifs using Sequitur. Our approach consists of
three steps: Pre-processing (discretization), Motif
Discovery (Sequitur), and Post-processing. We describe
each step in more details below.

4.1 Step 1: Discretization
Sequitur, or more generally, grammar induction algorithms,
were originally designed for discrete data. However, time
series are real-valued data, requiring a pre-processing step
to allow the application of a grammar-based algorithm.
In a previous work, we introduced a time series symbolic
representation called Symbolic Aggregate approXimation
(SAX) [29, 31]. While there have been dozens of symbolic
representations proposed for time series data, SAX has
been shown to outperform existing methods. In addition,
SAX has some unique, desirable properties such as
dimensionality reduction, lower-bounding distance
measures, and equiprobable symbols. For these reasons, we
will utilize SAX for our pre-processing step.
Given a time series, SAX performs discretization by
dividing the time series into w equal-sized segments. For
each segment, their mean value is computed, and then
mapped to a symbol according to a set of breakpoints that
divide the distribution space into α equiprobable regions,
where α is the alphabet size specified by the user. If the
symbols were not equiprobable, some of the symbols
would occur more frequently than others. As a
consequence, we would inject a probabilistic bias in the
process. It has been noted that some data structures such as
suffix trees produce optimal results when the symbols are
of equiprobability [14]. The discretization steps are
summarized in Figure 3.

Figure 4. Example of SAX for a time series. The time series
above is transformed to the string cbccbaab, and the
dimensionality is reduced from 128 to 8.

There are two ways we may discretize a time series:
(a) Whole discretization: Convert each time series to one

SAX word. Figure 4 shows an example of whole
discretization. The drawback with this approach is that
it often does not capture enough local details in data,
which are essential for motif discovery.

(b) Subsequence discretization: Extract subsequences of
length n from the time series, and convert each
subsequence into a SAX word. The result is a bag of
SAX words generated from (all or selected)
subsequences in the original data.

For subsequence discretization, we need to determine
which subsequences to consider. In general, we need to
decide whether or not overlapping subsequences are
allowed. Non-overlapping subsequences can be obtained
through “chunking,” which is the process where a time
series is segmented into subsections by a specific period.
This is very similar to whole discretization, and shares
similar drawbacks as whole discretization. More
specifically, unless the data is periodic, in which case we
could segment the data by days, weeks, etc., segmenting
the data into non-overlapping subsequences could break a
pattern into two or more segments and/or shift the patterns.
Figure 5 shows an example. In the figure, an ECG signal is
chunked into segments of length 500. Since each heartbeat
has different length, the individual heartbeats eventually
become misaligned.

Figure 5. An ECG signal is chunked into non-overlapping
segments of length 500. The individual heartbeats eventually
become misaligned.
A better approach is to consider overlapping subsequences.
Since each subsequence in the dataset can be a potential
candidate for motif, we should consider all possible
subsequences in order to ensure correct results. This can be
achieved by using a sliding window of length n across the
time series. Note that n is just the initial window length for
our algorithm; the algorithm will grow the patterns

automatically. Once we collect all the subsequences, we
can then discretize each subsequence individually using
SAX, and then concatenate them to form one single
sequence. A transformed sequence might look something
like this:
S = 1131-1132-1232-1223-1344-1131-1132-1232…
where the ‘-‘ denotes the delimiter between consecutive,
overlapping subsequences.
The reason we choose to discretize subsequences rather
than individual points is that time series are typically very
noisy. If we discretize each time point into a symbol, and
then form a string from these symbols, then we would give
equal weight to each time point, including the noises. On
the other hand, the “aggregating” feature of SAX would
smooth out the subsequences and essentially remove the
noises.

4.2 Step 2: Sequitur on SAX Words
Once we transform the time series into a discrete sequence
consisted of SAX strings, the application of Sequitur on the
sequence is straight-forward. Each string delimited by ‘-‘
represents one subsequence, and is treated as a terminal
symbol, an atomic unit for patterns. Sequitur embodies
efficiency and accuracy in finding the repeated patterns of
sequences in many cases. One possible grammar rule that
can be generated from the above string is

A → 1131-1132-1232.
We modify the original Sequitur algorithm and record the
offsets of the subsequences that occur in each grammar
rule.

4.3 Step 3: Post-Processing
Since we discretized the data before running the algorithm,
we now need to map the rules and frequent strings back to
the time series subsequences. We can simply record the
starting offsets of all grammar rule instances. We will
obtain approximate results if we do not perform any
verification step. In some cases, it is acceptable to obtain
approximate motifs, trading accuracy for speed. In other
cases where the user desires to find the exact motifs, we
can use the grammar rules found as our seeds and perform
a range search using these motif seeds. In this preliminary
work, we only examined the approximate motifs and will
leave the exact motif discovery for future work.
The number of rules generated can be large and, similar to
association rules mining [2], not all rules are interesting or
important. Several refinement steps can be performed on
the grammar rules, for example
(1) Eliminate trivial matches for a motif. For the purpose

of this paper, the trivial match of a subsequence M is
any subsequence that overlaps M. We need to
eliminate those occurrences from a grammar rule
because nearby subsequences are likely to be similar to

each other and may simultaneously contribute to a
motif, causing the patterns to be over-counted.

(2) Rank the rules by their “interestingness.” Several
ranking criteria are possible:
a. Frequency – Frequency of a pattern, equivalent to

the support in association rule mining, is perhaps
the most trivial criterion to consider; however, it
often is not the most meaningful way to measure
the significance of a pattern.

b. Rule length – In many cases, long patterns are more
interesting than short ones.

c. Pattern variation - Patterns with variations are
likely to be more interesting than the monotonically
increasing or decreasing ones. Fortunately, since
SAX preserves the general shape of the time series,
the pattern variation can be approximated without
much difficulty.

d. Overlapping information – The amount of overlap
between a new pattern to be examined and those
that are already deemed significant, should also be
taken into consideration.

5. EMPIRICAL EVALUATION

In this section we evaluate the potential of using Sequitur to
find frequent patterns in time series data. While the
experimental evaluation is brief, as this work is still at its
early stage, the following examples show that Sequitur can
find some time series motifs without knowing the exact
lengths of the motifs in advance. For all examples shown
below, we choose α = 4 and w = 4, which are both arbitrary
choices that have been shown to work well for most
datasets [31].
As a sanity check, the first dataset we used is an ECG
dataset. As Figure 6 shows, the obvious motif, i.e. the
individual heartbeats, are indeed discovered. The length of
the motif shown is 159, with the initial window length of
150.

Figure 6. (Top) Original ECG time series. Matches for a motif of
length 159 is highlighted. The initial length used is 150. (Bottom)
The discovered motif instances are plotted.

The next dataset we use in our evaluation is an image of a
leaf that was converted to time series. In Figure 7, a motif
of length 54 is shown.

Figure 7. (Top) Original leaf time series. Matches for a motif of
length 54 are highlighted. The initial length used is 50. (Bottom)
The discovered motif instances are plotted.

Figure 8 shows the winding dataset from UCR Time Series
Archive [54]. A motif of length 84 is found, when the
initial window length is 50.

Figure 8. (Top) Original winding dataset. Matches for a motif of
length 84 is highlighted. The initial length used is 50. (Bottom).
The discovered motif instances are plotted.

5.1 Efficiency
The approximate, variable-length motifs discovery
algorithm is highly efficient. It requires O(m) to pre-
process the time series and convert the subsequences to
SAX strings; and Sequitur takes O(m) to compress a
sequence of length m. As for post-processing, for
approximate motifs discovery, the time complexity is linear
in the size of the grammar rules. However, with some
refinement, the number of rules can be reduced
significantly.

6. RESEARCH ISSUES, LIMITATIONS,
AND FUTURE WORK

The quality of the motifs found is directly affected by both
SAX and Sequitur. Both algorithms are extremely efficient,
i.e. they both perform in linear time. While our approach
offers a quick and easy way to learn the approximate motifs
in time series data without the need of knowing the exact
lengths, the motifs found are often not complete. This is
partly due to the definition of SAX – even though SAX has
the ability to smooth the data and remove noises from the
data, in some occasions similar subsequences could be
mapped to similar, but different strings. This scenario arises
when a segment falls near a breakpoint, and slight variation
could push the segment over to the other side of the
breakpoint. For example, in Figure 4, the second segment,
discretized to “b,” falls right below a breakpoint. If there
exists a similar subsequence B in which the second
segment falls just above the breakpoint, then the resulting
string for B will be different. Since Sequitur looks for exact
matching of the symbols, this sensitivity on borderline
segments partially explains why most motifs discovered by
the algorithm are relatively short. Nevertheless, the quality

of motifs found by our approach is reasonably good. In
addition, our algorithm offers the opportunity to discover
some motifs of variable lengths simultaneously with just
one pass of the data.
Another limitation of the algorithm lies within Sequitur.
Sequitur is able to find repeated patterns of sequences in
many cases. Nevertheless in some cases, the inherent nature
of Sequitur prevents it from meeting our expectations.
Specifically, it is not surprising that the grammar inferred
by Sequitur is not minimal for it is an on-line, greedy
algorithm. Regardless of its shortcomings, Sequitur has
been adopted in various domains due to the many nice
properties it offers. We plan to further explore the
feasibility of using Sequitur for motif discovery, and
investigate whether it is possible to modify the algorithm
without compromising its efficient time complexity.
Other future directions are possible. Due to the preliminary
stage of this work, the literature comparison is non-existent.
It is partly due to the fact that to the best of our knowledge,
there is no known algorithm that can find variable-length
frequent patterns with comparable efficiency. Nonetheless,
we would like compare with some existing methods to
further validate our findings. In addition, the post-
processing step of the algorithm can be further refined for
better exact motif extraction. Furthermore, we would like to
investigate the utilities of finding hierarchical structures
and grammars from time series data.

7. CONCLUSION

In this preliminary work, we propose a methodology to find
approximate variable-length time series motif using an
efficient grammar-based compression algorithm. Several
algorithms were proposed to discover motifs of variable
lengths; however, they either do so via post-processing,
scale poorly, or quantize the whole data rather than
considering overlapping subsequences, resulting in
inaccurate and incomplete patterns found. Our algorithm
mitigates the shortcomings; in addition, it offers the
advantage of discovering hierarchical structure, regularity
and grammar from the data. Even though there are some
known issues with the algorithm, the preliminary results are
promising. They show that the grammar-based approach is
able to find some important motifs and suggest that the new
direction of using grammar-based algorithms for time
series pattern discovery might be worth exploring.

8. ACKNOWLEDGMENTS
Our thanks to Eamonn Keogh for the shapes datasets.

9. REFERENCES

1. SAX page: http://www.cs.gmu.edu/~jessica/sax.htm

2. R. Agrawal, T. Imielinski, and A. Swami. Mining
Association Rules Between Sets of Items in Large
Databases. In proceedings of the 1993 ACM SIGMOD
Int'l Conference on Management of Data. Washington,
D.C. May 26-28, 1993. pp. 207-216

3. R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait.
Querying Shapes of Histories. In proceedings of the
21st Int'l Conference on Very Large Databases. Zurich,
Switzerland. Sept 11-15, 1995. pp. 502-514

4. R. Agrawal and Ramakrishnan Srikant. Mining
Sequential Patterns. In Proc. of the 11th Int'l
Conference on Data Engineering, Taipei, Taiwan,
March 1995.

5. H. Andre-Jonsson and D. Badal. Using Signature Files
for Querying Time-Series Data. In proceedings of
Principles of Data Mining and Knowledge Discovery,
1st European Symposium. Trondheim, Norway. Jun 24-
27, 1997. pp. 211-220

6. Angluin, D. Inference of reversible languages, Journal
of the ACM (JACM), Vol.29, No. 3, pp. 741-765,
1982

7. Angluin, D. A note on the number of queries needed to
identify regular languages, Inform. and Control 51
(1981) 76–87.

8. A. Apostolico, M. E. Bock, and S. Lonardi. Monotony
of Surprise in Large-Scale Quest for Unusual Words.
In proceedings of the 6th Int'l Conference on Research
in Computational Molecular Biology. Washington,
D.C. Apr 18-21, 2002. pp. 22-31

9. T. Armstrong and T .Oates. RIPTIDE: Segmenting
Data Using Multiple Resolutions. In the Proceedings
of the 6th IEEE International Conference on
Development and Learning (ICDL), 2007.

10. P. Beaudoin, M. van de Panne, P. Poulin and S. Coros,
Motion-Motif Graphs, Symposium on Computer
Animation 2008.

11. N. Cherniavsky and R. Ladner. Grammar-based
Compression of DNA Sequences. UW CSE Technical
Report 2007-05-02.

12. Chiu, B. Keogh, E., & Lonardi, S. (2003). Probabilistic
Discovery of Time Series Motifs. In the 9th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. August 24 - 27, 2003.
Washington, DC, USA. pp 493-498.

13. Colin de la Higuera. A bibliographical study of
grammatical inference", Pattern Recognition 38
(2005): 1332--1348

14. M. Crochemore, A. Czumaj, L. Gasjeniec, S.
Jarominek, T. Lecroq, W. Plandowski, and W. Rytter.
Speeding Up Two String-Matching Algorithms.
Algorithmica. vol. 12. pp. 247-267. 1994.

15. C. S. Daw, C. E. A. Finney, and E. R. Tracy. Symbolic
Analysis of Experimental Data. Review of Scientific
Instruments. vol. 74. pp. 915-930. 2001.

16. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids: Cambridge University
Press. 1998.

17. D. Eads, E. Rosten, D. Helmbold. "Grammar-guided
Feature Extraction for Location-Based Object
Detection." British Machine Vision Conference. Queen
Mary, University of London. London, UK. September
11, 2009.

18. A. Ekambaram and E. Montagne, “An Alternative.
Compressed Storage Format for Sparse Matrices”,
ISCIS. XVIII - Eighteenth International Symposium on
Computer and Information Sciences.

19. Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi
Pontieri, Andrea Pugliese (2005). Fast Detection of
XML Structural Similarity. IEEE Trans. Knowl. Data
Eng. 17(2): 160-175.

20. A. Gionis and H. Mannila. Finding Recurrent Sources
in Sequences. In proceedings of the 7th Int'l Conference
on Research in Computational Molecular Biology.
Berlin, Germany. 2003. pp. 123-130

21. E. C. Gonzalez, K. Figueroa and G. Navarro, Effective
Proximity Retrieval by Ordering Permutations, IEEE
Transactions on Pattern Analysis and Machine

22. D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

23. D. He. Using Suffix Tree to Discover Complex
Repetitive Patterns in DNA Sequences, The 28th
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, IEEE
EMBC 2006, New York City, New York, USA,
August 30 - September 3, 2006

24. Keogh, E. Tutorial in SIGKDD 2004. Data Mining and
Machine Learning in Time Series Databases

25. P. Langley. Simplicity and Representation Change in
Grammar Induction. Technical Report. 1995.

26. P. Langley and S. Stromsten. Learning Context-Free
Grammars with a Simplicity Bias. In proceedings of
the 11th International Conference on Machine
Learning. Standord, CA.

27. J.R. Larus. Whole program paths. SIGPLAN Not. 34,
5, pp. 259-269, 1999.

28. E. Lehman. Approximation Algorithms for Grammar-
Based Data Compression, PhD thesis, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2002.

29. J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A Symbolic
Representation of Time Series, with Implications for
Streaming Algorithms, Workshop on Research Issues
in Data Mining and Knowledge Discovery, the 8th
ACM SIGMOD. San Diego, CA, 2003.

30. J. Lin, E. Keogh, P. Patel, and S. Lonardi, Finding
Motifs in Time Series, the 2nd Workshop on Temporal
Data Mining, the 8th ACM Int'l Conference on
Knowledge Discovery and Data Mining. Edmonton,
Alberta, Canada, 2002, pp. 53-68.

31. J. Lin, E. Keogh, W. Li, and S. Lonardi. (2007).
Experiencing SAX: A Novel Symbolic Representation
of Time Series. Data Mining and Knowledge
Discovery Journal.

32. J. Meng, J.Yuan, M. Hans and Y. Wu, Mining Motifs
from Human Motion, Proc. of EUROGRAPHICS,
2008.

33. D. Minnen, T. Starner, I. Essa, C. Isbell. Activity
Discovery: Sparse Motifs from Multivariate Time
Series. Snowbird Learning Workshop, Snowbird, Utah,
April 4-7, 2006.

34. D. Minnen, C.L. Isbell, I. Essa, and T. Starner.
Discovering Multivariate Motifs using Subsequence
Density Estimation and Greedy Mixture Learning.
Twenty-Second Conf. on Artificial Intelligence
(AAAI-07), Vancouver, B.C., July 22-26, 2007.

35. A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B.
Westover. Exact Discovery of Time Series Motifs. In
proceedings of the 2009 SIAM International
Conference on Data Mining (SDM09). April 30-May
2, 2009. Sparks, NV.

36. J.C. Na, A. Apostolico, C.S. Iliopoulos, and K. Park:
Truncated suffix trees and their application to data
compression. Theor. Comput. Sci. 1-3(304): 87-101
(2003)

37. C.G. Nevill-Manning and I.H. Witten. Identifying
Hierarchical Structure in Sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
7, 67-82.

38. T. Oates. PERUSE: An Unsupervised Algorithm for
Finding Recurring Patterns in Time Series. In
proceedings of the International Conference on Data
Mining. Maebashi City, Japan. Dec 9-12. pp. 330-337.

39. Oates, T. Desai, D. Bhat, V. Learning k-Reversible
Context-Free Grammars from Positive Structural
Examples, Proceedings of the Nineteenth International
Conference on Machine Learning. 2002. pp 459 – 465

40. Oncina, J. and García, P. Inferring Regular Languages
in Polynomial Updated Time. In Pattern Recognition
and Image Analysys. Pérez de la Blanca, Sanfeliú and
Vidal (Eds.) World Scientific. 1992.

41. M. Riesenhuber and T. Poggio. Hierarchical Models of
Object Recognition in Cortex. Nature Neuroscience 2:
1019:1025.

42. S. Rombo and G. Terracina, Discovering
representative models in large time series databases,

Proc. of the 6th International Conference on Flexible
Query Answering Systems, pp. 84–97, 2004.

43. R. Staden. Methods for Discovering Novel Motifs in
Nucleic Acid Sequences. Computer Applications in
Biosciences. vol. 5. pp. 293-298. 1989.

44. Y. Tanaka and K. Uehara. Motif Discovery Algorithm
from Motion Data. In proceedings of the 18th Annual
Conference of the Japanese Society for Artificial
Intelligence. Kanazawa, Japan. June 2-4, 2004.

45. Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of
Time-Series Motif from Multi-Dimensional Data
Based on MDL Principle. Mach. Learn. 58, 2-3 (Feb.
2005), 269-300.

46. H. Tang and S.S. Liao. Discovering original motifs
with different lengths from time series. Know.-Based
Syst. 21, 7 (Oct. 2008), 666-671.

47. M. Tompa and J. Buhler. Finding Motifs Using
Random Projections. In proceedings of the 5th Int'l
Conference on Computational Molecular Biology.
Montreal, Canada. Apr 22-25, 2001. pp. 67-74

48. Wei, L., Keogh, E., and Xi, X. 2006. SAXually
Explicit Images: Finding Unusual Shapes. In
Proceedings of the Sixth international Conference on
Data Mining (December 18 - 22, 2006).

49. Ye, L. and Keogh, E. 2009. Time series shapelets: a
new primitive for data mining. In Proceedings of the
15th ACM SIGKDD international Conference on
Knowledge Discovery and Data Mining (Paris, France,
June 28 - July 01, 2009).

50. R. Ladner. Enhanced Sequitur for Finding Structure in
Data. In Proceedings of the 2003 Data Compression
Conference. March 25-27, Snowbird, UT. pp 425-.

51. M.L. Wong and K.S. Leung. Data mining using
grammar based genetic programming and applications.
In: Genetic programming, vol. 3. The Netherlands:
Kluwer Academic Publishers; 2000.

52. T. Guyet, C. Garbay and M. Dojat, Knowledge
construction from time series data using a
collaborative exploration system, Journal of
Biomedical Informatics 40(6): 672-687 (2007).

53. E. Keogh. Personal Communications.
54. E. Keogh The UCR Time Series Data Mining Archive.

http://www.cs. ucr.edu/~eamonn/tsdma/index.html

