
(Not) Finding Rules in Time Series: A Surprising Result
with Implications for Previous and Future Research
 Jessica Lin

Eamonn Keogh Wagner Truppel

ABSTRACT
Time series data is perhaps the most frequently encountered type
of data examined by the data mining community. Clustering is
perhaps the most frequently used data mining algorithm, being
useful in it’s own right as an exploratory technique, and also as a
subroutine in more complex data mining algorithms such as rule
discovery, indexing, summarization, anomaly detection, and
classification. Given these two facts, it is hardly surprising that
time series clustering has attracted much attention. The data to be
clustered can be in one of two formats: many individual time
series, or a single time series, from which individual time series
are extracted with a sliding window. Given the recent explosion of
interest in streaming data and online algorithms, the latter case
has received much attention.

In this work we make a surprising claim. Clustering of streaming
time series is completely meaningless. More concretely, clusters
extracted from streaming time series are forced to obey a certain
constraint that is pathologically unlikely to be satisfied by any
dataset, and because of this, the clusters extracted by any
clustering algorithm are essentially random. While this constraint
can be intuitively demonstrated with a simple illustration and is
simple to prove, it has never appeared in the literature. An
important implication of our findings is that widely used, time
series rule discovery algorithms are producing random results!

1. INTRODUCTION
Time series data is perhaps the most commonly encountered kind
of data explored by data miners [21, 29]. Clustering is perhaps the
most frequently used data mining algorithm [11], being useful in
it’s own right as an exploratory technique, and as a subroutine in
more complex data mining algorithms [2, 3]. Given these two
facts, it is hardly surprising that time series clustering has
attracted an extraordinary amount of attention [2, 5, 6, 7, 9, 10,
12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 32,
34, 36, 38]. The work in this area can be broadly classified into
two categories:

• Whole Clustering: The notion of clustering here is similar to
that of conventional clustering of discrete objects. Given a
set of individual time series data, the objective is to group
similar time series into the same cluster.

• Subsequence Clustering: Given a single time series,
individual time series (subsequences) are extracted with a
sliding window. Clustering is then performed on the
extracted time series.

Subsequence clustering is commonly used as a subroutine in
many other algorithms, including rule discovery [7, 9, 12, 13, 14,
17, 18, 25, 27, 30, 36, 38], indexing [22, 28], classification [5, 6],
prediction [31, 34], and anomaly detection [38]. For clarity, we
will refer to this type of clustering as STS (Subsequence Time
Series) clustering.

In this work we make a surprising claim. Clustering streaming
time series is meaningless! More concretely, clusters extracted
from streaming time series are forced to obey a certain constraint
that is pathologically unlikely to be satisfied by any dataset, and
because of this, the clusters extracted by any clustering algorithm
are essentially random. This simple observation has never
appeared in the literature.

Our claim is surprising since it calls into question the
contributions of dozens of papers. In fact, the existence of so
much work based on STS clustering offers an obvious counter
argument to our claim. It could be argued: “Since many papers
have been published which use time series subsequence clustering
as a subroutine, and these papers produced successful results,
time series subsequence clustering must be a meaningful
operation.”

We strongly feel that this is not the case. We believe that in all
such cases the results are consistent with what one would expect
from random cluster centers. We recognize that this is a strong
assertion, so we will demonstrate our claim by reimplementing the
most successful (i.e. the most referenced) examples of such work,
and showing with exhaustive experiments that these contributions
inherit the property of meaningless results from the STS
clustering subroutine.

The rest of this paper is organized as follows. In Section 2 we will
review the necessary background material on time series and
clustering, then briefly review the body of research that uses STS
clustering. In Section 3 we will show that STS clustering is
meaningless with a series of simple intuitive experiments; then in
Section 4 we will explain why STS clustering cannot produce
useful results. In Section 5 we show that the many algorithms that
use STS clustering as a subroutine produce results
indistinguishable with random clusters. Since the main
contribution of this paper may be considered “negative,” we
conclude in Section 6 with the demonstration of a simple
algorithm that can find clusters in at least some trivial streaming
datasets. This algorithm is not presented as the best way to find
clusters in streaming time series; it is simply offered as an
existence proof that such an algorithm exists, and to pave the way
for future research.

Computer Science & Engineering Department
University of California - Riverside

Riverside, CA 92521

2. BACKGROUND MATERIAL
2.1 Notation and Definitions
We begin with a definition of our data type of interest, time series:

Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data miners are typically not interested in any of the global
properties of a time series; rather, data miners confine their
interest to subsections of the time series, called subsequences.

Definition 2. Subsequence: Given a time series T of length m,
a subsequence Cp of T is a sampling of length w < m of
contiguous positions from T, that is, C = tp,…,tp+w-1 for 1 ≤ p
≤ m – w + 1.

In this work we are interested in the case where all the
subsequences are extracted, and then clustered. This is achieved
by use of a sliding window.

Definition 3. Sliding Windows: Given a time series T of
length m, and a user-defined subsequence length of w, a
matrix S of all possible subsequences can be built by “sliding
a window” across T and placing subsequence Cp in the pth
row of S. The size of matrix S is (m – w + 1) by w.

Figure 1 summarizes all the above definitions and notations.

Figure 1. An illustration of the notation introduced in this
section: a time series T of length 128, a subsequence of length w
= 16, beginning at datapoint 67, and the first 8 subsequences
extracted by a sliding window.

Note that while S contains exactly the same information as T, it
requires significantly more storage space. This is typically not a
problem, since, as we shall see in the next section, the limiting
factor tends to be the CPU time for clustering.

2.2 Background on Clustering
One of the most widely used clustering approaches is hierarchical
clustering, due to the great visualization power it offers [21, 24].
Hierarchical clustering produces a nested hierarchy of similar
groups of objects, according to a pairwise distance matrix of the
objects. However, its application is limited to only small datasets,
due to its quadratic computational complexity. Table 1 outlines
the basic hierarchical clustering algorithm.

Table 1: An outline of hierarchical clustering.
Algorithm Hierarchical Clustering

1. Calculate the distance between all objects. Store the
results in a distance matrix.

2. Search through the distance matrix and find the two
most similar clusters/objects.

3. Join the two clusters/objects to produce a cluster that
now has at least 2 objects.

4. Update the matrix by calculating the distances between
this new cluster and all other clusters.

5. Repeat step 2 until all cases are in one cluster.

A faster method to perform clustering is k-means [3]. The basic
intuition behind k-means is shown in Table 2:

Table 2: An outline of the k-means algorithm.
Algorithm k-means

1. Decide on a value for k.
2. Initialize the k cluster centers (randomly, if necessary).
3. Decide the class memberships of the N objects by

assigning them to the nearest cluster center.
4. Re-estimate the k cluster centers, by assuming the

memberships found above are correct.
5. If none of the N objects changed membership in the last

iteration, exit. Otherwise goto 3.

The k-means algorithm for N objects has a complexity of
O(kNrD), with k the number of clusters specified by the user, r the
number of iterations until convergence, and D the dimensionality
of time series (in the case of STS clustering, D is the length of the
sliding window, w). While the algorithm is perhaps the most
commonly used clustering algorithm in the literature, it does have
several shortcomings, including the fact that the number of
clusters must be specified in advance [3, 11].

2.3 Background on Time Series Data Mining
The last decade has seen an extraordinary interest in mining time
series data, with at least one thousand papers on the subject [21].
Tasks addressed by the researchers include segmentation,
indexing, clustering, classification, anomaly detection, rule
discovery, and summarization.

Of the above, a significant fraction use streaming time series
clustering as a subroutine. Below we will enumerate some
representative examples.

• There has been much work on finding association rules in
time series [7, 9, 12, 13, 17, 18, 21, 25, 27, 36, 38]. Virtually
all work is based on the classic paper of Das et. al. that uses
STS clustering to convert real valued time series into
symbolic values, which can then be manipulated by classic
rule finding algorithms [7].

• The problem of anomaly detection in time series has been
generalized to include the detection of surprising or
interesting patterns (which are not necessarily anomalies).
There are many approaches to this problem, including
several based on STS clustering [38].

• Several techniques for classifying time series make use of
STS clustering to preprocess the data before passing to a
standard classification technique such as a decision tree [5,
6].

The above is just a small fraction of the work in the area, more
extensive surveys may be found in [19, 29].

3. DEMONSTRATIONS OF THE
MEANINGLESSNESS OF STS CLUSTERING
In this section we will demonstrate the meaninglessness of STS
clustering. In order to demonstrate that this meaninglessness is a
product of the way the data is obtained by sliding windows, and
not some quirk of the clustering algorithm, we will also do whole
clustering as a control [10, 26].

3.1 K-means Clustering
Because k-means is a heuristic, hill-climbing algorithm, the
cluster centers found may not be optimal [11]. That is, the
algorithm is guaranteed to converge on a local, but not necessarily

0 20 40 60 80 100 120

T

C67 Cp
p = 1…8

global optimum. The choices of the initial centers affect the
quality of results. One technique to mitigate this problem is to do
multiple restarts, and choose the best set of clusters [3]. An
obvious question to ask is how much variability in the shapes of
cluster centers we get between multiple runs. We can measure this
variability with the following equation:

• Let),...,,(21 kaaaA= be the cluster centers derived from
one run of k-means.

• Let),...,,(21 kbbbB= be the cluster centers derived from a
different run of k-means.

• Let),(ji aadist be the distance between two cluster

centers, measured with Euclidean distance.
Then the distance between two sets of clusters can be defined as:

[] kjbadistBAncedistacluster
k

i
ji ≤≤≡∑

=

1,),(min),(_
1

 (1)

The simple intuition behind the equation is that each individual
cluster center in A should map on to its closest counterpart in B,
and the sum of all such distances tells us how similar two sets of
clusters are.

An important observation is that we can use this measure not only
to compare two sets of clusters derived for the same dataset, but
also two sets of clusters which have been derived from different
data sources. Given this fact, we propose a simple experiment.

We performed 3 random restarts of k-means on a stock market
data set, and saved the 3 resulting sets of cluster centers into set
X. We also performed 3 random restarts on random walk dataset,
saving the 3 resulting sets of cluster centers into set Y.

We then measured the average cluster distance (as defined in
equation 1), between each set of cluster centers in X, to each other
set of cluster centers in X. We call this number
within_set_X_distance. We also measured the average cluster
distance between each set of cluster centers in X, to cluster centers
in Y; we call this number between_set_X_and_Y_distance.

We can use these two numbers to create a fraction:

ancedistYandXsetbetween
ancedistXsetwithin

___ Y)ness(X,meaningful clustering ≡
 (2)

We can justify calling this number “clustering meaningfulness”
since it clearly measures just that. If the clustering algorithm is
returning the same or similar sets of clusters despite different
initial seeds, the numerator should be close to zero. In contrast,
there is no reason why the clusters from two completely different,
unrelated datasets to be similar. Therefore, we should expect the
denominator to be relatively large. So overall we should expect
that the value of clustering meaningfulness(X,Y) should be close
to zero when X and Y are sets of cluster centers derived from
different datasets.

As a control, we performed the exact same experiment, on the
same data, but using subsequences that were randomly extracted,
rather than extracted by a sliding window. We call this whole
clustering.

Since it might be argued that any results obtained were the
consequence of a particular combination of k and w, we tried the
cross product of k = {3, 5, 7, 11} and w = {8, 16, 32}. For every

combination of parameters we repeated the entire process 100
times, and averaged the results. Figure 2 shows the results.

Figure 2. A comparison of the clustering meaningfulness for
whole clustering, and STS clustering, using k-means with a
variety of parameters. The two datasets used were Standard and
Poor's 500 Index closing values and random walk data.

The results are astonishing. The cluster centers found by STS
clustering on any particular run of k-means on stock market
dataset are not significantly more similar to each other than they
are to cluster centers taken from random walk data! In other
words, if we were asked to perform clustering on a particular
stock market dataset, we could reuse an old clustering obtained
from random walk data, and no one could tell the difference!

We reemphasize here that the difference in the results for STS
clustering and whole clustering in this experiment (and all
experiments in this work) are due exclusively to the feature
extraction step. In particular, both are being tested on the same
dataset, with the same parameters of w and k, using the same
algorithm.

3.2 Hierarchical Clustering
The previous section suggests that k-means clustering of STS time
series does not produce meaningful results, at least for stock
market data. An obvious question to ask is, is this true for STS
with other clustering algorithms? We will answer the question for
hierarchal clustering here.

Hierarchal clustering, unlike k-means, is a deterministic
algorithm. So we can’t reuse the experimental methodology from
the previous section exactly, however, we can do something very
similar.

First we note that hierarchal clustering can be converted into a
partitional clustering, by cutting the first k links [24]. Figure 3
illustrates the idea. The resultant time series in each of the k
subtrees can then be merged into single cluster prototypes. When
performing hierarchal clustering, one has to make a choice about
how to define the distance between two clusters, this choice is
called the linkage method (cf. line 3 of Table 1).

8
16

32
8

16
32 11

7
5

3

0

0.5

1

w
Whole Clustering

w
STS Clustering k

(number of
clusters)

Figure 3. A hierarchal clustering of ten time series. The
clustering can be converted to a k partitional clustering by
“sliding” a cutting line until it intersects k lines of the
dendrograms, then averaging the time series in the k subtrees to
form k cluster centers (gray panel).

Three popular choices are complete linkage, average linkage and
Wards method [11]. We can use all three methods for the stock
market dataset, and place the resulting cluster centers into set X.
We can do the same for random walk data and place the resulting
cluster centers into set Y. Having done this, we can extend the
measure of clustering meaningfulness in Eq. 2 to hierarchal
clustering, and run a similar experiment as in the last section, but
using hierarchal clustering. The results of this experiment are
shown in Figure 4.

Figure 4. A comparison of the clustering meaningfulness for
whole clustering and STS clustering using hierarchal clustering
with a variety of parameters. The two datasets used were Standard
and Poor's 500 Index closing values and random walk data.

Once again, the results are astonishing. While it is well
understood that the choice of linkage method can have minor
effects on the clustering found, the results above tell us that when
doing STS clustering, the choice of linkage method has as much
effect as the choice of dataset! Another way of looking at the
results is as follows. If we were asked to perform hierarchical
clustering on a particular dataset, but we did not have to report
which linkage method we used, we could reuse an old random
walk clustering and no one could tell the difference without
rerunning the clustering for every possible linkage method.

4. WHY IS STS CLUSTERING MEANINGLESS?
Before explaining why STS clustering is meaningless, it will be
instructive to visualize the cluster centers produced by both whole
clustering and STS clustering. We will demonstrate on the classic
Cylinder-Bell-Funnel data [21]. This dataset consists of random
instantiations of the eponymous patterns, with Gaussian noise
added. While each time series is of length 128, the onset and
duration of the shape is subject to random variability. Figure 5
shows one instance from each of the three clusters.

Figure 5. Examples of Cylinder, Bell, and Funnel patterns.
We generated a dataset of 30 instances of each pattern, and
performed k-means clustering on it, with k = 3. The resulting
cluster centers are show in Figure 6. As one might expect, all
three clusters are successfully found. The final centers closely
resemble the three different patterns in the dataset, although the
sharp edges of the patterns have been somewhat “softened” by the
averaging of many time series with some variability in the time
axis.

Figure 6. The three final centers found by k-means on the
cylinder-bell-funnel dataset. The shapes of the centers are close
approximation of the original patterns.

To compare the results of whole clustering to STS clustering, we
took the 90 time series used above and concatenated them into
one long time series. We then performed STS k-means clustering.
To make it easy for the algorithm, we use the exact length of the
patterns (w = 128) as the window length, and k = 3 as the number
of desired clusters. The cluster centers are shown in Figure 7.

0 20 40 60 80 100 120 140 -0.8 -0.6 -0.4 -0.2 0 0.2
0.4 0.6 0.8

Figure 7. The three final centers found by subsequence
clustering using the sliding window approach.

The results are extraordinarily unintuitive! The cluster centers
look nothing like any of the patterns in the data; what’s more, they
appear to be perfect sine waves.

In fact, for w << m, we get approximate sine waves with STS
clustering regardless of the clustering algorithm, the number of
clusters, or the dataset used! Furthermore, although the sine waves
are always exactly out of phase with each other by 1/k period,

8
16

32
8

16
32 11

7
5

3

0

0.5

1

w
Whole Clustering

w
STS Clustering k

(number of
clusters)

0 10 20 30 40

a1

a2

a3

0 20 40 60 80 100 120 140 -5
0
5
10

C
yli
nd
er

0 20 40 60 80 100 120 140 -5
0
5
10

Be
ll

0 20 40 60 80 100 120 140 -5
0
5
10

Fu
nn
el

0

20 40 60 80 100 120 140

overall, their joint phase is arbitrary, and will change with every
random restart of k-means.

4.1 A Hidden Constraint
To explain the unintuitive results above, we must introduce a new
fact.

Theorem 1: For any time series dataset T, if T is clustered
using sliding windows, and w << m, then the mean of all the
data (i.e. the special case of k = 1), will be an approximately
constant vector.

In other words, if we run STS k-means on any dataset, with k = 1
(an unusual case, but perfectly legal), we will always end up with
a horizontal line as the cluster center. The proof of this fact is
straightforward but long, so we have elucidated it in a separate
technical report [35].

We content ourselves here with giving the intuition behind the
proof, and offering a visual “proof” in Figure 8.

Figure 8: A visual “proof” of Theorem 1. Ten time series of
vastly different properties of stationarity, noise, periodicity,
symmetry, autocorrelation etc. The cluster centers for each time
series, for w = 32, k = 1 are shown at right.

The intuition behind Theorem 1 is as follows. Imagine an
arbitrary datapoint ti somewhere in the time series T, such that w ≤
i ≤ m – w + 1. If the time series is much longer than the window
size, then virtually all datapoints are of this type. What
contribution does this datapoint make to the overall mean of the
STS matrix S? As the sliding window passes by, the datapoint first
appears as the rightmost value in the window, then it goes on to
appear exactly once in every possible location within the sliding
window. So the ti datapoints contribution to the overall shape is
the same everywhere and must be a horizontal line. Only those
points at the very beginning and the very end of the time series
avoid contributing their value to all w columns of S, but these are
asymptotically irrelevant. The average of many horizontal lines is
clearly just another horizontal line.

The implications of Theorem 1 become clearer when we consider
the following well documented fact. For any dataset, the weighted
(by cluster membership) average of k clusters must sum up to the
global mean. The implication for STS clustering is profound. If
we hope to discover k clusters in our dataset, we can only do so if
the weighted average of these clusters happen to sum to a constant
line! However, there is no reason why we should expect this to be
true of any dataset, much less every dataset. This hidden
constraint limits the utility of STS clustering to a vanishing small
set of subspace of all datasets.

4.2 The Importance of Trivial Matches
There are further constraints on the types of datasets where STS
clustering could possibly work. Consider a subsequence Cp that is
a member of a cluster. If we examine the entire dataset for similar
subsequences, we should typically expect to find the best matches
to Cp to be the subsequences …,Cp-2, Cp-1, Cp+1, Cp+2 ,… In other
words, the best matches to any subsequence, tends to be just
slightly shifted versions of the subsequence. Figure 9 illustrates
the idea, and Definition 4 states it more formally.

Definition 4. Trivial Match: Given a subsequence C
beginning at position p, a matching subsequence M beginning
at q, and a distance R, we say that M is a trivial match to C of
order R, if either p = q or there does not exist a subsequence
M’ beginning at q’ such that D(C, M’) > R, and either q < q’<
p or p < q’< q.

The importance of trivial matches, in a different context, has been
documented elsewhere [23]

Figure 9: For almost any subsequence C in a time series, the
closest matching subsequences are the subsequences immediately
to the left and right of C.

An important observation is the fact that different subsequences
can have vastly different numbers of trivial matches. In particular,
smooth, slowly changing subsequences tend to have many trivial
matches, whereas subsequences with rapidly changing features
and/or noise tend to have very few trivial matches. Figure 10
illustrates the idea. The figure shows a time series that
subjectively appears to have a cluster of 3 square waves.
However, the bottom plot shows how many trivial matches each
subsequence has. Note that the square waves have very few trivial
matches, so all three taken together sit in a sparsely populated
region of w-space. In contrast, consider the relatively smooth
Gaussian bump centered at 125. The subsequences in the smooth
ascent of this feature have more than 25 trivial matches, and thus
sit in a dense region of w-space; the same is true for the
subsequences in the descent from the peak. So if clustering this
dataset with k-means, k = 2, the two cluster centers will be
irresistibly drawn to these two “shapes”, simple ascending and
descending lines.

Figure 10: A) A time series T that subjectively appears to have a
cluster of 3 noisy square waves. B) Here the ith value is the number
of trivial matches for the subsequence Ci in T, where R = 1, w = 64.

The importance of this observation for STS clustering is obvious.
Imagine we have a time series where we subjectively see two

0
 20 40 60 80 100 120

T

C68

C66

C67

0

50 100

150 200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 0
10

20

30

w

= 64

A)

B)

clusters: equal numbers of a smooth slowing changing pattern,
and a noisier pattern with many features. In w-dimensional space,
the smooth pattern is surrounded by many trivial matches. This
dense volume will appear to any clustering algorithm an
extremely promising cluster center. In contrast, the highly
featured, noisy pattern has very few trivial matches, and thus sits
in a relatively sparse space, all but ignored by the clustering
algorithm.
We have not yet fully explained why the cluster centers for STS
clustering degenerate to sine waves (cf Figure 7). However, we
have shown that for STS “clustering”, algorithms do not really
cluster the data. If not clustering, what are the algorithms doing?
It is instructive to note that if we perform singular value
decomposition on time series, we also get shapes that seem to
approximate sine waves [20]. This suggests that STS clustering
algorithms are simply returning a set of basis functions that can be
added together in a weighted combination to approximate the
original data.

4.3 Necessary Conditions for STS Clustering to
Work
We conclude this section with a summary of the conditions that
must be satisfied for STS clustering to be meaningful.

Assume that a time series contains k approximately or exactly
repeated patterns of length w. Further assume that we happen to
know k and w in advance. A necessary (but not necessarily
sufficient) condition for a clustering algorithm to discover the k
patterns is that the weighted mean of the patterns must sum to a
horizontal line, and each of the k patterns must have
approximately equal numbers of trivial matches.
It is obvious that the chances of both these conditions being met is
essentially zero.

5. A CASE STUDY ON EXISTING WORK
As we noted in the introduction, an obvious counter argument to
our claim is the following. “Since many papers have been
published which use time series subsequence clustering as a
subroutine, and these papers produce successful results, time
series subsequence clustering must be a meaningful operation.”
To counter this argument, we have reimplemented the most
influential such work, the Time Series Rule Finding algorithm of
Das et. al. [7] (the algorithm is not named in the original work, we
will call it TSRF here for brevity and clarity).

5.1 (Not) Finding Rules in Time Series
The algorithm begins by performing STS clustering. The centers
of these clusters are then used as primitives that are feed into a
slightly modified version of a classic association rule algorithm
[1]. Finally the rules are ranked by their J-measure, an entropy
based measure of their significance.

The rule finding algorithm found the rules shown in Figure 11
using 19 months of NASDAQ data. The high values of support,
confidence and J-measure are offered as evidence of the
significance of the rules. The rules are to be interpreted as
follows. In Figure 11 (b) we see that “if stock rises then falls
greatly, follow a smaller rise, then we can expect to see within 20
time units, a pattern of rapid decrease followed by a leveling out.”
[7].

w d Rule Sup % Conf % J-Mea. Fig
20 5.5 7 ⇒15 8 8.3 73.0 0.0036 (a)
30 5.5 18 ⇒20 21 1.3 62.7 0.0039 (b)

Figure 11: Above, two examples of “significant” rules found
by Das et. al. (This is a capture of Figure 4 from their paper).
Below, a table of the parameters they used and results they
found.

What would happen if we used the TSRF algorithm to try to find
rules in random walk data, using exactly the same parameters?
Since no such rules should exist by definition, we should get
radically different results. Figure 12 shows one such experiment;
the support, confidence and J-measure values are essentially the
same as in Figure 11!

w d Rule Sup % Conf % J-Mea Fig
20 5.5 11 ⇒15 3 6.9 71.2 0.0042 (a)
30 5.5 24 ⇒20 19 2.1 74.7 0.0035 (b)

Figure 12: Above, two examples of “significant” rules found in
random walk data using the techniques of Das et. al. Below, we
used identical parameters and found near identical results.

This one experiment might have been an extraordinary
coincidence; we might have created a random walk time series
that happens to have some structure to it. Therefore, for every
result shown in the original paper we ran 100 recreations using
different random walk datasets, using quantum mechanically
generated numbers to insure randomness [37]. In every case the
results published cannot be distinguished from our results on
random walk data.

The above experiment is troublesome, but perhaps there are
simply no rules to be found in stock market. We devised a simple
experiment in a dataset that does contain known rules. In
particular we tested the algorithm on a normal healthy
electrocardiogram. Here, there is an obvious rule that one
heartbeat follows another. Surprisingly, even with much tweaking
of the parameters, the TSRF algorithm cannot find this simple
rule.
The TSRF algorithm is based on the classic rule mining work of
Agrawal et.al. [1], the only difference is the STS step. Since the
work of [1] has been carefully vindicated in 100’s of experiments
on both real and synthetic datasets, it seems reasonable to
conclude that the STS clustering is at the heart of the problems
with the TSRF algorithm.

These results may appear surprising, since they invalidate the
claims of a highly referenced, award winning paper, and many of
the dozens of extensions researchers have proposed [7, 9, 12, 13,
14, 17, 18, 25, 27, 30, 36, 38]. However, in retrospect, this result

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) (b)

should not really be too surprising. Imagine that a researcher
claims to have an algorithm that can differentiate between three
types of Iris flowers (Setosa, Virginica and Versicolor) based on
petal and sepal length and width [8]. This claim is not so
extraordinary, given that it is well known that even amateur
botanists and gardeners have this skill [4]. However, the paper in
question is claiming to introduce an algorithm that can find rules
in stock market time series. There is simply no evidence that any
human can do this, in fact, the opposite is true: every indication
suggests that the patterns much beloved by technical analysts such
as the “calendar effect” are completely spurious [16, 33].

6. CONCLUSIONS
We have shown that a popular technique for data mining does not
produce meaningful results. We have further explained the
reasons why this is so.

7. REFERENCES

[1] Agrawal, R., Imielinski, T. & Swami, A. (1993). Mining Association

Rules Between Sets of Items in Large Databases. In proceedings of
the 1993 ACM SIGMOD International Conference on Management
of Data. Washington, D.C., May 26-28. pp. 207-216.

[2] Bar-Joseph, Z., Gerber, G., Gifford, D., Jaakkola, T. & Simon, I.
(2002). A New Approach to Analyzing Gene Expression Time
Series Data. In proceedings of the 6th Annual Int’l Conference on
Research in Computational Molecular Biology. Washington, D.C.,
Apr 18-21. pp 39-48.

[3] Bradley, P. S. & Fayyad, U.M. (1998). Refining Initial Points for K--
Means Clustering. In proceedings of the 15th Int’l Conference on
Machine Learning. Madison, WI, July 24-27. pp. 91-99.

[4] British Iris Society, Species Group Staff. (1997). A Guide to Species
Irises: Their Identification and Cultivation. Cambridge University
Press. March, 1997.

[5] Cotofrei, P. (2002). Statistical Temporal Rules. In proceedings of the
15th Conference on Computational Statistics - Short
Communications and Posters. Berlin, Germany, Aug 24-28.

[6] Cotofrei, P. & Stoffel, K (2002). Classification Rules + Time =
Temporal Rules. In proceedings of the 2002 Int’l Conference on
Computational Science. Amsterdan, Netherlands, Apr 21-24. pp
572-581.

[7] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P. (1998).
Rule Discovery from Time Series. In proceedings of the 4th Int'l
Conference on Knowledge Discovery and Data Mining. New York,
NY, Aug 27-31. pp 16-22.

[8] Fisher, R. A. (1936). The Use of Multiple Measures in Taxonomic
Problems. Annals of Eugenics. Vol. 7, No. 2, pp 179-188.

[9] Fu, T. C., Chung, F. L., Ng, V. & Luk, R. (2001). Pattern Discovery
from Stock Time Series Using Self-Organizing Maps. Workshop
Notes of KDD2001 Workshop on Temporal Data Mining. San
Francisco, CA, Aug 26-29. pp 27-37.

[10] Gavrilov, M., Anguelov, D., Indyk, P. & Motwani, R. (2000).
Mining the Stock Market: Which Measure is Best? In proceedings of
the 6th ACM Int'l Conference on Knowledge Discovery and Data
Mining. Boston, MA, Aug 20-23. pp 487-496.

[11] Halkidi, M., Batistakis, Y. & Vazirgiannis, M. (2001). On Clustering
Validation Techniques. Journal of Intelligent Information Systems
(JIIS), Vol. 17, No. 2-3. pp. 107-145.

[12] Harms, S. K., Deogun, J. & Tadesse, T. (2002). Discovering
Sequential Association Rules with Constraints and Time Lags in
Multiple Sequences. In proceedings of the 13th Int’l Symposium on
Methodologies for Intelligent Systems. Lyon, France, June 27-29. pp
432-441.

[13] Harms, S. K., Reichenbach, S. Goddard, S. E., Tadesse, T. &
Waltman, W. J. (2002). Data Mining in a Geospatial Decision
Support system for Drought Risk Management. In proceedings of the

1st National Conference on Digital Government. Los Angeles, CA,
May 21-23. pp. 9-16.

[14] Hetland, M. L. & Sætrom, P. (2002). Temporal Rules Discovery
Using Genetic Programming and Specialized Hardware. In
proceedings of the 4th Int’l Conference on Recent Advances in Soft
Computing. Nottingham, UK, Dec 12-13.

[15] Honda, R., Wang, S., Kikuchi, T. & Konishi, O. (2002). Mining of
Moving Objects from Time-Series Images and its Application to
Satellite Weather Imagery. The Journal of Intelligent Information
Systems, Vol. 19, No. 1, pp. 79-93.

[16] Jensen, D. (2000). Data Snooping, Dredging and Fishing: The dark
Side of Data Mining. SIGKDD99 panel report. ACM SIGKDD
Explorations, Vol. 1, No. 2. pp. 52-54.

[17] Jin, X., Lu, Y. & Shi, C. (2002). Distribution Discovery: Local
Analysis of Temporal Rules. In proceedings of the 6th Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Taipei,
Taiwan, May 6-8. pp 469-480.

[18] Jin, X., Wang, L., Lu, Y. & Shi, C. (2002). Indexing and Mining of
the Local Patterns in Sequence Database. In proceedings of the 3rd
International Conference on Intelligent Data Engineering and
Automated Learning. Manchester, UK, Aug 12-14. pp 68-73.

[19] Keogh, E. (2002). Exact Indexing of Dynamic Time Warping. In
proceedings of the 28th International Conference on Very Large
Data Bases. Hong Kong, Aug 20-23. pp 406-417.

[20] Keogh, E. Chakrabarti, K. Pazzani, M & Mehrotra, S. (2001).
Dimensionality Reduction for Fast Similarity Search in Large Time
Series Databases. Journal of Knowledge and Information Systems.
Vol. 3, No. 3, pp. 263-286.

[21] Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In
proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. July 23 - 26, 2002.
Edmonton, Alberta, Canada. pp 102-111.

[22] Li, C., Yu, P. S. & Castelli, V. (1998). MALM: A Framework for
Mining Sequence Database at Multiple Abstraction Levels. In
proceedings of the 7th ACM CIKM Int'l Conference on Information
and Knowledge Management. Bethesda, MD, Nov 3-7. pp 267-272.

[23] Lin, J. Keogh, E. Patel, P. & Lonardi, S. (2002). Finding motifs in
time series. In the 2nd Workshop on Temporal Data Mining, at the 8th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. July 23 - 26, 2002. Edmonton, Alberta, Canada.

[24] Mantegna., R. N. (1999). Hierarchical Structure in Financial
Markets. European. Physical Journal. B11, pp. 193-197.

[25] Mori, T. & Uehara, K. (2001). Extraction of Primitive Motion and
Discovery of Association Rules from Human Motion. In
proceedings of the 10th IEEE Int’l Workshop on Robot and Human
Communication, Bordeaux-Paris, France, Sept 18-21. pp 200-206.

[26] Oates, T. (1999). Identifying Distinctive Subsequences in
Multivariate Time Series by Clustering. In proceedings of the 5th
International Conference on Knowledge Discovery and Data
Mining. San Diego, CA, Aug 15-18. pp 322-326.

[27] Osaki, R., Shimada, M. & Uehara, K. (2000). A Motion Recognition
Method by Using Primitive Motions, Arisawa, H. and Catarci, T.
(eds.) Advances in Visual Information Management, Visual
Database Systems, Kluwer Academic Pub. pp 117-127.

[28] Radhakrishnan, N., Wilson, J. D. & Loizou, P. C. (2000). An
Alternate Partitioning Technique to Quantify the Regularity of
Complex Time Series. International Journal of Bifurcation and
Chaos, Vol. 10, No. 7. World Scientific Publishing. pp 1773-1779.

[29] Roddick, J. F. & Spiliopoulou, M. (2002). A Survey of Temporal
Knowledge Discovery Paradigms and Methods. Transactions on
Data Engineering. Vol. 14, No. 4, pp 750-767.

[30] Sarker, B. K., Mori, T. & Uehara, K. (2002). Parallel Algorithms for
Mining Association Rules in Time Series Data. CS24-2002-1 Tech
report.

[31] Schittenkopf, C., Tino, P. & Dorffner, G. (2000). The Benefit of
Information Reduction for Trading Strategies. Report Series for
Adaptive Information Systems and Management in Economics and
Management Science, July. Report #45.

[32] Steinback, M., Tan, P.N., Kumar, V., Klooster, S. & Potter, C.
(2002). Temporal Data Mining for the Discovery and Analysis of
Ocean Climate Indices. In the 2nd Workshop on Temporal Data
Mining, at the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Edmonton, Alberta,
Canada. July 23.

[33] Timmermann, A., Sullivan, R. & White, H. (1998). The Dangers of
Data-Driven Inference: The Case of Calendar Effects in Stock
Returns. FMG Discussion Papers dp0304, Financial Markets Group
and ESRC.

[34] Tino, P., Schittenkopf, C. & Dorffner, G. (2000). Temporal Pattern
Recognition in Noisy Non-stationary Time Series Based on
Quantization into Symbolic Streams: Lessons Learned from
Financial Volatility Trading. Report Series for Adaptive Information
Systems and Management in Economics and Management Science,
July. Report #46.

[35] Truppel, Keogh, Lin (2003). A Hidden Constraint When Clustering
Streaming Time Series. UCR Tech Report.

[36] Uehara, K. & Shimada, M. (2002). Extraction of Primitive Motion
and Discovery of Association Rules from Human Motion Data.
Progress in Discovery Science 2002, Lecture Notes in Artificial
Intelligence, Vol. 2281. Springer-Verlag. pp 338-348.

[37] Walker, J. (2001). HotBits: Genuine Random Numbers Generated by
Radioactive Decay. www.fourmilab.ch/hotbits/

[38] Yairi, T., Kato, Y. & Hori, K. (2001). Fault Detection by Mining
Association Rules in House-keeping Data. In proceedings of the 6th
International Symposium on Artificial Intelligence, Robotics and
Automation in Space. Montreal, Canada, June 18-21.

