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Abstract. We propose a general framework that combines the strengths of both 

domain-knowledge-based and formal-learning-based approaches for maximizing 

utility over multivariate time series. It includes a mathematical model and a 

learning algorithm for solving Expert Query Parametric Estimation problems. 

Using the framework, we conduct a preliminary experiment in the financial 

domain to demonstrate that our model and algorithm are more effective and 

produce results that are superior to the two approaches mentioned above.  
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Introduction 

Automatic identification and detection of events in time series data is an important 

problem that has gained a lot of interest in the past decade. The timely detection of 

events can aid in the task of decision making and the determination of action plans. For 

example, in the financial domain, the identification of certain market conditions can 

provide investors valuable insight on the best investment opportunities. Existing 

approaches to identifying and detecting interesting events can be roughly divided into 

two categories: domain-knowledge-based and formal-learning-based. 

The former relies solely on domain expert knowledge. Based on their knowledge 

and experiences, domain experts determine the conditions that trigger the events of 
interest. For example, in the financial domain, experts have identified a set of financial 

indices that can be used to determine a bear market bottom or the “best buy” 

opportunity. The indices include the S&P 500 percentage decline (SPD), Coppock 

Guide (CG), Consumer Confidence point drop (CCD), ISM Manufacturing Survey 

(ISM), and Negative Leadership Composite “Distribution” (NLCD). If these indices 

satisfy the pre-defined, parameterized conditions, e.g., SPD < -20%, CG < 0, etc. [1], it 

signals that the best period for the investors to buy the stocks is approaching. While 

these parameters may reflect some realities since they are set by the domain experts 

based on their past experiences, observations, intuitions, and domain knowledge, they 

are not always accurate. In addition, the parameters are static, but the problem that we 

deal with is often dynamic in nature.  
An alternative is to utilize formal learning methods such as non-linear logit 

regression models [2, 3, 4]. The logit regression models can be used to predict the 

occurrence of an event (0 or 1) by learning parametric coefficients of explanatory 



variables based on their historical data and a series of mathematical formulations and 

algorithms, e.g., nonlinear regression models and Maximum Likelihood Estimation 

(MLE). The main challenge concerning using formal learning methods to support 

decision-making is that they do not always produce satisfactory results, as they do not 
take advantage of domain knowledge. In addition, formal learning methods are 

computationally intensive. Fitting a nonlinear model is not a trivial task, especially if 

the parameter learning process involves multiple explanatory variables (i.e., high 

dimensionality).  

To mitigate the shortcomings of the existing approaches, we propose a general 

framework that combines the strengths of both domain-knowledge-based and formal-

learning-based approaches. More specifically, we take the template of conditions 

identified by domain experts—such template consists of inequalities of values in the 

time sequences—and “parameterize” it, e.g., SPD < p1. Our goal is to efficiently find 

parameters that maximize the objective function, e.g., earnings in our financial example. 

With the potentially large data size and multiple variables, classic branch-and-bound 
approaches have exponential complexity. To this end, we identify multivariate time 

series parametric estimation problems, in which the objective function is dependent on 

the time points from which the parameters are learned. We develop a new algorithm 

that guarantees a true optimal time point and has the complexity of O(kNlogN), where 

N is the size of the learning data set, and k is the number of parametric time series. To 

demonstrate the effectiveness and the efficiency of our algorithm, we compare our 

method with the domain-knowledge-based approach and the logit regression model. As 

a proof of concept, we conduct an experiment in the financial domain, but note that our 

framework can be generalized to solve problems in different domains. We show that 

our algorithm is more effective and produces results that are superior to the two 

approaches mentioned above. 

The rest of the paper is organized as follows. In Section 1 we formally introduce 
and define the Expert Query Parametric Estimation (EQPE) problem. We describe our 

domain-knowledge-inspired learning algorithm in Section 2. Section 3 shows the 

experimental evaluation on stock market data and concludes our work. 

1. Mathematical Model of Expert Query Parametric Estimation Problems 

Intuitively, an Expert Query Parametric Estimation (EQPE) problem is to find optimal 

values of decision parameters that maximize an objective function over historical, 

multivariate time series. For an EQPE problem being constructed, we need to define a 

set of mathematical notations and a model for it. We assume that the time domain T is 

represented by the set of natural numbers: T = N, and we are given a vector of real 

parameters (p1, p2, …, pn) ∈ Rn. 
Definition 1. Time Series: A time series S is a function S: T → R, where T is the 

time domain, and R is the set of real numbers. In our example, the five parametric time 

series are SPD(t), CG(t), CCD(t), ISM(t), and NLCD(t). 

Definition 2. Parametric Constraint: A parametric constraint C(S1(t), S2(t), …, 

Sk(t), p1, p2, …, pn) is a symbolic expression in terms of S1(t), S2(t), …, Sk(t), p1, p2, …, 

pn, where Si(t) is a real value of the ith time series Si at the time t and pj is the jth decision 

parameter for 1 ≤ i ≤ k and 1≤ j ≤ n. We assume a constraint C written in a language 

that has the truth-value interpretation I: Rk x Rn → {True, False}, i.e., I(C(S1(t), 

S2(t), …, Sk(t), p1, p2, …, pn)) = True if and only if the constraint C is satisfied at the 



time point t ∈ T and with the parameters (p1, p2, …, pn) ∈ Rn. In this paper, we focus on 

conjunctions of inequality constraints: C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn) = ˄i (Si(t) 

op pj), where op ∈ {<, ≤, =, ≥, >, <>}. For example, SPD(t) < p1 ˄ CG(t) < p2 ˄ CCD(t) 
< p3 ˄ ISM(t) < p4 ˄ NLCD(t) > p5 are the inequality constraints, where p1, p2, …, p5 

are the decision parameters. 

Definition 3. Time Utility Function: A time utility function U is a function U: T → 

R. In our example, U(t) is the percentage of earning under the assumption that the S&P 

500 index (SP) fund is purchased at the time t and is sold at tS, where SP(t)  and SP(tS) 

are the buy and sell value of the fund respectively.  

Definition 4. Objective Function: Given a time utility function U: T → R and a 

parametric constraint C, an objective function O is a function O: Rn → R, which maps a 

vector of parameters on Rn to a real value R, defined as follows: For (p1, p2, …, pn) ∈ Rn, 

O(p1, p2, …, pn) ≝ U(t), where U is the utility function, and t ∈ T is the earliest time 
point that satisfies C, i.e., (1) S1(t) op1 p1 ˄ S2(t) op2 p2 ˄ … ˄ Sn(t) opn pn is satisfied, 

and (2) there does not exist 0 ≤ t' < t, such that S1(t') op1 p1 ˄ S2(t') op2 p2 ˄ … ˄ Sn(t') 

opn pn is satisfied. 

Definition 5. Expert Query Parametric Estimation (EQPE) Problem: An EQPE 

problem is a tuple <Ṡ, Ṗ, C, U>, where Ṡ = {S1, S2, …, Sk} is a set of k time series, Ṗ = 

{p1, p2, …, pn} is a set of n real-value parameters, C is a parametric constraint in Ṡ and 

Ṗ, and U is a time utility function. Intuitively, a solution to an EQPE problem is an 

instantiation of values into parameters that maximize the objective. 

Definition 6. Expert Query Parametric Estimation (EQPE) Solution: A solution to 

the EQPE problem <Ṡ, Ṗ, C, U> is argmax O(p1, p2, …, pn), i.e., the estimated values 

of parameters, p1, p2, …, pn, that maximize O, where O is the objective function 
corresponding to U. In our example, the solution is argmax O(p1, p2, …, p5). 

2. Checkpoint Algorithm for the Expert Query Parametric Estimation Problem 

Before explaining the algorithm in detail, we first introduce a new concept, Dominance. 

Definition 7. Dominance ≻: Given an EQPE problem <Ṡ, Ṗ, C, U> and any two 

time points t, t' ∈ T, we say that t' dominates t, denoted by t' ≻ t, if the following 

conditions are satisfied: (1) 0 ≤ t' < t, and (2) ∀(p1, p2, …, pn) ∈ Rn, C(S1(t), S2(t), …, 

Sk(t), p1, p2, …, pn) → C(S1(t'), S2(t'), …, Sk(t'), p1, p2, …, pn). Intuitively, t' dominates t 

if for any selection of parametric values, the query constraint satisfaction at t implies 

the satisfaction at t'. Clearly, the dominated time points should be discarded when the 
optimal time point is being determined. We formally claim that: 

Claim ℂ - Given the conjunctions of inequality constraints, S1(t) op1 p1 ˄ S2(t) op2 

p2 ˄ … ˄ Sk(t) opk pk, t' ≻ t if and only if S1(t') op1 S1(t) ˄ S2(t') op2 S2(t) ˄ … ˄ Sk(t') 

opk Sk(t). 

Conceptually, we can search a particular set of parameters {p1, p2, …, pn} which is 

at the earliest time point t that is not dominated by any t' such that the value of the 

objective function O is maximal among all the instantiations of values into parameters. 

However, the problem of this approach is that for every single parameter set at t in a 

learning data set, the parameter set at t has to be examined with all the previous sets of 

parameters at t' for checking the non-dominance before the optimal solution can be 
found. In fact, due to the quadratic nature, the conceptual approach is time consuming 

and expensive particularly if the size of the learning data set is significantly large. 

Instead, we propose the Checkpoint algorithm, which uses the KD-tree data structure 



and searching algorithm [5, 6, 7] to evaluate whether a time point t is dominated based 

on the Claim ℂ for checking the non-dominance. The pseudo code of the algorithm is: 

Input: <Ṡ, Ṗ, C, U> 
Output: p[1…k] is an array of the optimal parameters that maximize the objective. 

Data Structures:  

1. N is the size of the learning data set. 

2. Tkd is a KD tree that stores the parameter vectors that are not dominated so far. 

3. MaxT is the time point that gives the maximal U so far, denoted by MaxU. 

STEP 1: Tkd := <S1(0), S2(0), …, Sk(0)>; MaxT := 0; MaxU := U(0). 

STEP 2: Test if t is not dominated using the claim ℂ and the Tkd range query.  

STEP 3: If t is not dominated and U(t) > MaxU, then add <S1(t), S2(t), …, Sk(t)> to 

Tkd; MaxT := t; MaxU := U(t).  

STEP 4: FOR i := 1 To k DO (p[i] := Si(MaxT)) 

STEP 5: RETURN p[1…k] 
 

Apparently, the first time point is not dominated because there is no time point 

preceding it. <S1(0), S2(0), …, Sk(0)> can be added to Tkd. 0 and U(0) can be assigned 

to MaxT and MaxU respectively. 

Suppose there are three time series S1, S2, S3 and three decision parameters p1, p2, 

p3. And the constraints are C(S1(t), S2(t), S3(t), p1,  p2, p3) = S1(t) ≥ p1 ˄ S2(t) ≥ p2 ˄ S3(t) 

≤ p3. We also assume that the values of S1, S2, S3, and U at the time point t1, t2, and t3 

are shown in Table 1. Using the Checkpoint algorithm step by step, we can search a 

particular set of parameters {p1, p2, p3} which is at the earliest time point t that is not 

dominated by any t' such that the value of the utility function U is maximal.  

 
STEP 1: Tkd := <S1(t1), S2(t1), S3(t1)>; MaxT := t1; MaxU := U(t1). 

STEP 2:  

1. t2 is not dominated because S1(t1) < S1(t2) ˄ S2(t1) > S2(t2) ˄ S3(t1) > S3(t2) does 

not satisfy the claim ℂ .  

2. t3 is dominated because S1(t1) > S1(t3) ˄ S2(t1) > S2(t3) ˄ S3(t1) < S3(t3) does 

satisfy the claim ℂ . 

STEP 3: Add <S1(t2), S2(t2), S3(t2)> to Tkd because t2 is not dominated and U(t2) > 

U(t1). MaxT := t2; MaxU := U(t2). 

STEP 4: p[1] := S1(MaxT); p[2] := S2(MaxT); p[3] := S3(MaxT). 
STEP 5: Return 25, 15, and 2. 

 

The time complexity for the range search and insertion of a parameter vector in the 

Tkd tree is O(klogN) respectively. For N parameter vectors, the Checkpoint algorithm 

correctly computes the EQPE solution with the complexity of O(kNlogN). 

 

 
Table 1. Values of S1, S2, S3, and U at the time point t1, t2, and t3  

 Time S1 S2 S3 U 

t1 13 27 3 10 

t2 25 15 2 200 

t3 10 20 5 150 



3. Stock Market Experimental Results and Conclusions 

The optimal decision parameters and the maximal earning determined by the 

Checkpoint algorithm for the financial example are shown in Table 2. The time 

complexity of the MLE for the logit regression model is O(k2N), where k is the number 
of decision parameters, and N is the size of the learning data set. For the Checkpoint 

algorithm, the complexity is O(kNlogN). Using the decision parameters from the 

financial expert (i.e., -20%, 0, -30, 45, 180 days), the logit regression model, and the 

Checkpoint algorithm, the “Best Buy” opportunities in stock and their earnings are 

shown in Table 3 respectively. Note that the Checkpoint algorithm considerably 

outperforms both the financial expert’s criteria and the logit regression model. 

To the best of our knowledge, this is the first paper that combines both domain 

expertise and the learning-based approach to solve EQPE problems. There are still 

many open research issues, including more expressive query languages to express an 

EQPE problem and efficient algorithms with low computational complexity to solve it. 

 
 
Table 2. Optimal Decision Parameters and Maximum Earning (%) from the Learning Data Set

1
 

p1 p2 p3 p4 p5 O(p1, p2, p3, p4, p5) 

-29.02 -20.01 -26.61 49 70 53.37 

 

 
Table 3. Investors’ Earning of the S&P 500 Index Fund from the Test Data Set

2
 

Decision Approach Best Buy S&P 500 Index Earning% 

Financial Expert’s Criteria 10/09/08 909.92 1.03 

Logit Regression Model 11/26/08 887.68 3.56 

Checkpoint Algorithm with Financial Expert’s Template 03/10/09 719.6 27.8 
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1
 The learning data set is from 06/01/1997 to 06/30/2005. 

2
 The test data set is from 07/01/2005 to 06/30/2009 that is the sell date of the fund with the value of 919.32. 

http://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics.pdf

