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Abstract. In this work, we take the traditional notation of contrast sets and
extend them to other data types, in particular time series and by extension,
images. In the traditional sense, contrast-set mining identifies attributes, values
and instances that differ significantly across groups, and helps user understand
the differences between groups of data. We reformulate the notion of contrast-
sets for time series data, and define it to be the key pattern(s) that are maximally
different from the other set of data. We propose a fast and exact algorithm to
find the contrast sets, and demonstrate its utility in several diverse domains,
ranging from industrial to anthropology. We show that our algorithm achieves 3
orders of magnitude speedup from the brute-force algorithm, while producing
exact solutions.

1 Introduction

As noted by Bay and Pazzani, “A fundamental task in data analysis is understanding
the differences between several contrasting groups”. While there has been much work
on this topic for discrete and numeric objects, to the best of our knowledge, the
problem of mining contrast sets for time series or other multimedia objects has not
been addressed before. This work makes two fundamental contributions to the
problem.

e We introduce a formal notion of time series contrast set.
e We introduce a fast and exact algorithm to find time series contrast sets.

Contrast-set mining is a relatively new data-mining task, designed to identify
differences among various groups of data. It can be roughly viewed as a variant of
association rule mining [1, 4, 9]. While association rule mining discovers rules that
describe or explain the current situation, contrast-set mining finds rules that
differentiate contrasting groups of data, by identifying attributes and values (or
conjunctions thereof) that differ meaningfully across them [2, 3]. Knowing these
attributes that characterize the discrepancies across various groups can help users
understand the fundamental differences among them, and make independent decisions
on those groups accordingly.
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In this work, we introduce the concept of contrast-set mining for time series
datasets. Due to the unique characteristics of time series data, the notion of contrast-
set mining deviates from the traditional sense as defined on discrete data. More
specifically, time series contrast-set mining aims to identify the key patterns rather
than rules that differentiate two sets of data.

While this paper addresses time series contrast set explicitly, we note it is
possible to convert many kinds of data into time series. For example, Figure 1
shows that we can convert shapes to time series. Other types of data, from text to
video to XML [11], have also been converted into time series with varying degrees
of success.
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Fig. 1. Shapes can be converted to time series. A) A bitmap of a human skull. B) The distance
from every point on the profile to the center is measured and treated as the Y-axis of a time
series of length n (C) The mapping of the skull to time series.

Time series contrast-set mining should not be confused with clustering or
summarization, in which the aim is to compare the average behavior of different
sets. Suppose we are given two datasets that come from the same source; for
example, two sets of time series telemetry from two shuttle launches, or two sets of
ECG heartbeats from one patient — one before a drug was given and one after, or
two sets of skulls, one set from Asia and one set from Europe. For some external
reason, we suspect or actually know that there is something different about one
group - maybe one shuttle crashed, or the patient had a heart attack. It might be the
case that one entire group is different and this explains the problem. Maybe all the
shuttle telemetry from the first launch has an amplitude scaling increase, or maybe
all the ECG collected after the drug was administered show a faster heart rate.
However, maybe a single or a few object(s) explain the difference. This is exactly
what we are aiming to find.

As we shall show, our work has potential applications in detecting anomalies or
differences in time series datasets in several diverse domains, and in certain images.
The paper is organized as follows. In Section 2 we provide a brief overview on related
work and necessary background. Section 3 describes the brute-force algorithm on
finding time series contrast sets. In Section 4, we introduce an algorithm that offers 3
orders of magnitude speedup from the brute-force algorithm. Section 5 shows some
experimental results on some time series datasets and image data. Section 6 concludes
and offers suggestion for future work.
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2 Related Work and Background

The most representative work on contrast-set mining is perhaps the work by Bay and
Pazanni [2]. The authors introduce the task of contrast-set mining, and their algorithm
STUCCO offers efficient search through the space of contrast-sets, based on the Max-
Miner [4, 14] rule-discovery algorithm. Follow-up work by Webb et al. [14]
discovered that existing commercial rule-finding system, Magnum Opus [13], can
successfully perform the contrast-set task. The authors conclude that contrast-set
mining is a special case of the more general rule-discovery task. He et al. [6] applies
contrast-set mining on customer clusters to find cluster-defined actionable rules. In
[10] Minaei-Bidgoli et al. proposed an algorithm to mine contrast rules on a web-
based educational system. Their work is unique in that it allows rule discovery with
very low minimum support, so rules that would have been otherwise overlooked can
be discovered.

2.1 Notation

For simplicity and clarity we will speak only of time series below; however, as we
hinted in Figure 1, and as we explicitly address in Section 5.2, these ideas can be
extended to images and other types of data

Definition 1. Time Series: A time series T = t,,...,t,, is an ordered set of m real-valued
variables.

For data mining purposes, we are typically not interested in any of the global
properties of a time series; rather, we are interested in local subsections of the time
series, which are called subsequences.

Definition 2. Subsequence: Given a time series T of length m, a subsequence C of T is
a sampling of length n < m of contiguous position from p, that is, C =1,...,,,,.; for 1
SpS<m—-n+1.

Since all subsequences may potentially be attributing to contrast sets, any algorithm
will eventually have to extract all of them; this can be achieved by use of a sliding
window. We also need to define some distance measure Dist(C,M) in order to
determine the similarity between subsequences. We require that the function Dist be
symmetric, that is, Dist(C,M) = Dist(M,C). There are dozens of distance measures for
time series in the literature. However recent evidence strongly suggests that simple
Euclidean distance is very difficult to beat for classification and clustering problems,
so without loss of generality we will exclusively use it in this work.

Definition 3. Euclidean Distance: Given two time series Q and C of length n, the
Euclidean distance between them is defined as:

DiS[(Q7C)E é(qi_ci)z

Each time series subsequence is normalized to have mean zero and a standard
deviation of one before calling the distance function, because it is well understood
that in virtually all settings, it is meaningless to compare time series with different
offsets and amplitudes [7].
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We may wish to be able to find a pattern that occurs in one time series, but does
not have a close match in another. Since such patterns could be used to differentiate
time series, we call such patterns TS-Diffs.

Definition 4. TS-Diff: Given two time series T and S, and a user-given parameter n,
TS-Diff(T,S,n) is the subsequence C of T, of length n, that has the largest distance to
its closest match in S.

Note that this definition is not generally symmetric; that is, TS-Dif(T,S,n) # TS-
Diff(S,T,n). We may wish to be able to find the patterns that differentiate the two time
series.

Definition 5. Time Series Contrast Sets: Given two time series T and S, a user given
parameter n, let C = TS-Diff(T, S, n) and D = TS-Diff(S, T, n). The contrast set CS for
Tand Sis {C, D}.

Often there might be more than one pattern that differentiates two time series. The
definition above can be easily extended to K time series contrast sets.

3 Finding Time Series Contrast Sets

We begin by describing the simple and obvious brute-force algorithm for finding the
contrast sets between two time series 7 and S. For simplicity, let’s assume that the two
sets of data are of the same length, m, although in reality, their lengths need not be the
same. Furthermore, let’s assume that we are interested in finding patterns or
subsequences of length n that differentiate the data. Since the results are not
necessarily symmetric, we need to process T and S separately.

Intuitively, the definition of contrast sets tells us that the brute-force algorithm will
need to compute the pairwise distances between all subsequences in 7 and S. That is,
for each subsequence C in T, we need to compute its distance to all subsequences in S,
in order to determine the distance to its closest match in S. The subsequence in T that
has the greatest such value is then TS-Diff (T S, n). This can be achieved with nested
loops, where the outer loop considers each candidate subsequence in 7, and the inner
loop is a linear scan to identify the candidate’s nearest match in S. The brute-force
algorithm is easy to implement and produces exact results. However, its O(m?) time
complexity makes this approach untenable for even moderately large datasets.

Fortunately, the following observations offer hope for improving the algorithm’s
running time. Recall what we wish to find here: we wish to identify the subsequence
in T that is farther away from its nearest match in S than all other subsequences are
from their respective nearest matches. Hence, we can keep track of the candidate that
has the largest nearest match distance so far. This implies that we might not need to
know the actual nearest match distance for every subsequence in 7. The only piece of
information that is crucial is whether or not a given subsequence in T can be the
candidate for 7S-Diff. This can be achieved by determining if the given subsequence
has the potential of having a large nearest match distance.

Suppose we use the variable best_so_far_dist to keep track of the largest nearest-
match distance so far. Consider the following scenario. Suppose after examining the
first subsequence in 7, we find that this subsequence is 10 units away from its nearest
match in S (and we initialize best_so_far_dist to be 10). Now suppose as we move
on to the next candidate subsequence in 7, we find that it’s 2 units away from the first
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subsequence in S. At this point, we know that the current candidate could not be the
candidate for TS-Diff, since its nearest match distance is at most 2 units, which is far
less than best_so_far_dist. We can therefore safely abandon the rest of the search
for this candidate’s nearest match. In other words, when we consider a candidate
subsequence C in 7, we don’t actually need to find its true nearest match in S. As soon
as we find any subsequence in S that has a smaller distance to C than
best_so_far_dist, we can abandon the search process for C, safe in the knowledge
that it could not be TS-Diff.

Clearly, the utility of such optimization depends on the order in which the
subsequences in T are considered, as well as the order in which the subsequences in S
are matched against the current candidate. The earlier we examine a subsequence in S
that has a smaller Dist(C, D) than best_so_far_dist, the earlier we can abandon the
search process for the current candidate. This observation brings us to reducing the
TS-Diff problem into a generic framework where, instead of examining all
subsequences in sequential order, it allows one to specify any customized ordering of
the subsequences to be examined. Table 1 shows the pseudocode.

Table 1. Heuristic TS-Diff Discovery

1 Function [dist, I]= Heuristic_Search(7, S, n, Outer, Inner)
2 best_so_far_dist =0

3 best_so_far_TS = NaN

4

5 // Begin Outer Loop

6 For Each C in 7 ordered by heuristic Outer

7 nearest_neighbor_dist = infinity

8

9 // Begin Inner Loop

10 For Each D in Sordered by heuristic /nner

1 IF Dist(C, D) <best_so_far_dist

12 Break /I Break out of Inner Loop
13 End

14 IF Dist(C, D) < nearest_neighbor_dist

15 nearest_neighbor_dist = Dist(C, D)

16 End

17 End // End Inner Loop
18 IF nearest_neighbor_dist > best_so_far_dist

19 best_so_far_dist = nearest_neighbor_dist

20 best_so_far TS = C

21 End

22 End // End Outer Loop
23 Return[ best_so_far_dist, best_so_far_TS]

We can consider the following to be the best scenario: for the ordering Outer, the
subsequences in T are sorted by descending order of distances to their closest
matches in S, so that the true T7S-Diff is the first object examined, and
best_so_far_dist is at its maximum value after the first iteration of the outer loop.
For the ordering Inner, the subsequences in S are sorted in ascending order of
distances to the current candidate C so that it’s guaranteed that the first object
examined in the inner loop will have a distance smaller than best_so_far_dist
(otherwise C would have been placed towards the front of the queue). For this
heuristic, the first invocation of the inner loop will run to completion to determine
best_so_far_dist. Thereafter, all subsequent invocations of the inner loop will be
abandoned after only one iteration, i.e. after discovering that the current distance is
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smaller than best_so_far_dist. The total time complexity is thus O(m). This is the
best possible scenario. We call this heuristic magic.

On the other hand, we should expect the worst-case scenario to be the exact
opposite of the best-case scenario. In this scenario, the true 7S-Diff will be the last
object to be examined. More specifically, this heuristics has the worst-possible
ordering such that for Outer, the subsequences in T are sorted by ascending order of
distance to the closest match in S. For Inner, the time series in S are sorted in
descending order of distance to the current candidate. In this case, we are back to the
quadratic time complexity as the brute-force algorithm. This is the perverse heuristic.

Another possible strategy is to order the subsequences randomly for both Outer
and Inner heuristics. Empirically it works reasonably well, and the inner loop is
usually abandoned early, considerably speeding up the algorithm.

The three strategies discussed so far suggest that a linear-time algorithm is
possible, but only with the aid of some very wishful thinking. The best-case heuristic
requires perfect orderings of subsequences in the inner and outer loops. The only
known way to produce such ordering is to actually compute the distances, which
indirectly solve the problem. Even if the distances are known in advance, any sorting
algorithm requires at least O(mlogm) time complexity. To ensure that the total
running time is no worse than the worst-case running time, we must require a linear-
time heuristic for T (outer loop, invoked once for the whole program), and a constant-
time heuristic for every invocation of S ordering.

Observe that, however, for Outer, we do not actually need to achieve a perfect
ordering to achieve dramatic speedup. All we really require is that among the first few
candidate subsequences being examined, we have at least one that has a large distance
to its closest match. This will give the best_so_far_dist variable a large value early
on, which will allow more early terminations of the inner loop.

Similar observation goes for Inner. In the inner loop, we also do not actually need
a perfect ordering to achieve dramatic speedup. We just need that among the first few
subsequences in S being examined, we have at least one that has a distance to the
current candidate that is smaller than the current value of best_so_far_dist. This is a
sufficient condition to allow early termination of the inner loop.

We can imagine a full spectrum of algorithms, which only differ by how well they
order subsequences relative to the best-case ordering. The random heuristic is
somewhere between the best and the worst heuristics. Our goal then is to find the best
possible approximations to the best-case heuristic ordering, which is the topic of the
next section.

4 Group SAX: Approximating the Best-Case Heuristic

Our techniques for approximating the perfect ordering returned by the hypothetical
best-case heuristic require us to discretize the real-valued time series data first. We
choose Symbolic Aggregate ApproXimation (SAX) representation of time series
introduced in [8] to be the discretization technique. Since our algorithm finds
differences between groups of time series using SAX, we call it Group SAX.

SAX works by first approximating the original time series of length m with w
coefficients (w << n) via Piecewise Aggregate Approximation (PAA) [8]. These w
coefficients are then converted to symbols of cardinality o, according to where they
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reside in the Gaussian space. Therefore, the discrete approximation of the time series
is a string of length w. Due to the space constraints, we direct interested readers to [§]
for more information on SAX.

4.1 The Outer Loop Heuristic

We begin by creating two data structures to support our heuristics. Before that, there
are two parameters associated with SAX that we must consider. They are the
cardinality of the SAX alphabet size o, and the SAX word size w. Extensive
experiments carried out by the current authors and dozens of other researchers
worldwide [8] suggest that a value of either 3 or 4 for o is best for virtually any task
on any dataset. Furthermore, while the choice of w depends on the data, we observe
empirically that the speedup does not critically depend on w. We refer interested
readers to [8] for more details on SAX parameter setting, but note that the parameters
only affect the efficiency of the algorithm, not the final results. The subsequences are
extracted by sliding a window of length n across the time series, which are then
converted to SAX words. These SAX words are inserted to an array where the index
refers back to the original sequence. Figure 2 gives a visual intuition of this, where
both arand w are set to 3. Once we have this ordered list of SAX words, we construct a
hash table. Each bucket in the hash table represents a unique word and contains a
linked-list index of all subsequences that map to the corresponding string. The hash
function we used assigns each SAX word a unique address ranging from 0 tor” —1,
hence guarantees minimal perfect hashing. The memory consumption for creating an
empty hash table is considerably small and can be ignored.

Ravrtime series
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Fig. 2. The data structure used to support the Inner and Outer heuristics. (left) An array of SAX
words (right). An excerpt of the hash table that contain pointers to the corresponding
subsequences.
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The process is repeated for both time series datasets that we wish to contrast. Each
dataset has its own array and hash table. Once the hash tables are constructed for T
and S, we can now determine the ordering of the outer loop objects. Recall that for
Outer, the goal is to have a large nearest-match distance early in the loop. Thus,
intuitively, we want to identify the subsequences in T that have the smallest count of
matching SAX word in S (virtually zero). The reason is simple. Since SAX
approximates and captures similarities between time series, we can expect that similar
time series are likely to map to the same SAX representation. Conversely,
subsequences mapped to SAX strings that are exclusive to 7, i.e., they appear in T but
not in S, are unlikely to have close matches in S. Therefore, by considering the
candidate subsequences that map to such unique or rare SAX words with respect to S
early in the outer loop, we have a great chance of obtaining large best_so_far_dist
value among the first few candidates examined, thus allowing early termination in the
subsequent inner-loop iterations.

To achieve this, we utilize the two hash tables we build from T and S. We perform
a linear scan in Hash_S, and for each empty bucket we encounter, check if the
corresponding bucket in Hash_T is empty as well. If not, then we record the
subsequence indices from this bucket in Hash_T, and add them to a list which we call
Preferred_List. We end up with a list that contains indices of subsequences whose
SAX representations are unique in 7. The subsequences referred to by the
Preferred_List will be given to the outer loop to search over first. After the outer loop
has exhausted this set, the rest of the candidates are visited in random order.

4.2 The Inner Loop Heuristic

Our Inner heuristic also leverages off Hash_T and Hash_S. Recall that in the inner
loop, as soon as we encounter a subsequence similar enough to the current candidate
in the outer loop, such that their distance is smaller than best_so_far_dist, then the
search for the current candidate can be abandoned. The heuristic used for the outer
loop gives us hope that best_so_far_dist will take on a large value early on in the
process. For the inner loop, we take the optimization one step further by putting the
subsequences that might cause early termination in the front of the queue so they are
examined first. By identifying and eliminating those that could not possibly have a
nearest match distance larger than best_so_far_dist early in the iteration, many
unnecessary computations can be spared. Note that all it takes is having one distance
that is smaller than best_so_far_dist.

To achieve this, we determine the ordering of the inner loop as follows. When
candidate i is first considered in the outer loop, we look up the SAX word that it maps
to, by examining the /™ word in the array for 7. We then compute the key for the SAX
word, and order the first items in the inner loop in the order of the elements in the
linked list index found at the corresponding bucket in Hash_S. These subsequences
will be visited first by the inner loop. After this list is exhausted, the rest of the
subsequences are visited in random order.

Note that in the beginning, since the outer loop considers the unique words in 7
first, there will be no matching words in S, thus no optimization for the inner loop.
One option would be to limit the size of Preferred_List in the outer loop; however,
empirically we find that even without doing so, the speed up is already significant that
it is not necessary to put a threshold on the number of “unique” subsequences to
examine first in the outer loop.
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5 Empirical Evaluation

5.1 The Utility of Contrast Sets: Time Series

We begin by considering the contrast set between German and Italian consumer
electrical power demands. We obtained the last 9 nine years data from two towns,
Dortmumd and Florence. Both time series are sampled hourly, and thus each is of
length 269,379. We are interested in monthly patterns, so we set parameter n to 672 (4
weeks). Figure 3 shows the number one TS-Diff({/talian, German, 672) found.

The difference is striking. The German time series simply shows the typical
weekly pattern repeated 4 times. The typical weekly pattern for power demand
corresponds to 5 major peaks for the Monday to Friday 9 to 5 work hours, followed
by a much smaller peak for Saturday and minimal power demand for Sunday. In
contrast, the Italian demand shows a dramatic reduction in power demand as the
month of August progresses. What is behind this difference?

German

Italian —>
Week-1 Week-2 Week-3 Week-4

Fig. 3. The four weeks of Italian Power Demand, beginning on Monday July 31* 1995 is
radically different from the most similar four weeks of German Power Demand, beginning on
3 of May 1999.

The answer lies in an Italian cultural phenomenon. According to travel writer Nella
Nencini, “By the middle of July, normal activity begins to wane and by the beginning
of August, shops no longer close between 1 and 4 p.m., they close for two or three
weeks. Dry cleaners close, mechanics close, factories close, wineries close,
restaurants close, even some museums close. Cities like Florence and Venice would
be abandoned if not for the tourists braving the heat to visit artistic treasures”. The
dramatic change in power demand reflects the fact that most major employers (like
Fiat and many government offices) simple shut down for the month. This difference is
obvious if we zoom out and look at a full year of Florence’s power demand, as shown
in Figure 4.

300

Italian Power Demand, 1995

200 =

100 i

— December
January August
. .

0 L

Fig. 4. One Year of Italian Power Demand (1995). Note that August is radically different from the
rest of the year.
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5.2 The Utility of Contrast Sets: Shapes

As noted in Section 1, we can trivially apply our ideas to shapes, since shapes
typically represented as a 1-dimensional signal. In this section we show some
examples of mining image datasets.

Petroglyphs are images incised in rock by prehistoric peoples. They were an
important form of pre-writing symbols, used in communication from approximately
10,000 B.C. to modern times, depending on culture and location. Petroglyphs have
been found on every continent except Antarctica. In virtually all cases, there is still
great controversy about who created the petroglyphs, when, and for what purpose.
The controversy is not for the want of evidence, for example the petroglyph shown in
Figure 6A is just one of more than 100,000 petroglyphs to be found in an area of a
mere 91 square miles of Sierra Nevada called Renegade Canyon.

We believe that contrast sets offer one possible tool for examining massive
archives of petroglyph images. As a preliminary experiment we began by contrasting
petroglyphs from the aforementioned site in Nevada with a similarly dense site in
Sheep Springs in Kern County California.

For simplicity we only consider petroglyphs of animals, however it has be estimated
that 51% of the Renegade Canyon petroglyphs are of animals, and as the name “Sheep
Springs” suggests, the Californian site is similarly dense with images of sheep.

There are several technical problems that must be faced before we apply our
algorithm. First of all there is the issue of image processing and shape extraction. This
task is non-trivial, but not of direct interest here. Note that the representation we use is
scale and translation invariant.

Once the shapes have been extracted and converted to time series we must consider
two important issues. Do we wish to be enantiomorphic invariant? That is to say do
we wish to attach any significance to whether an animal is facing left or right? After
consulting with an anthropologist we decided to ignore such directional information.
This we achieve by simply augmenting the database of time series to include the
mirror image of each image. We can achieve this directly in the time series
representation. Recall that a single time series C is defined as: C = ¢y,c5,...,C),...,Cp.

For each such time series we also add C’ to the database: C’ =¢,,C,.1,...,C2,-..,C].

We must also consider the problem of rotation invariance. Should we attach any
significance to the angle at which the animals are drawn? For two reasons our answer
is no. The first is pragmatic. Finding “correct” orientation of a shape is difficult
problem in general. The second reason why we choose to be invariant to orientation is
an observation by our anthropologist that often the animals are drawn to align with
cracks and fissures in the rocks, and the orientation appears to have no significance.

Once again, achieving rotation invariance in our representation is easy to achieve
by augmenting our database to contain additional time series. Let € be all n circular
shifts of C:

C1,ChsennsC

n-1>Cn
€ CpreresCoysC

5 Chns

(9

n’

€,,C,CysennsC

>V n-1

By adding all such circular shifts to our database we achieve rotation invariance.
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Figure 5 shows some examples of shapes from Renegade Canyon and their closest
match from Sheep Springs, including the one that maximizes TS_Diff(Renegade
Canyon, Sheep Springs).

\/m/"“’ A Renegade
Canyon
T ANV B Steep
~ Springs

Fig. 5. Three petroglyphs shapes from Renegade Canyon (light lines) and their best matches from the
Sheep Springs database. While most shapes are like A and B in having a close match in the other
database, the shape from Renegade Canyon shown in C is unusually different from its nearest
counterpart in Sheep Springs.

Why is one image from Renegade Canyon so different to any image from Sheep
Springs? An inspection of the original images, as shown in Figure 6, reveals the
answer. While there are a handful of images that show a spear stuck into the body of a
sheep in Renegade Canyon, including the one shown in Figure 6 (top), a careful
manual inspection of the Sheep Springs database reveals that there are no such
petroglyphs in Sheep Springs.

Fig. 6. A) A petroglyph from Renegade Canyon of a Bighorn Sheep with a spear stuck in it has
its profile automatically extracted (B) and converted to a time series. C) A petroglyph from
Sheep Springs of a Bighorn Sheep with a spear stuck in it has it profile automatically extracted
(D) and converted to a time series. Note that the two shapes are not a good match, mainly
because the part of the time series corresponding to the spear (E) creates a relatively large
Euclidean distance between the two shapes.

5.3 The Utility of Our Search Technique

In Figure 7, we compare the brute force algorithm to our algorithm in terms of the
number of times the Euclidean distance function is called. Since we are now
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interested in the scalability of both approaches, we use random walk datasets of
lengths 100,000 and 200,000. For our algorithm we averaged the results over 100 runs
for each data length.

N

SraleForce
Culesirrer

Heuristes

Fig. 7. The number of calls to the distance function required by brute force and heuristic search.
The window length is 64 for all cases.

Note that as the data sizes increase, the differences get larger. For a time series of
length 200,000, our approach is almost seven thousand times faster than brute force
approach. This experiment is in fact pessimistic in that we used the datasets (random
walk) that did not have any obvious structures in them. In general, if the data exhibit
some structures, as the ones used in Section 5.1 and 5.2, then our approach would be
even faster since there would be a lot more potential matches for most subsequences,
to allow early termination.

6 Conclusions and Future Work

In this work, we have introduced the notion of time series contrast sets, a data mining
task that identifies key differences across data groups. We introduced an algorithm to
efficiently find time series contrast sets and demonstrated its utility of a host of
domains. Many future directions suggest themselves; most obvious among them are
extensions to multidimensional time series, to streaming data, and to other distance
measures. We will also investigate the possibility of combining the processes of 7'S-
Diff(T, S, n) and TS-Diff(S, T, n) to avoid redundant computations.
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