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ABSTRACT   
Time series data is perhaps the most frequently encountered type 
of data examined by the data mining community. Clustering is 
perhaps the most frequently used data mining algorithm, being 
useful in it’s own right as an exploratory technique, and also as a 
subroutine in more complex data mining algorithms such as rule 
discovery, indexing, summarization, anomaly detection, and 
classification. Given these two facts, it is hardly surprising that 
time series clustering has attracted much attention. The data to be 
clustered can be in one of two formats: many individual time 
series, or a single time series, from which individual time series 
are extracted with a sliding window. Given the recent explosion of 
interest in streaming data and online algorithms, the latter case 
has received much attention. 

In this work we make a surprising claim. Clustering of streaming 
time series is completely meaningless. More concretely, clusters 
extracted from streaming time series are forced to obey a certain 
constraint that is pathologically unlikely to be satisfied by any 
dataset, and because of this, the clusters extracted by any 
clustering algorithm are essentially random. While this constraint 
can be intuitively demonstrated with a simple illustration and is 
simple to prove, it has never appeared in the literature. An 
important implication of our findings is that widely used, time 
series rule discovery algorithms are producing random results!  

1. INTRODUCTION 
Time series data is perhaps the most commonly encountered kind 
of data explored by data miners [21, 29]. Clustering is perhaps the 
most frequently used data mining algorithm [11], being useful in 
it’s own right as an exploratory technique, and as a subroutine in 
more complex data mining algorithms [2, 3]. Given these two 
facts, it is hardly surprising that time series clustering has 
attracted an extraordinary amount of attention [2, 5, 6, 7, 9, 10, 
12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 32, 
34, 36, 38]. The work in this area can be broadly classified into 
two categories: 

• Whole Clustering: The notion of clustering here is similar to 
that of conventional clustering of discrete objects.  Given a 
set of individual time series data, the objective is to group 
similar time series into the same cluster.   

• Subsequence Clustering: Given a single time series, 
individual time series (subsequences) are extracted with a 
sliding window.  Clustering is then performed on the 
extracted time series.  

Subsequence clustering is commonly used as a subroutine in 
many other algorithms, including rule discovery [7, 9, 12, 13, 14, 
17, 18, 25, 27, 30, 36, 38], indexing [22, 28], classification [5, 6], 
prediction [31, 34], and anomaly detection [38]. For clarity, we 
will refer to this type of clustering as STS (Subsequence Time 
Series) clustering.  

In this work we make a surprising claim. Clustering streaming 
time series is meaningless!  More concretely, clusters extracted 
from streaming time series are forced to obey a certain constraint 
that is pathologically unlikely to be satisfied by any dataset, and 
because of this, the clusters extracted by any clustering algorithm 
are essentially random. This simple observation has never 
appeared in the literature.  

Our claim is surprising since it calls into question the 
contributions of dozens of papers. In fact, the existence of so 
much work based on STS clustering offers an obvious counter 
argument to our claim. It could be argued: “Since many papers 
have been published which use time series subsequence clustering 
as a subroutine, and these papers produced successful results, 
time series subsequence clustering must be a meaningful 
operation.” 

We strongly feel that this is not the case. We believe that in all 
such cases the results are consistent with what one would expect 
from random cluster centers. We recognize that this is a strong 
assertion, so we will demonstrate our claim by reimplementing the 
most successful (i.e. the most referenced) examples of such work, 
and showing with exhaustive experiments that these contributions 
inherit the property of meaningless results from the STS 
clustering subroutine. 

The rest of this paper is organized as follows. In Section 2 we will 
review the necessary background material on time series and 
clustering, then briefly review the body of research that uses STS 
clustering. In Section 3 we will show that STS clustering is 
meaningless with a series of simple intuitive experiments; then in 
Section 4 we will explain why STS clustering cannot produce 
useful results. In Section 5 we show that the many algorithms that 
use STS clustering as a subroutine produce results 
indistinguishable with random clusters. Since the main 
contribution of this paper may be considered “negative,” we 
conclude in Section 6 with the demonstration of a simple 
algorithm that can find clusters in at least some trivial streaming 
datasets. This algorithm is not presented as the best way to find 
clusters in streaming time series; it is simply offered as an 
existence proof that such an algorithm exists, and to pave the way 
for future research.  
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2. BACKGROUND MATERIAL 
2.1 Notation and Definitions  
We begin with a definition of our data type of interest, time series: 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Data miners are typically not interested in any of the global 
properties of a time series; rather, data miners confine their 
interest to subsections of the time series, called subsequences.   

Definition 2. Subsequence: Given a time series T of length m, 
a subsequence Cp of T is a sampling of length w < m of 
contiguous positions from T, that is, C = tp,…,tp+w-1 for  1 ≤ p 
≤ m – w + 1. 

In this work we are interested in the case where all the 
subsequences are extracted, and then clustered. This is achieved 
by use of a sliding window. 

Definition 3. Sliding Windows: Given a time series T of 
length m, and a user-defined subsequence length of w, a 
matrix S of all possible subsequences can be built by “sliding 
a window” across T and placing subsequence Cp  in the pth  
row of S. The size of matrix S is (m – w + 1) by w. 

Figure 1 summarizes all the above definitions and notations. 

 

Figure 1.  An illustration of the notation introduced in this 
section: a time series T of length 128, a subsequence of length w 
= 16, beginning at datapoint 67, and the first 8 subsequences 
extracted by a sliding window.  

Note that while S contains exactly the same information as T, it 
requires significantly more storage space. This is typically not a 
problem, since, as we shall see in the next section, the limiting 
factor tends to be the CPU time for clustering. 

2.2 Background on Clustering 
One of the most widely used clustering approaches is hierarchical 
clustering, due to the great visualization power it offers [21, 24]. 
Hierarchical clustering produces a nested hierarchy of similar 
groups of objects, according to a pairwise distance matrix of the 
objects.  However, its application is limited to only small datasets, 
due to its quadratic computational complexity. Table 1 outlines 
the basic hierarchical clustering algorithm. 

Table 1: An outline of hierarchical clustering. 
Algorithm Hierarchical Clustering 

1. Calculate the distance between all objects. Store the 
results in a distance matrix. 

2. Search through the distance matrix and find the two 
most similar clusters/objects. 

3. Join the two clusters/objects to produce a cluster that 
now has at least 2 objects. 

4. Update the matrix by calculating the distances between 
this new cluster and all other clusters. 

5. Repeat step 2 until all cases are in one cluster. 

A faster method to perform clustering is k-means [3].  The basic 
intuition behind k-means is shown in Table 2:  

Table 2: An outline of the k-means algorithm. 
Algorithm k-means 

1. Decide on a value for k. 
2. Initialize the k cluster centers (randomly, if necessary). 
3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center. 
4. Re-estimate the k cluster centers, by assuming the 

memberships found above are correct. 
5. If none of the N objects changed membership in the last 

iteration, exit. Otherwise goto 3. 

The k-means algorithm for N objects has a complexity of 
O(kNrD), with k the number of clusters specified by the user, r the 
number of iterations until convergence, and D the dimensionality 
of time series (in the case of STS clustering, D is the length of the 
sliding window, w). While the algorithm is perhaps the most 
commonly used clustering algorithm in the literature, it does have 
several shortcomings, including the fact that the number of 
clusters must be specified in advance [3, 11]. 

2.3 Background on Time Series Data Mining 
The last decade has seen an extraordinary interest in mining time 
series data, with at least one thousand papers on the subject [21]. 
Tasks addressed by the researchers include segmentation, 
indexing, clustering, classification, anomaly detection, rule 
discovery, and summarization. 

Of the above, a significant fraction use streaming time series 
clustering as a subroutine. Below we will enumerate some 
representative examples. 

• There has been much work on finding association rules in 
time series [7, 9, 12, 13, 17, 18, 21, 25, 27, 36, 38]. Virtually 
all work is based on the classic paper of Das et. al. that uses 
STS clustering to convert real valued time series into 
symbolic values, which can then be manipulated by classic 
rule finding algorithms [7]. 

• The problem of anomaly detection in time series has been 
generalized to include the detection of surprising or 
interesting patterns (which are not necessarily anomalies). 
There are many approaches to this problem, including 
several based on STS clustering [38].  

• Several techniques for classifying time series make use of 
STS clustering to preprocess the data before passing to a 
standard classification technique such as a decision tree [5, 
6]. 

The above is just a small fraction of the work in the area, more 
extensive surveys may be found in [19, 29].  

3. DEMONSTRATIONS OF THE 
MEANINGLESSNESS OF STS CLUSTERING 
In this section we will demonstrate the meaninglessness of STS 
clustering. In order to demonstrate that this meaninglessness is a 
product of the way the data is obtained by sliding windows, and 
not some quirk of the clustering algorithm, we will also do whole 
clustering as a control [10, 26]. 

3.1 K-means Clustering  
Because k-means is a heuristic, hill-climbing algorithm, the 
cluster centers found may not be optimal [11]. That is, the 
algorithm is guaranteed to converge on a local, but not necessarily 
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global optimum.  The choices of the initial centers affect the 
quality of results.  One technique to mitigate this problem is to do 
multiple restarts, and choose the best set of clusters [3]. An 
obvious question to ask is how much variability in the shapes of 
cluster centers we get between multiple runs. We can measure this 
variability with the following equation: 

• Let ),...,,( 21 kaaaA= be the cluster centers derived from 
one run of k-means. 

• Let ),...,,( 21 kbbbB=  be the cluster centers derived from a 
different run of k-means. 

• Let ),( ji aadist  be the distance between two cluster 

centers, measured with Euclidean distance.   
Then the distance between two sets of clusters can be defined as: 
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The simple intuition behind the equation is that each individual 
cluster center in A should map on to its closest counterpart in B, 
and the sum of all such distances tells us how similar two sets of 
clusters are.  

An important observation is that we can use this measure not only 
to compare two sets of clusters derived for the same dataset, but 
also two sets of clusters which have been derived from different 
data sources. Given this fact, we propose a simple experiment.  

We performed 3 random restarts of k-means on a stock market 
data set, and saved the 3 resulting sets of cluster centers into set 
X. We also performed 3 random restarts on random walk dataset, 
saving the 3 resulting sets of cluster centers into set Y. 

We then measured the average cluster distance (as defined in 
equation 1), between each set of cluster centers in X, to each other 
set of cluster centers in X. We call this number 
within_set_X_distance. We also measured the average cluster 
distance between each set of cluster centers in X, to cluster centers 
in Y; we call this number between_set_X_and_Y_distance. 

We can use these two numbers to create a fraction: 

ancedistYandXsetbetween
ancedistXsetwithin
_____

___ Y)ness(X,meaningful clustering ≡
 (2) 

We can justify calling this number “clustering meaningfulness” 
since it clearly measures just that. If the clustering algorithm is 
returning the same or similar sets of clusters despite different 
initial seeds, the numerator should be close to zero. In contrast, 
there is no reason why the clusters from two completely different, 
unrelated datasets to be similar.  Therefore, we should expect the 
denominator to be relatively large. So overall we should expect 
that the value of clustering meaningfulness(X,Y) should be close 
to zero when X and Y are sets of cluster centers derived from 
different datasets. 

As a control, we performed the exact same experiment, on the 
same data, but using subsequences that were randomly extracted, 
rather than extracted by a sliding window. We call this whole 
clustering. 

Since it might be argued that any results obtained were the 
consequence of a particular combination of k and w, we tried the 
cross product of k = {3, 5, 7, 11} and w = {8, 16, 32}. For every 

combination of parameters we repeated the entire process 100 
times, and averaged the results. Figure 2 shows the results. 

 

Figure 2.  A comparison of the clustering meaningfulness for 
whole clustering, and STS clustering, using k-means with a 
variety of parameters. The two datasets used were Standard and 
Poor's 500 Index closing values and random walk data. 

The results are astonishing. The cluster centers found by STS 
clustering on any particular run of k-means on stock market 
dataset are not significantly more similar to each other than they 
are to cluster centers taken from random walk data! In other 
words, if we were asked to perform clustering on a particular 
stock market dataset, we could reuse an old clustering obtained 
from random walk data, and no one could tell the difference! 

We reemphasize here that the difference in the results for STS 
clustering and whole clustering in this experiment (and all 
experiments in this work) are due exclusively to the feature 
extraction step. In particular, both are being tested on the same 
dataset, with the same parameters of w and k, using the same 
algorithm. 

3.2 Hierarchical Clustering 
The previous section suggests that k-means clustering of STS time 
series does not produce meaningful results, at least for stock 
market data. An obvious question to ask is, is this true for STS 
with other clustering algorithms? We will answer the question for 
hierarchal clustering here. 

Hierarchal clustering, unlike k-means, is a deterministic 
algorithm. So we can’t reuse the experimental methodology from 
the previous section exactly, however, we can do something very 
similar.  

First we note that hierarchal clustering can be converted into a 
partitional clustering, by cutting the first k links [24]. Figure 3 
illustrates the idea. The resultant time series in each of the k 
subtrees can then be merged into single cluster prototypes. When 
performing hierarchal clustering, one has to make a choice about 
how to define the distance between two clusters, this choice is 
called the linkage method (cf. line 3 of Table 1). 
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Figure 3.  A hierarchal clustering of ten time series. The 
clustering can be converted to a k partitional clustering by 
“sliding” a cutting line until it intersects k lines of the 
dendrograms, then averaging the time series in the k subtrees to 
form k cluster centers (gray panel). 

Three popular choices are complete linkage, average linkage and 
Wards method [11]. We can use all three methods for the stock 
market dataset, and place the resulting cluster centers into set X. 
We can do the same for random walk data and place the resulting 
cluster centers into set Y. Having done this, we can extend the 
measure of clustering meaningfulness in Eq. 2 to hierarchal 
clustering, and run a similar experiment as in the last section, but 
using hierarchal clustering. The results of this experiment are 
shown in Figure 4. 

 

Figure 4.  A comparison of the clustering meaningfulness for 
whole clustering and STS clustering using hierarchal clustering 
with a variety of parameters. The two datasets used were Standard 
and Poor's 500 Index closing values and random walk data. 

Once again, the results are astonishing. While it is well 
understood that the choice of linkage method can have minor 
effects on the clustering found, the results above tell us that when 
doing STS clustering, the choice of linkage method has as much 
effect as the choice of dataset! Another way of looking at the 
results is as follows. If we were asked to perform hierarchical 
clustering on a particular dataset, but we did not have to report 
which linkage method we used, we could reuse an old random 
walk clustering and no one could tell the difference without 
rerunning the clustering for every possible linkage method.  

4. WHY IS STS CLUSTERING MEANINGLESS? 
Before explaining why STS clustering is meaningless, it will be 
instructive to visualize the cluster centers produced by both whole 
clustering and STS clustering. We will demonstrate on the classic 
Cylinder-Bell-Funnel data [21]. This dataset consists of random 
instantiations of the eponymous patterns, with Gaussian noise 
added. While each time series is of length 128, the onset and 
duration of the shape is subject to random variability. Figure 5 
shows one instance from each of the three clusters.   

 

Figure 5.  Examples of Cylinder, Bell, and Funnel patterns. 
We generated a dataset of 30 instances of each pattern, and 
performed k-means clustering on it, with k = 3. The resulting 
cluster centers are show in Figure 6. As one might expect, all 
three clusters are successfully found.  The final centers closely 
resemble the three different patterns in the dataset, although the 
sharp edges of the patterns have been somewhat “softened” by the 
averaging of many time series with some variability in the time 
axis. 

 

Figure 6.  The three final centers found by k-means on the 
cylinder-bell-funnel dataset.  The shapes of the centers are close 
approximation of the original patterns. 

To compare the results of whole clustering to STS clustering, we 
took the 90 time series used above and concatenated them into 
one long time series. We then performed STS k-means clustering. 
To make it easy for the algorithm, we use the exact length of the 
patterns (w = 128) as the window length, and k = 3 as the number 
of desired clusters. The cluster centers are shown in Figure 7.  
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Figure 7.  The three final centers found by subsequence 
clustering using the sliding window approach.   

The results are extraordinarily unintuitive! The cluster centers 
look nothing like any of the patterns in the data; what’s more, they 
appear to be perfect sine waves.  

In fact, for w << m, we get approximate sine waves with STS 
clustering regardless of the clustering algorithm, the number of 
clusters, or the dataset used! Furthermore, although the sine waves 
are always exactly out of phase with each other by 1/k period, 

 

8 
16 

32 
8 

16 
32 11 

7 
5 

3 

0 

0.5 

1 

w 
Whole Clustering 

w 
STS Clustering k 

(number of 
clusters) 

 

0 10 20 30 40 

a1 

a2 

a3 

 

0 20 40 60 80 100 120 140 -5 
0 
5 
10 

C
yli
nd
er
 

0 20 40 60 80 100 120 140 -5 
0 
5 
10 

Be
ll  

0 20 40 60 80 100 120 140 -5 
0 
5 
10 

Fu
nn
el
 

 

0 
  

20   40   60   80   100   120   140     
    
    
    



overall, their joint phase is arbitrary, and will change with every 
random restart of k-means. 

4.1 A Hidden Constraint 
To explain the unintuitive results above, we must introduce a new 
fact.  

Theorem 1: For any time series dataset T, if T is clustered 
using sliding windows, and w << m, then the mean of all the 
data (i.e. the special case of k = 1), will be an approximately 
constant vector. 

In other words, if we run STS k-means on any dataset, with k = 1 
(an unusual case, but perfectly legal), we will always end up with 
a horizontal line as the cluster center. The proof of this fact is 
straightforward but long, so we have elucidated it in a separate 
technical report [35].  

We content ourselves here with giving the intuition behind the 
proof, and offering a visual “proof” in Figure 8.  

 

Figure 8: A visual “proof” of Theorem 1. Ten time series of 
vastly different properties of stationarity, noise, periodicity, 
symmetry, autocorrelation etc. The cluster centers for each time 
series, for w = 32, k = 1 are shown at right.  

The intuition behind Theorem 1 is as follows. Imagine an 
arbitrary datapoint ti somewhere in the time series T, such that w ≤ 
i ≤ m – w + 1. If the time series is much longer than the window 
size, then virtually all datapoints are of this type. What 
contribution does this datapoint make to the overall mean of the 
STS matrix S? As the sliding window passes by, the datapoint first 
appears as the rightmost value in the window, then it goes on to 
appear exactly once in every possible location within the sliding 
window. So the ti datapoints contribution to the overall shape is 
the same everywhere and must be a horizontal line. Only those 
points at the very beginning and the very end of the time series 
avoid contributing their value to all w columns of S, but these are 
asymptotically irrelevant. The average of many horizontal lines is 
clearly just another horizontal line. 

The implications of Theorem 1 become clearer when we consider 
the following well documented fact. For any dataset, the weighted 
(by cluster membership) average of k clusters must sum up to the 
global mean. The implication for STS clustering is profound. If 
we hope to discover k clusters in our dataset, we can only do so if 
the weighted average of these clusters happen to sum to a constant 
line! However, there is no reason why we should expect this to be 
true of any dataset, much less every dataset. This hidden 
constraint limits the utility of STS clustering to a vanishing small 
set of subspace of all datasets.  

4.2 The Importance of Trivial Matches  
There are further constraints on the types of datasets where STS 
clustering could possibly work. Consider a subsequence Cp that is 
a member of a cluster. If we examine the entire dataset for similar 
subsequences, we should typically expect to find the best matches 
to Cp to be the subsequences …,Cp-2, Cp-1, Cp+1, Cp+2 ,… In other 
words, the best matches to any subsequence, tends to be just 
slightly shifted versions of the subsequence. Figure 9 illustrates 
the idea, and Definition 4 states it more formally.  

Definition 4. Trivial Match: Given a subsequence C 
beginning at position p, a matching subsequence M beginning 
at q, and a distance R, we say that M is a trivial match to C of 
order R, if either p = q or there does not exist a subsequence 
M’ beginning at q’ such that D(C, M’) > R, and either q < q’< 
p or p < q’< q. 

The importance of trivial matches, in a different context, has been 
documented elsewhere [23]  

 

Figure 9: For almost any subsequence C in a time series, the 
closest matching subsequences are the subsequences immediately 
to the left and right of C. 

An important observation is the fact that different subsequences 
can have vastly different numbers of trivial matches. In particular, 
smooth, slowly changing subsequences tend to have many trivial 
matches, whereas subsequences with rapidly changing features 
and/or noise tend to have very few trivial matches. Figure 10 
illustrates the idea. The figure shows a time series that 
subjectively appears to have a cluster of 3 square waves. 
However, the bottom plot shows how many trivial matches each 
subsequence has. Note that the square waves have very few trivial 
matches, so all three taken together sit in a sparsely populated 
region of w-space. In contrast, consider the relatively smooth 
Gaussian bump centered at 125. The subsequences in the smooth 
ascent of this feature have more than 25 trivial matches, and thus 
sit in a dense region of w-space; the same is true for the 
subsequences in the descent from the peak. So if clustering this 
dataset with k-means, k = 2, the two cluster centers will be 
irresistibly drawn to these two “shapes”, simple ascending and 
descending lines. 

 

Figure 10: A) A time series T that subjectively appears to have a 
cluster of 3 noisy square waves. B) Here the ith value is the number 
of trivial matches for the subsequence Ci in T, where R = 1, w = 64. 

The importance of this observation for STS clustering is obvious. 
Imagine we have a time series where we subjectively see two 
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clusters: equal numbers of a smooth slowing changing pattern, 
and a noisier pattern with many features.  In w-dimensional space, 
the smooth pattern is surrounded by many trivial matches. This 
dense volume will appear to any clustering algorithm an 
extremely promising cluster center. In contrast, the highly 
featured, noisy pattern has very few trivial matches, and thus sits 
in a relatively sparse space, all but ignored by the clustering 
algorithm. 
We have not yet fully explained why the cluster centers for STS 
clustering degenerate to sine waves (cf Figure 7). However, we 
have shown that for STS “clustering”, algorithms do not really 
cluster the data. If not clustering, what are the algorithms doing? 
It is instructive to note that if we perform singular value 
decomposition on time series, we also get shapes that seem to 
approximate sine waves [20]. This suggests that STS clustering 
algorithms are simply returning a set of basis functions that can be 
added together in a weighted combination to approximate the 
original data.  

4.3 Necessary Conditions for STS Clustering to 
Work 
We conclude this section with a summary of the conditions that 
must be satisfied for STS clustering to be meaningful. 

Assume that a time series contains k approximately or exactly 
repeated patterns of length w. Further assume that we happen to 
know k and w in advance. A necessary (but not necessarily                                                                                                     
sufficient) condition for a clustering algorithm to discover the k 
patterns is that the weighted mean of the patterns must sum to a 
horizontal line, and each of the k patterns must have 
approximately equal numbers of trivial matches.  
It is obvious that the chances of both these conditions being met is 
essentially zero.  

5. A CASE STUDY ON EXISTING WORK  
As we noted in the introduction, an obvious counter argument to 
our claim is the following. “Since many papers have been 
published which use time series subsequence clustering as a 
subroutine, and these papers produce successful results, time 
series subsequence clustering must be a meaningful operation.” 
To counter this argument, we have reimplemented the most 
influential such work, the Time Series Rule Finding algorithm of 
Das et. al. [7] (the algorithm is not named in the original work, we 
will call it TSRF here for brevity and clarity). 

5.1 (Not) Finding Rules in Time Series 
The algorithm begins by performing STS clustering. The centers 
of these clusters are then used as primitives that are feed into a 
slightly modified version of a classic association rule algorithm 
[1]. Finally the rules are ranked by their J-measure, an entropy 
based measure of their significance. 

The rule finding algorithm found the rules shown in Figure 11 
using 19 months of NASDAQ data. The high values of support, 
confidence and J-measure are offered as evidence of the 
significance of the rules. The rules are to be interpreted as 
follows. In Figure 11 (b) we see that “if stock rises then falls 
greatly, follow a smaller rise, then we can expect to see within 20 
time units, a pattern of rapid decrease followed by a leveling out.” 
[7]. 

 

w d Rule Sup % Conf % J-Mea. Fig 
20 5.5 7 ⇒15 8 8.3 73.0 0.0036 (a) 
30 5.5 18 ⇒20 21 1.3 62.7 0.0039 (b) 

 

Figure 11: Above, two examples of “significant” rules found 
by Das et. al. (This is a capture of Figure 4 from their paper). 
Below, a table of the parameters they used and results they 
found. 

What would happen if we used the TSRF algorithm to try to find 
rules in random walk data, using exactly the same parameters? 
Since no such rules should exist by definition, we should get 
radically different results. Figure 12 shows one such experiment; 
the support, confidence and J-measure values are essentially the 
same as in Figure 11!  

 

w d Rule Sup % Conf % J-Mea Fig 
20 5.5 11 ⇒15 3 6.9 71.2 0.0042 (a) 
30 5.5 24 ⇒20 19 2.1 74.7 0.0035 (b) 

 

Figure 12: Above, two examples of “significant” rules found in 
random walk data using the techniques of Das et. al. Below, we 
used identical parameters and found near identical results. 

This one experiment might have been an extraordinary 
coincidence; we might have created a random walk time series 
that happens to have some structure to it. Therefore, for every 
result shown in the original paper we ran 100 recreations using 
different random walk datasets, using quantum mechanically 
generated numbers to insure randomness [37]. In every case the 
results published cannot be distinguished from our results on 
random walk data.  

The above experiment is troublesome, but perhaps there are 
simply no rules to be found in stock market. We devised a simple 
experiment in a dataset that does contain known rules. In 
particular we tested the algorithm on a normal healthy 
electrocardiogram. Here, there is an obvious rule that one 
heartbeat follows another. Surprisingly, even with much tweaking 
of the parameters, the TSRF algorithm cannot find this simple 
rule.  
The TSRF algorithm is based on the classic rule mining work of 
Agrawal et.al. [1], the only difference is the STS step. Since the 
work of [1] has been carefully vindicated in 100’s of experiments 
on both real and synthetic datasets, it seems reasonable to 
conclude that the STS clustering is at the heart of the problems 
with the TSRF algorithm.  

These results may appear surprising, since they invalidate the 
claims of a highly referenced, award winning paper, and many of 
the dozens of extensions researchers have proposed [7, 9, 12, 13, 
14, 17, 18, 25, 27, 30, 36, 38]. However, in retrospect, this result 
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should not really be too surprising. Imagine that a researcher 
claims to have an algorithm that can differentiate between three 
types of Iris flowers (Setosa, Virginica and Versicolor) based on 
petal and sepal length and width [8]. This claim is not so 
extraordinary, given that it is well known that even amateur 
botanists and gardeners have this skill [4]. However, the paper in 
question is claiming to introduce an algorithm that can find rules 
in stock market time series. There is simply no evidence that any 
human can do this, in fact, the opposite is true: every indication 
suggests that the patterns much beloved by technical analysts such 
as the “calendar effect” are completely spurious [16, 33].  

6. CONCLUSIONS  
We have shown that a popular technique for data mining does not 
produce meaningful results. We have further explained the 
reasons why this is so.  
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