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ABSTRACT 
 
The problem of identifying frequently occurring patterns, 
or motifs, in time series data has received a lot of attention 
in the past few years. Most existing work on finding time 
series motifs require that the length of the patterns be 
known in advance. However, such information is not 
always available. In addition, motifs of different lengths 
may co-exist in a time series dataset. In this work, we 
propose a novel approach, based on grammar induction, for 
approximate variable-length time series motif discovery. 
Our algorithm offers the advantage of discovering 
hierarchical structure, regularity and grammar from the 
data. The preliminary results are promising. They show that 
the grammar-based approach is able to find some important 
motifs, and suggest that the new direction of using 
grammar-based algorithms for time series pattern discovery 
might be worth exploring. 
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1. INTRODUCTION 
 

The vast growth of disk technology in the past decade has 
enabled us to store large multimedia databases, such as 
audio, video, images, time series, etc.  While storage is no 
longer an impediment, it has become increasingly apparent 
that efficient techniques are needed for humans to quickly 
browse through, understand, and discover interesting 
patterns from the data. 
Like other multimedia data types, time series data are 
ubiquitous. They are prevalent in almost every aspect of 

human life. Some examples of such data include speech, 
electrocardiogram (ECG) signals, radar signals, seismic 
activities, etc. In addition to the conventional definition of 
time series, i.e., measurements taken over time, recently, it 
has been shown that certain other multimedia data, e.g., 
images and shapes [48, 49], and XML [19], can be 
converted to time series and mined with promising results.  
Figure 1 shows an example of how shapes can be converted 
to time series. 
 

 
Figure 1. A shape is converted to time series. Image courtesy of 
Eamonn Keogh [24]. 

There has been a great amount of interest in mining time 
series data in the past decades. Most of the work in time 
series research has concentrated on solving classic data 
mining tasks such as similarity search, classification, and 
clustering [24]. There is relatively little work on learning 
hierarchy, structure, and patterns from time series data. At 
first glance, it seems a surprising oversight, as learning 
patterns and structures from data can provide valuable 
insights on the regularity and hidden semantics of the data 
and its underlying generative process. In addition, 
understanding the structure of data can potentially help 
solve the aforementioned data mining tasks. Such 
algorithms, e.g. grammar induction [25, 26, 28, 39, 40], 
have received decades of attention in the natural language 
and text processing communities. In this paper, we focus on 
one specific pattern discovery task that can benefit from 
learning hierarchy and structure from data, namely, 
frequent pattern mining [10, 12, 30, 32, 33, 35, 44, 45, 46]. 
The task of frequent pattern mining is an important 
problem that has many applications. In addition to its own 
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merit of summarizing and compressing data, it is also a pre-
cursor to association rule mining [2]. Furthermore, in 
bioinformatics, it is well understood that overrepresented 
DNA sequences often have biological significance [8, 16, 
20, 23, 43, 47]. A substantial body of literature has been 
devoted to techniques to discover such patterns [2, 4], 
including sequential patterns on sequence data. 
In a previous work, we defined the related concept of “time 
series motif” [30], which are frequently occurring patterns 
in time series data. Since then, a great deal of work has 
been proposed for the discovery of time series motifs [10, 
12, 30, 32, 33, 35, 44, 45, 46]. Figure 2 shows an example 
of a time series motif in an insect behavior dataset1. 

 

 
Figure 2. A motif of length 109 from an insect dataset. The top 
plots show the entire dataset to present a context for the motifs. 
The bars below the plots denote the locations of the motifs. The 
original dataset is 16,384 in length. 

Identifying time series motifs is a much more complex 
problem than finding frequent sequential patterns, as the 
task of sequential pattern mining is often performed on 
discrete data. Existing algorithms on finding frequent 
itemsets in transaction data [2], and on finding sequential 
patterns in sequence data [4] are not suitable for time series 
motif discovery for one or more of the following reasons: 
(1) They focus on discrete data, whereas time series are 
continuous, real-valued data. (2) They are iterative methods 
and typically require multiple database scans. (3) They are 
designed for static databases [43].  
Intuitively, one may try to convert a real-valued time series 
data into a data format for which existing off-the-shelf 
algorithms can be applied. One way to achieve this is to 
discretize each data value in the time series. However, the 
problem with this approach is that time series data are 
typically noisy, and considering every single point as an 
“event” would result in a noisy string that inaccurately 
reflects the noises as true patterns in the data. A better 
alternative is to consider subsequences instead. However, 
this approach poses another challenge: we simply cannot 

                                                                    
1 Information on the insect dataset can be found in [35]. 

know in advance which subsequences are frequent. As a 
result, we need to consider every possible subsequence in 
the data. Considering all subsequences of any length, with 
overlaps, is undoubtedly a tedious task. To alleviate the 
complexity, most existing work [12, 30, 34, 35] thus 
require an input parameter: a pre-defined motif length n. 
This limits the search space for the algorithms; however, it 
also implies that the length of motifs (n) must be known in 
advance. In addition, frequent patterns of different lengths 
might co-exist within the same dataset. In order to find all 
significant patterns with unknown lengths, one would need 
to repeat the motif discovery algorithm several times—each 
time with a different window size. It is more desirable to 
have an algorithm that can automatically detect significant 
motifs of variable, previously unknown lengths, without 
exhaustively trying different subsequence lengths.  
In this work, we propose to utilize a grammar-based 
compression algorithm, Sequitur [37], that can 
automatically and efficiently identify frequent patterns and 
hierarchical structure in data. We believe that a grammar-
based approach [25, 28, 37, 50] is suitable and 
advantageous for our task due to several reasons. First, 
producing a (relatively) small set of interpretable rules from 
a massive dataset is a desirable goal of data mining. 
Clearly, a grammar-based method will allow a more natural 
mapping from data to rules [51], and can reveal the hidden 
hierarchical structures in the data. There has also been 
increasing interest in grammar-based methods for feature 
extraction, classification and forecasting of time series [17, 
53]. Furthermore, as mentioned earlier, it is important to 
consider every subsequence in the time series when trying 
to identify motifs.  
While this work is still at its early stage, the preliminary 
results are promising. Specifically, they show that the 
grammar-based approach has the potential to identify some 
important motifs in time series. 
The rest of the paper is organized as follows. Section 2 
discusses background and related work on time series 
motifs and grammar induction. Section 3 describes the 
grammar induction algorithm, Sequitur, that we adapt in 
this work. We describe our approach in Section 4. Section 5 
presents some preliminary results using grammar-based 
approach to find variable-length motifs. We conclude in 
Section 6 and discuss future work. 

2. BACKGROUND AND RELATED WORK 
 

In this section, we briefly discuss background and related 
work on time series similarity search. 
For concreteness, we begin with definitions of time series: 
Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 
Since we are interested in finding local patterns, we 
consider time series subsequences as the basic unit: 



Definition 2. Subsequence: Given a time series T of length 
m, a subsequence C of T is a subsection of length n ≤ m of 
contiguous position from p, that is, C = tp…tp+n-1 for 1 ≤ p ≤ 
m – n + 1. 
Since all subsequences may potentially be the candidates 
for motifs, any algorithm would have to extract and 
consider all of them. This can be achieved via the use of a 
sliding window: 
Definition 4. Sliding Window: Given a time series T and a 
user-defined subsequence length n, all possible 
subsequences can be extracted by sliding a window of size 
n across T and considering each subsequence Cp, for 1 ≤ p 
≤ m – n + 1. 
Figure 3 summarizes the definitions mentioned above. 

 
Figure 3. Subsequences of length 50 are extracted from a time 
series T via a sliding window. 
Next, we briefly discuss related work on time series motif 
discovery and grammar induction techniques. 

2.1 Related Work 
2.1.1 Time Series Motifs 
In [30], we defined time series motif C as the subsequence 
in T that has the highest count of non-trivial matches, that 
is, subsequences that are within ε units of distance away 
from C. We proposed a sub-quadratic algorithm to find 
exact motifs of a given length. Mueen et al proposed an 
algorithm named MK that is an improvement from the 
brute-force exact motif discovery algorithm [35]. The 
intuition behind MK is that the linear ordering of 
subsequence provides some useful heuristic information 
that guides motif search. The observation is that if two 
subsequences are close in the original space, they must also 
be close in the linear ordering.  
In some applications, it may be sufficient or even desirable 
to have a fast algorithm that can find approximate motifs 
[12]. As an example, Chiu and Keogh proposed 
probabilistic motif discovery algorithm based on random 
projection [12]. The advantage of probabilistic motif 
discovery algorithm is its efficiency. Other approximate 
motifs algorithms exist [10, 12, 32, 42, 45, 52]; however, 
one common drawback for all these algorithms is that they 
require an input parameter for the motif length. 
A few algorithms were proposed to discover motifs of 
variable lengths [33, 38, 45]; however, they either do so via 
post-processing, scale poorly, or quantize the whole data 
rather than considering overlapping subsequences, resulting 

in inaccurate and incomplete patterns found. 
Some work has been proposed to find motifs from 
multivariate time series. Minnen and Isbell proposed a 
multivariate motifs discovery algorithm by using 
subsequence density estimation and greedy mixture 
learning [34]. They present motif discovery as the problem 
of locating regions of high density in the space of all time 
series subsequences. This algorithm locates an over-
complete set of candidate motif seeds by identifying 
subsequences located near high density regions at first, then 
it adopts a greedy mixture learning framework to select the 
correct motifs from over-complete set of candidate motif 
seeds and to find the additional motif occurrences. 

2.1.2 Grammar Induction 
Grammatical induction, also known as grammatical 
inference, refers to the process of learning regular 
grammars or automata. Broadly speaking, a learner is 
required to induce a grammar from some data which are 
sequential or structured (strings, words, trees, terms or 
limited forms of graphs) [13]. Contrary to the tradition 
decision rule problem, which seeks a descriptive model, 
grammatical induction may be said to seek a generative 
model. There are a wide variety of algorithms for 
grammatical induction. RPNI (Regular Positive and 
Negative Grammatical Inference) [40], proposed by Oncina 
and Garcia, is a polynomial time algorithm to identify a 
DFA consistent with a given sample, but there are some 
open problems for this algorithm both on time complexity 
and definition of characteristic set. Angluin identifies the 
smallest k-reversible language, a subset of the class of 
regular languages, that contains any finite positive sample 
in O(n3), where n is the sum of length of the strings in the 
sample [6, 39]. Active learning is a learning model 
proposed by Angluin [7], where the learner can ask string 
membership and grammar equivalence queries to an oracle. 
The membership and equivalence queries form a Minimal 
Adequate Teacher. In this model of learning, the algorithm 
L* identifies regular languages with a polynomial number 
of queries. Another grammar inference algorithm, GRIDS 
[26], guides search through a space of context-free 
grammars by using a simplicity metric. Due to the use of 
Minimum Description Length (MDL) for scoring and 
selecting the most plausible grammars, GRIDS tend to find 
simple grammars [26]. 

3. SEQUITUR 
 

We plan to investigate how to extract patterns using 
techniques that identify hierarchies and frequent sequences. 
Although aimed at compressing discrete sequences of data, 
there are algorithms that can be used as a proof-of-concept 
for our preliminary study. For instance, Sequitur [37] is a 
string compression algorithm that infers a context-free 
grammar from a sequence of discrete symbols [37]. It has 



been adopted in various domains due to the many nice 
properties it offers: it has been used to find repeated DNA 
sequences [11, 50] and repeated function call sequences 
[27], and to segment time series [9]. The main premise is 
that repeated subsequences are replaced by a grammatical 
rule that generates the subsequence, thereby reducing the 
length of the original sequence, and producing a 
hierarchical representation that summarizes the structure of 
the data. Although simple in design, Sequitur has been 
shown to be competitive with the state-of-the-art 
compression algorithms [37], maintaining its scalability 
even for large sequences. Moreover, Sequitur offers a 
unique advantage—it utilizes and identifies the hidden 
structure (recurring subsequences) in the input data 
sequence, requiring relatively small memory footprint. Due 
to these reasons, we choose Sequitur in this work to 
demonstrate the utility of using grammar-based 
compression algorithms to find patterns in time series data. 
Sequitur works by maintaining two properties: digram 
uniqueness and rule utility [37]. The first property governs 
that no pair of consecutive symbols (terminals or non-
terminals) can appear more than once. When Sequitur reads 
a new symbol from the input sequence, the last two 
symbols of the sequence read so far—the new symbol and 
its predecessor symbol—form a digram [37]. A table that 
stores all existing digrams is maintained. If this new digram 
already exists in the digram table, i.e., it appears 
somewhere in the sequence already read, Sequitur uses a 
non-terminal to substitute these digrams, and, if such rule2 
has not yet existed, it forms a new grammar rule with the 
non-terminal on the left hand side. The second property, 
rule uniqueness, ensures that each grammar rule be used 
more than once except for the top-level rule, since a 
grammar rule that occurs just once is not meaningful and 
should be removed. As an example, the input string S1: 
“12131213412” can be converted to the following 
grammar:   

Grammar rule Expanded Grammar rule 
S1 -> BB4A 12131213412 
A -> 12 12 
B -> A13 1213 

The top-level grammar rule, S1→ BB4A, denotes the 
sequence seen so far. Sequitur is an online algorithm that 
generates the grammar incrementally as each symbol 
arrives. It is, therefore, ideal for the streaming scenarios. It 
is both time- and space-efficient, requiring O(m) time to 
compress a sequence of size m, and a compressed sequence 
is of size O(m) in the worst case (i.e., no compression), and 
                                                                    
2 Note the “rules” here should not be confused with the sequential 

or association rules. The “rules” here refer to those that are 
generated by the algorithm. It is equivalent to the concept of 
frequent itemsets in association rule mining. 

O(logm) in the best case [37]. 
The main advantages of Sequitur (or many grammar-

induction algorithms in general) are three-fold: (1) it 
identifies recurring patterns automatically, e.g., “1213” in 
the previous example, as well as hierarchical structure; (2) 
the recurring patterns found can be of any lengths; and (3) 
it is suitable for streaming data since it constructs the 
grammars in an incremental fashion. These benefits suggest 
that we may be able to adapt it to find variable-length 
motifs for time series. We describe how we achieve this in 
the next section. 

4. FINDING APPROXIMATE VARIABLE-
LENGTH MOTIFS BY SEQUITUR 
 

We propose an algorithm that finds approximate variable-
length motifs using Sequitur. Our approach consists of 
three steps: Pre-processing (discretization), Motif 
Discovery (Sequitur), and Post-processing. We describe 
each step in more details below. 

4.1 Step 1: Discretization 
Sequitur, or more generally, grammar induction algorithms, 
were originally designed for discrete data. However, time 
series are real-valued data, requiring a pre-processing step 
to allow the application of a grammar-based algorithm.  
In a previous work, we introduced a time series symbolic 
representation called Symbolic Aggregate approXimation 
(SAX) [29, 31]. While there have been dozens of symbolic 
representations proposed for time series data, SAX has 
been shown to outperform existing methods. In addition, 
SAX has some unique, desirable properties such as 
dimensionality reduction, lower-bounding distance 
measures, and equiprobable symbols. For these reasons, we 
will utilize SAX for our pre-processing step. 
Given a time series, SAX performs discretization by 
dividing the time series into w equal-sized segments. For 
each segment, their mean value is computed, and then 
mapped to a symbol according to a set of breakpoints that 
divide the distribution space into α equiprobable regions, 
where α is the alphabet size specified by the user. If the 
symbols were not equiprobable, some of the symbols 
would occur more frequently than others. As a 
consequence, we would inject a probabilistic bias in the 
process. It has been noted that some data structures such as 
suffix trees produce optimal results when the symbols are 
of equiprobability [14]. The discretization steps are 
summarized in Figure 3.  



 
Figure 4. Example of SAX for a time series. The time series 
above is transformed to the string cbccbaab, and the 
dimensionality is reduced from 128 to 8. 

There are two ways we may discretize a time series: 
(a) Whole discretization: Convert each time series to one 

SAX word. Figure 4 shows an example of whole 
discretization. The drawback with this approach is that 
it often does not capture enough local details in data, 
which are essential for motif discovery.  

(b) Subsequence discretization: Extract subsequences of 
length n from the time series, and convert each 
subsequence into a SAX word. The result is a bag of 
SAX words generated from (all or selected) 
subsequences in the original data. 

For subsequence discretization, we need to determine 
which subsequences to consider. In general, we need to 
decide whether or not overlapping subsequences are 
allowed. Non-overlapping subsequences can be obtained 
through “chunking,” which is the process where a time 
series is segmented into subsections by a specific period. 
This is very similar to whole discretization, and shares 
similar drawbacks as whole discretization. More 
specifically, unless the data is periodic, in which case we 
could segment the data by days, weeks, etc., segmenting 
the data into non-overlapping subsequences could break a 
pattern into two or more segments and/or shift the patterns. 
Figure 5 shows an example. In the figure, an ECG signal is 
chunked into segments of length 500. Since each heartbeat 
has different length, the individual heartbeats eventually 
become misaligned. 

 
Figure 5. An ECG signal is chunked into non-overlapping 
segments of length 500. The individual heartbeats eventually 
become misaligned. 
A better approach is to consider overlapping subsequences. 
Since each subsequence in the dataset can be a potential 
candidate for motif, we should consider all possible 
subsequences in order to ensure correct results. This can be 
achieved by using a sliding window of length n across the 
time series. Note that n is just the initial window length for 
our algorithm; the algorithm will grow the patterns 

automatically. Once we collect all the subsequences, we 
can then discretize each subsequence individually using 
SAX, and then concatenate them to form one single 
sequence. A transformed sequence might look something 
like this:    
S = 1131-1132-1232-1223-1344-1131-1132-1232…  
where the ‘-‘ denotes the delimiter between consecutive, 
overlapping subsequences.  
The reason we choose to discretize subsequences rather 
than individual points is that time series are typically very 
noisy. If we discretize each time point into a symbol, and 
then form a string from these symbols, then we would give 
equal weight to each time point, including the noises. On 
the other hand, the “aggregating” feature of SAX would 
smooth out the subsequences and essentially remove the 
noises. 

4.2 Step 2: Sequitur on SAX Words 
Once we transform the time series into a discrete sequence 
consisted of SAX strings, the application of Sequitur on the 
sequence is straight-forward. Each string delimited by ‘-‘ 
represents one subsequence, and is treated as a terminal 
symbol, an atomic unit for patterns. Sequitur embodies 
efficiency and accuracy in finding the repeated patterns of 
sequences in many cases. One possible grammar rule that 
can be generated from the above string is  

A → 1131-1132-1232. 
We modify the original Sequitur algorithm and record the 
offsets of the subsequences that occur in each grammar 
rule. 

4.3 Step 3: Post-Processing 
Since we discretized the data before running the algorithm, 
we now need to map the rules and frequent strings back to 
the time series subsequences. We can simply record the 
starting offsets of all grammar rule instances. We will 
obtain approximate results if we do not perform any 
verification step. In some cases, it is acceptable to obtain 
approximate motifs, trading accuracy for speed. In other 
cases where the user desires to find the exact motifs, we 
can use the grammar rules found as our seeds and perform 
a range search using these motif seeds. In this preliminary 
work, we only examined the approximate motifs and will 
leave the exact motif discovery for future work. 
The number of rules generated can be large and, similar to 
association rules mining [2], not all rules are interesting or 
important. Several refinement steps can be performed on 
the grammar rules, for example 
(1) Eliminate trivial matches for a motif. For the purpose 

of this paper, the trivial match of a subsequence M is 
any subsequence that overlaps M. We need to 
eliminate those occurrences from a grammar rule 
because nearby subsequences are likely to be similar to 



each other and may simultaneously contribute to a 
motif, causing the patterns to be over-counted. 

(2) Rank the rules by their “interestingness.” Several 
ranking criteria are possible: 
a. Frequency – Frequency of a pattern, equivalent to 

the support in association rule mining, is perhaps 
the most trivial criterion to consider; however, it 
often is not the most meaningful way to measure 
the significance of a pattern.  

b. Rule length – In many cases, long patterns are more 
interesting than short ones. 

c. Pattern variation - Patterns with variations are 
likely to be more interesting than the monotonically 
increasing or decreasing ones. Fortunately, since 
SAX preserves the general shape of the time series, 
the pattern variation can be approximated without 
much difficulty. 

d. Overlapping information – The amount of overlap 
between a new pattern to be examined and those 
that are already deemed significant, should also be 
taken into consideration. 

 

5. EMPIRICAL EVALUATION 
 

In this section we evaluate the potential of using Sequitur to 
find frequent patterns in time series data. While the 
experimental evaluation is brief, as this work is still at its 
early stage, the following examples show that Sequitur can 
find some time series motifs without knowing the exact 
lengths of the motifs in advance. For all examples shown 
below, we choose α = 4 and w = 4, which are both arbitrary 
choices that have been shown to work well for most 
datasets [31]. 
As a sanity check, the first dataset we used is an ECG 
dataset. As Figure 6 shows, the obvious motif, i.e. the 
individual heartbeats, are indeed discovered. The length of 
the motif shown is 159, with the initial window length of 
150.  
 

 
Figure 6. (Top) Original ECG time series. Matches for a motif of 
length 159 is highlighted. The initial length used is 150.  (Bottom) 
The discovered motif instances are plotted. 
 

The next dataset we use in our evaluation is an image of a 
leaf that was converted to time series. In Figure 7, a motif 
of length 54 is shown. 

 
Figure 7. (Top) Original leaf time series. Matches for a motif of 
length 54 are highlighted. The initial length used is 50. (Bottom) 
The discovered motif instances are plotted. 

Figure 8 shows the winding dataset from UCR Time Series 
Archive [54]. A motif of length 84 is found, when the 
initial window length is 50.  



 
Figure 8. (Top) Original winding dataset. Matches for a motif of 
length 84 is highlighted. The initial length used is 50. (Bottom). 
The discovered motif instances are plotted. 
 

5.1 Efficiency 
The approximate, variable-length motifs discovery 
algorithm is highly efficient. It requires O(m) to pre-
process the time series and convert the subsequences to 
SAX strings; and Sequitur takes O(m) to compress a 
sequence of length m. As for post-processing, for 
approximate motifs discovery, the time complexity is linear 
in the size of the grammar rules. However, with some 
refinement, the number of rules can be reduced 
significantly.  
 

6. RESEARCH ISSUES, LIMITATIONS, 
AND FUTURE WORK 
 

The quality of the motifs found is directly affected by both 
SAX and Sequitur. Both algorithms are extremely efficient, 
i.e. they both perform in linear time. While our approach 
offers a quick and easy way to learn the approximate motifs 
in time series data without the need of knowing the exact 
lengths, the motifs found are often not complete. This is 
partly due to the definition of SAX – even though SAX has 
the ability to smooth the data and remove noises from the 
data, in some occasions similar subsequences could be 
mapped to similar, but different strings. This scenario arises 
when a segment falls near a breakpoint, and slight variation 
could push the segment over to the other side of the 
breakpoint. For example, in Figure 4, the second segment, 
discretized to “b,” falls right below a breakpoint. If there 
exists a similar subsequence B in which the second 
segment falls just above the breakpoint, then the resulting 
string for B will be different. Since Sequitur looks for exact 
matching of the symbols, this sensitivity on borderline 
segments partially explains why most motifs discovered by 
the algorithm are relatively short. Nevertheless, the quality 

of motifs found by our approach is reasonably good. In 
addition, our algorithm offers the opportunity to discover 
some motifs of variable lengths simultaneously with just 
one pass of the data. 
Another limitation of the algorithm lies within Sequitur. 
Sequitur is able to find repeated patterns of sequences in 
many cases. Nevertheless in some cases, the inherent nature 
of Sequitur prevents it from meeting our expectations. 
Specifically, it is not surprising that the grammar inferred 
by Sequitur is not minimal for it is an on-line, greedy 
algorithm. Regardless of its shortcomings, Sequitur has 
been adopted in various domains due to the many nice 
properties it offers. We plan to further explore the 
feasibility of using Sequitur for motif discovery, and 
investigate whether it is possible to modify the algorithm 
without compromising its efficient time complexity.  
Other future directions are possible. Due to the preliminary 
stage of this work, the literature comparison is non-existent. 
It is partly due to the fact that to the best of our knowledge, 
there is no known algorithm that can find variable-length 
frequent patterns with comparable efficiency. Nonetheless, 
we would like compare with some existing methods to 
further validate our findings. In addition, the post-
processing step of the algorithm can be further refined for 
better exact motif extraction. Furthermore, we would like to 
investigate the utilities of finding hierarchical structures 
and grammars from time series data.  
 

7. CONCLUSION 
 
In this preliminary work, we propose a methodology to find 
approximate variable-length time series motif using an 
efficient grammar-based compression algorithm. Several 
algorithms were proposed to discover motifs of variable 
lengths; however, they either do so via post-processing, 
scale poorly, or quantize the whole data rather than 
considering overlapping subsequences, resulting in 
inaccurate and incomplete patterns found. Our algorithm 
mitigates the shortcomings; in addition, it offers the 
advantage of discovering hierarchical structure, regularity 
and grammar from the data. Even though there are some 
known issues with the algorithm, the preliminary results are 
promising. They show that the grammar-based approach is 
able to find some important motifs and suggest that the new 
direction of using grammar-based algorithms for time 
series pattern discovery might be worth exploring. 
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