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Abstract. For more than one decade, time series similarity search has been 
given a great deal of attention by data mining researchers. As a result, many 
time series representations and distance measures have been proposed. How-
ever, most existing work on time series similarity search focuses on finding 
shape-based similarity. While some of the existing approaches work well for 
short time series data, they typically fail to produce satisfactory results when the 
sequence is long. For long sequences, it is more appropriate to consider the 
similarity based on the higher-level structures. In this work, we present a histo-
gram-based representation for time series data, similar to the “bag of words” 
approach that is widely accepted by the text mining and information retrieval 
communities. We show that our approach outperforms the existing methods in 
clustering, classification, and anomaly detection on several real datasets. 
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1   Introduction 

Time series similarity search has been a major research topic for time series data 
mining for more than one decade. As a result, many time series representations and 
distance measures have been proposed [3, 6, 12, 15, 17, 19]. There are two kinds of 
similarities: shape-based similarity and structure-based similarity [13]. The former 
determines the similarity of two datasets by comparing their local patterns, whereas 
the latter determines the similarity by comparing their global structures. Most existing 
approaches focus on finding shape-based similarity. While some of these approaches 
work well for short time series data, they typically fail to produce satisfactory results 
when the sequence is long. To understand the need for a higher-level, structure-based 
similarity measure for long time series data, consider the scenario for textual data. If 
we are to compare two strings, we can use the string edit distance to compute their 
similarity. However, if we want to compare two documents, we typically do not com-
pare them on the word-to-word basis. Instead, it is more meaningful to use a higher-
level representation that can capture the structure or semantic of the document. Be-
low, we describe the two types of similarities in more detail [13]. 

Given two sequences A and B, shape-based similarity determines how similar 
these two datasets are based on local comparisons. The most well-known distance 
measure in data mining literature is the Euclidean distance, for which sequences are 
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aligned in the point-to-point fashion, i.e. the ith point in sequence A is matched with 
the ith point in sequence B. While Euclidean distance works well in general, it does 
not always produce accurate results when data is shifted, even slightly, along the time 
axis. For example, the top and bottom sequences in Figure 1 appear to have similar 
shapes. In fact, the sequence below is the shifted version of the sequence above. 
However, the slight shifts along the time axis will result in a large distance between 
the two sequences. 

Another distance measure, Dynamic Time Warping (DTW) [12, 24], overcomes 
this limitation by using dynamic programming technique to determine the best  
alignment that will produce the optimal distance. The parameter, warping length, 
determines how much warping is allowed to find the best alignment. A large warping 
window causes the search to become prohibitively expensive, as well as possibly 
allowing meaningless matching between points that are far apart. On the other hand, a 
small window might prevent us from finding the best solution. Euclidean distance can 
be seen as a special case of DTW, where there is no warping allowed. Figure 1 dem-
onstrates the difference between the two distance measures. Note that with Euclidean 
distance, the dips and peaks in the sequences are mis-aligned and therefore not 
matched, whereas with DTW, the dips and peaks are aligned with their corresponding 
points from the other sequence. While DTW is a more robust distance measure than 
Euclidean distance, it is also a lot more computationally intensive. Keogh [12] pro-
posed an indexing scheme for DTW that allows faster retrieval. Nevertheless, DTW is 
still at least several orders slower than Euclidean distance. 

 
Fig. 1. (Left) Alignment for Euclidean distance between two sequence data. (Right) Alignment 
for Dynamic Time Warping distance between two sequence data. 

Shape-based similarities work well for short time series or subsequences; however, 
for long sequence data, they produce poor results. To illustrate this, we extracted 
subsequences of length 682 from six different records on PhysioNet [10], an online 
medical archive containing digital recordings of physiological signals. The first three 
datasets (numbered #1 ~ #3) are measurements on respiratory rates, and the last three 
datasets (#4 ~ #6) are electrocardiograms (ECGs). As we can clearly see in Figure 2, 
these two types of vital signs have very different structures. Visually we can separate 
the two classes with no difficulty. However, if we cluster them using Euclidean dis-
tance as the distance measure, the result is disappointing. Figure 2 shows the hierar-
chical clustering result using Euclidean distance. The dendrogram illustrates that 
while datasets #5 and #6 are correctly clustered (i.e. they share a common parent 
node), the rest are not.  
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Fig. 2.  Result of hierarchical clustering using Euclidean distance on raw data. In fact, using 
DTW produces the same result. 

One reason for the poor clustering result could be that the datasets within the same 
cluster are not perfectly aligned. In addition, the presence of anomalous points, as 
shown in the beginning of dataset #4, could also throw off the distances computed. 
DTW can be used to mitigate the first issue to a certain extent. However, in this  
example, DTW does not seem to offer any improvement; clustering using DTW pro-
duces a similar dendrogram as the one shown in Figure 2. Furthermore, the high com-
putational cost for dynamic time warping makes it a less desirable choice of distance 
measure for large datasets. 

A more appropriate alternative to determine similarity between long sequences is 
to measure their similarity based on higher-level structures. Several structure- or 
model-based similarities have been proposed that extract global features such as 
trend, autocorrelation, skewness, and model parameters from data [23, 26]. However, 
it is not trivial how to determine relevant features, and/or compute distances given 
these features [13]. In addition, often these global features are not sufficient enough to 
capture the information needed in order to distinguish between the data. 

In this paper, we focus on finding structural similarities between time series data. 
Our method is robust and efficient, and it is inspired by the well-known bag-of-words 
representation for text data. There are several advantages for our approach compared 
to existing structure-based method. First, since the overall representation is built from 
extracting the subsequences from data, we in fact take local structures into considera-
tion as well as global structures. Furthermore, the incremental construction of the 
representation suggests that it can be used in the streaming data scenario. Our repre-
sentation also allows users to understand the pattern distribution of the data by exam-
ining the resulting histograms. We show that our approach outperforms existing 
methods in the tasks of classification, clustering, and anomaly detection on real  
datasets.  

The rest of the paper is organized as follows. In Section 2 we briefly discuss back-
ground and related work. Section 3 presents our methodology. In Section 4, we show 
empirical results in clustering, classification, and anomaly detection. We conclude 
and discuss future work in Section 5. 
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2   Background and Related Work 

In this section, we briefly discuss background and related work on time series similar-
ity search. For concreteness, we begin with a definition of time series: 

 
Definition 1. Time Series: A time series T = t1,…,tp is an ordered set of p real-valued 
variables. 

 
Some distance measure Dist(A,B) needs to be defined in order to determine the simi-
larity between time series objects A and B. 

 
Definition 2. Distance: Dist is a function that has A and B as inputs and returns a 
nonnegative value R, which is said to be the distance from A to B.  

 
Each time series is normalized to have a mean of zero and a standard deviation of one 
before calling the distance function, since it is well understood that in virtually all 
settings, it is meaningless to compare time series with different offsets and amplitudes 
[15]. 

As mentioned, Euclidean distance and Dynamic Time Warping are among the most 
commonly used distance measures for time series. For this reason, we will use 
Euclidean distance for our new representation, and compare the results with using 
Euclidean distance and Dynamic Time Warping on raw data.  

In addition to comparing with well-known distance measures on the raw data, we 
also demonstrate that our method outperforms existing time series representations 
such as Discrete Fourier Transform (DFT) [1]. DFT approximates the signal with a 
linear combination of basis functions, and its coefficients represent global 
contribution of the signal. Another well-known representation is Discrete Wavelet 
Transform (DWT) [3]. Wavelets are mathematical functions that represent data or 
other functions in terms of the averages and differences of a prototype function, 
called the analyzing or mother wavelet. Contrary to DFT, wavelets are localized in 
time. Nevertheless, past studies have shown that DFT and DWT have similar 
performance in terms of accuracy [15].  

While there have been dozens of representations and distance measures proposed 
for time series shape-based similarity, there is relatively little work on finding 
structure-based similarity. Deng et al [4] proposed learning ARMA model on the time 
series, and using the model coefficients as the feature. This approach has an obvious 
limitation on the characteristics of input data. Ge and Smyth [8] proposed a 
deformable Markov Model template for temporal pattern matching, in which the data 
is converted to a piecewise linear model. However, this approach requires many 
parameters. Nanopoulos et al [23] proposed extracting statistical features of time 
series such as skewness, mean, variance, and kurtosis, and classifying the data using 
multi-layer perceptron (MLP) neural network.  

Recently, Keogh et al. [16] proposed a compression-based distance measure that 
compares the co-compressibility between datasets. Motivated by Kolmogorov 
Complexity [16, 19] and promising results shown in similar work in bioinformatics 
and computational theory, the authors devised a new dissimilarity measure called 
CDM (Compression-based Dissimilarity Measure). Given two datasets (strings) x and 
y, their compression-based dissimilarity measure can be formulated as follows: 
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CDM(x,y) = C(xy)
C(x) + C(y)

 

 

where C(xy) is the compressed size of the concatenated string x+y, C(x) and C(y) are 
the compressed sizes of the string x and y, respectively. In their paper, the authors 
show superior results compared to other existing structural similarity approaches. For 
this reason, we will compare our method with CDM, the best structure-based 
(dis)similarity measure reported. We will show that our approach is highly competi-
tive, with several additional advantages over existing methods. 

3   Finding Structural Similarity 

We propose a histogram-based similarity measure, using a representation similar to 
the one widely used for text data. In the Vector Space Model [25], each document can 
be represented as a vector in the vector space. Each dimension of the vector corre-
sponds to one word in the vocabulary, and the value of each component is the (rela-
tive) frequency of occurrences for the corresponding word in the document. As a 
result, an p-by-q term-to-document matrix X is constructed, where p is the number of 
unique terms in the text collection, q is the number of documents, and each element 
X(i,j) is the frequency of the ith word occurring in the jth document.  

This “bag of words” representation works well for documents. It is able to capture 
the structure or topic of a document, without knowing the exact locations or orderings 
of the word appearances. This suggests that we might be able to represent time series 
data in a similar fashion, i.e. as a combination of patterns from a finite set of patterns.  

There are two challenges if we wish to represent time series data as a “bag of 
patterns.” The first challenge concerns with the definition and construction of the 
patterns “vocabulary.” The second challenge comes from the fact that time series data 
are composed of consecutive data points. There is no clear “delimiters” between 
patterns. Fortunately, a symbolic representation for time series called SAX (Symbolic 
Aggregate approXimation) [20], previously developed by the current author and now 
a widely used discretization method, provides solutions to these challenges. The 
intuition is to convert the time series into a set of SAX words, and then construct a 
word-sequence matrix (analogous to the term-document matrix for text data) using 
these SAX words. In the next section, we briefly discuss how SAX converts time 
series data into strings.  

3.1   Symbolic Aggregate Approximation 

Given a time series of length n, SAX produces a lower dimensional representation of 
a time series by transforming the original data into symbolic words.  Two parameters 
are used to specify the size of the alphabet to use (i.e. α) and the size of the words to 
produce (i.e. w).  The algorithm begins by using a normalized version of the data and 
creating a Piecewise Aggregate Approximation (PAA). PAA reduces the 
dimensionality of a time series by transforming the original representation into a user 
defined number (i.e. w, typically w << n) of equal segments.  The segment values are 
determined by calculating the mean of the data points in that segment. The PAA 
values are then transformed into symbols by using a breakpoint table. The breakpoints 
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in the breakpoint table are defined such that all the regions have approximately equi-
probability based on a Gaussian distribution1. These breakpoints may be determined 
by looking them up in a statistical table. For example, Table 1 gives the breakpoints 
for values of α from 3 to 5. 

Table 1. A lookup table that contains the breakpoints that divides a Gaussian distribution into 
an arbitrary number (from 3 to 5) of equiprobable regions 

  βi       a 3 4 5 

β1 -0.43 -0.67 -0.84 

β2 0.43 0 -0.25 

β3  0.67 0.25 

β4   0.84 

Figure 3 summarizes how a time series is converted to PAA and then symbols, 
with parameters α = 3 and w = 8. 

 

Fig. 3. Example of SAX for a time series, with parameters α = 3 and w = 8. The time series 
above is transformed to the string cbccbaab, and the dimensionality is reduced from 128 to 8. 

3.2   Bag-of-Words Representation for Time Series 

Our algorithm works as follows. For each time series, we use a sliding window and 
extract every possible subsequence of length n (a user-defined parameter). Each 
subsequence is normalized to have mean of zero and standard deviation of one before 
it is converted to a SAX string. As a result, we obtain a set of strings, each of which 
corresponds to a subsequence in the time series. As noted in [20], given a 
subsequence Si, it is likely to be very similar to its neighboring subsequences, Si-1 and 
Si+1 (i.e. those that start one point to the left, and one point to the right of Si), 
especially if Si is in the smooth region of the time series. These subsequences are 
called trivial matches of Si. To avoid over-counting these trivial matches as true  
 
                                                           
1 The Gaussian assumption is the default, since in [20] the authors discover that most short time 

series subsequences follow the Gaussian distribution. However, the breakpoints can be ad-
justed based on the actual distribution of the data. 
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patterns, we need to perform numerosity reduction. Since SAX preserves the general 
shape of the sequence, in some cases we might see that multiple consecutive 
subsequences are mapped to the same string. In that case, we record only the first 
occurrence of the string, and ignore the rest until we encounter a string that is 
different. In other words, for each group of consecutive identical strings, we record 
only the first occurrence and count this group of occurrences only once.  

Once we obtain the set of strings for each time series dataset, we can construct the 
word-sequence matrix. Given α and w as the parameters for SAX, we know the size 
of our entire collection of possible SAX strings, or our “dictionary.” There are αw 
possible SAX words. For example, for α = 4 and w = 4, our dictionary size is only 
256. Clearly, the size of the dictionary increases exponentially with the increase of w. 
Experimental results in previous work [20] indicate that the choice of α does not 
critically affect the performance. Typically, a value of 3 or 4 works well for most time 
series datasets. In this paper, we choose α = 4.  

Having fixed α, we now have to determine the value for w. While the best choice 
of w is data-dependent, generally speaking, time series with smooth patterns can be 
described with a small w, and those with rapidly changing patterns prefer large w to 
capture the critical changes. We choose w = 6~8 for our experiments, with sliding 
window length of 100~300. 

With α = 4 and w = 8, the resulting dictionary size is αw = 48 = 65536, which is 
still quite large. However, as is the case for text documents, the matrix is likely to be 
sparse. Therefore, we can eliminate the words that never occur in the data, and/or 
store the matrix in a compressed format such as the Compressed Column Storage 
(CCS) format [5]. In our experiments, we find that only about 10% of all words have 
some subsequence mapped to it. 

The construction of the temporal “bag of patterns” matrix is straightforward. The 
matrix M is a word-sequence matrix, where each row i denotes a SAX word (i.e. a 
pattern) from the dictionary; each column j denotes a time series dataset; and each Mi,j 

stores the frequency of word i occurring in time series j. Within each matrix cell Mi,j, 
we can also store a list of pointers to the subsequence in time series j (typically on 
disk) that are mapped to word i. The lists of pointers will enable us to perform 
subsequence matching. However, since we are focused on finding structural 
similarities between time series data, we will contend ourselves with storing just the 
word frequency in the matrix for now. We call this new representation BOP (Bag of 
Patterns). 

The matrix provides a summary of time series data in terms of the frequency of 
occurrence for each pattern. Once we build the matrix M, we can then use any 
applicable distance measures or dimensionality reduction techniques to computes the 
similarity between different time series datasets. Figure 4 shows a visual example of 
this representation. Like the bag-of-words representation for documents, the orderings 
of words are lost. However, for long time series data, this level of details is exactly 
the reason why conventional shaped-based approaches do not work well. As our 
experiments demonstrate, BOP produces very good results even without knowing the 
ordering of the patterns. 
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Fig. 4. A visual example of the bag-of-patterns representation for time series. Each row de-
notes a SAX word, and each column denotes a time series data. We could also store, within 
each cell, pointers to corresponding subsequences. 

4   Empirical Evaluation 

In this section, we present empirical evaluation of our method on clustering, classifi-
cation, and anomaly detection.  

4.1   Clustering 

For this part of experiments, we demonstrate the effectiveness of our approach in 
clustering. We show that our representation out-perform existing approaches and 
produce more accurate clustering results. 
 
4.1.1 Hierarchical Clustering 
One of the most widely used clustering approaches is hierarchical clustering [11]. 
Hierarchical clustering computes pairwise distances of the objects (or groups of ob-
jects) and produces a nested hierarchy of the clusters. It has several advantages over 
other clustering methods. More specifically, it offers great visualization power with 
the hierarchy of clusters, and it requires no input parameters.  However, its intensive 
computational complexity makes it infeasible for large datasets. 

In Figure 2, we showed a simple example on hierarchical clustering where both 
Euclidean Distance and Dynamic Time Warping on the raw data fail to find the 
correct clusters. In this part of experiment, as a sanity check, we show the 
clustering result using BOP to represent the time series datasets. We use Euclidean 
distance to compute the similarity between the histograms (i.e. the column vectors). 
Figure 5 shows the resulting dendrogram. Note we are now clustering on the 
transformed time series, or the histogram of the patterns. For clarity, we also plot 
the original, corresponding time series to the left of the histograms. We can see  
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Fig. 5. New clustering result on the same data shown in Figure 2. This time, we use our histo-
gram-based, bag-of-patterns approach, and combine it with Euclidean distance. The two clus-
ters are well separated. 

 
Fig. 6. Clustering result using Euclidean distance on the raw data. Only three pairs of data are 
cleanly clustered together. 

clearly from the histograms that the time series clustered together share similar 
pattern distribution. 

While the example shown above gives us a first indication that our approach can 
find clusters while shape-based approaches cannot, with only six datasets, the 
example is too small and contrived to offer any conclusive insight. Therefore, we 
perform more hierarchical clustering experiments on larger datasets. We compare our 
approach with the following methods: (1) CDM proposed by Keogh et al [16], (2) 
Euclidean distance on raw time series, (2) Dynamic Time Warping on raw time 
series, and (4) Euclidean distance on DFT coefficients. 

Similar to the experimental setting in [16], we selected 13 pairs of datasets across 
different domains, with diverse structures from UCR Time Series Archive [14]. 
Although our method does not require the input time series to have the same length, 
for simplicity, we keep each dataset at length 1000. For Dynamic Time Warping, 
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however, since it is costly to compute, we reduce the time series length to 250 by 
systematic sampling. 

Figure 62 shows the dendrogram produced by hierarchical clustering using 
Euclidean distance on the raw data. We can see that out of 13 pairs of datasets, only 3 
pairs are successfully clustered together.  

As illustrated in Figure 7, DTW shows improvement over Euclidean distance and 
successfully clusters 10 pairs of dataset. Perhaps the clustering results for DTW 
would have been better if we used the entire dataset. However, its prohibitive time 
complexity makes it an unrealistic choice of distance measure for large datasets. 
Even at the reduced length, DTW took 156 times longer than our approach on the 
whole dataset. 

 

Fig. 7. Clustering result using Dynamic Time Warping on the raw data. The result is better than 
Euclidean: 10 pairs of data are cleanly clustered together. 

Next, we convert the time series by DFT, and cluster the data on the DFT 
coefficients. One of the advantages of DFT is that it offers dimensionality reduction. 
As demonstrated in [1], most “energy” concentrates on the first few DFT coefficients. 
Therefore, we can use only a few DFT coefficients to approximate the data, while still 
preserving the general shape of the data. If we use all the coefficients, then we get 
back the original sequence. In this experiment, we used 100 coefficients (compared to 
1000 data points in the raw data). Similar to using the raw data, only 3 pairs of data 
are cleanly clustered. Figure 8 shows the result. 

Figure 9 shows the clustering result produced by our BOP approach. Again, the 
histograms for the bag-of-patterns are shown in the middle of the figure. As we can 
see, all 13 pairs are successfully clustered. 

                                                           
2 The figures are best viewed in color. 
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Fig. 8. Clustering results using 100 DFT coefficients. Only three pairs are correctly clustered 
together. 

 

Fig. 9. Clustering results using our approach. All pairs of data are successfully clustered. 

The results above are promising. However, these time series are still relatively 
short, and they have very diverse structures. To see how our algorithm does on long 
sequences, and on data with less diverse structures, we performed hierarchical 
clustering on the ECG dataset presented in [16]. We will call this dataset ECG1. This 
dataset contains 20 ECG records that form 4 clusters. Details on the datasets can be 
found in [16]. Each record is of length 15,000. Our results are comparable to that 
reported in [16]. Regardless of the high level of noises in the data, all 4 clusters are 
correctly identified, as demonstrated in Figure 10. 

While CDM produces similar results, our approach offers several advantages. 
First, since we cluster on the pattern histograms, we can see the distribution of 
patterns from these histograms, and understand the underlying structures of the data. 
Furthermore, since we extract subsequences and use them to build the final 
representation, our approach is potentially suitable for streaming data.  
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Fig. 10. Clustering result on 20 ECG datasets, using our bag-of-patterns approach. Each record 
is 15,000 points long.  

Next, we compare our results with the three other methods that we mentioned. 
Figure 11 shows the clustering results using Euclidean distance on the raw data. Only 
9 out of 20 datasets are clustered correctly.  

 
Fig. 11. Clustering result on raw ECG1 data using Euclidean Distance. Only 9 datasets are 
correctly clustered (#11, #12, #14, #15, #16-#20) 

When we repeat the experiment using DTW, we had to sample down the data 
(20:1), due to its high computational cost. Our machine simply could not handle it. 
With DTW on the shorter datasets, the result is similar to that of Euclidean distance 
on the full datasets. To show that this poor result is not just due to the loss of data 
from sampling, we re-ran the experiment using our BOP representation on the 
sampled, shorter datasets, and obtained the same result as shown in Figure 10. 

For the final comparison, we convert the time series to DFT coefficients, and 
cluster the data on the coefficients. Similar to Euclidean Distance on the raw data, 
only 8 datasets are clustered correctly. We also tried different resolutions (100-1000 
coefficients), but obtained poor results regardless of the resolution. The result is 
shown in Figure 12. 



 Finding Structural Similarity in Time Series Data 473 

 

Fig. 12. Clustering result on ECG1 data using 1000 DFT coefficients  

4.1.2 Partitional Clustering 
Although hierarchical clustering is a good sanity check from its visualization power, 
it has limited utility due to its poor scalability. The most commonly used data mining 
clustering algorithm is k-means [2, 22, 21]. We performed k-means using the 
Euclidean distance on the raw data, and on our bag-of-patterns representation. The 
basic intuition behind k-means (and in general, iterative refinement algorithms) is the 
continuous reassignment of objects into different clusters, so that the intra-cluster 
distance is minimized. 

We performed k-means using the Euclidean distance on the raw data, and on our 
histogram-based representation. CDM is not included in this experiment, as it’s 
unclear how to define the centroid of a cluster [16]. 

For this experiment, we extracted 250 records from the PhysioNet archive. Each 
record contains 2048 points. These records are extracted from various databases 
containing different vital signs, or patients with different heart conditions. We 
separated the records into 5 classes, and labeled them according to the databases that 
they are extracted from. We will call this dataset ECG2. Figure 13 shows one 
example from each of the 5 classes in ECG2 dataset. 

 

Fig. 13. One example from each of the 5 classes in ECG2 dataset 



474 J. Lin and Y. Li 

We ran k-means algorithm 10 times, and recorded the clustering labels obtained 
from the run with the smallest objective function (i.e. sum of intra-cluster distances). 
We then compare our cluster labels with the true labels, and compute the clustering 
quality using the evaluation method proposed by [7]. The evaluation method 
compares the similarity between two sets of cluster labels, and returns a number 
between 0 and 1 denoting how similar they are. Ideally, we would like the number to 
be as close to 1 as possible. Our approach achieves the best clustering quality (0.7133 
vs. 0.4644). The results are shown in Table 2. 

4.2   Classification 

Classification of time series has attracted much interest from the data mining 
community [10, 22, 23, 24]. For the classification experiments, we will consider the 
most common classification algorithm, nearest neighbor classification. To 
demonstrate the effectiveness on 1-nearest-neighbor classification, we use the same 
ECG2 dataset. We use the leave-one-out cross validation, and count the number of 
correctly classified objects, cc. The accuracy is the ratio of cc and the total number of 
objects (i.e. 250). For this experiment, we also add Dynamic Time Warping (again, 
with reduced length). The accuracy results are show in Table 2. The improvement is 
astounding. For our approach, the accuracy of 0.996 means that there is only 1 
misclassified object, out of 250 objects. 

4.3   Discord/Anomaly Detection 

In [18], a discord is defined as the data object that is the least similar to the rest of the 
dataset, i.e. it has the largest nearest neighbor distance. A discord can be seen as an 
anomaly in the data. In this section, we conduct discord/anomaly detection 
experiments, using our BOP representation and comparing it with Euclidean distance 
on the raw data. We use the same ECG2 dataset. We take one class of ECG2 data at a 
time (each class contains 50 ECG records), and manually insert an anomaly by 
randomly choosing one other ECG record that belongs to a different class. For each 
class, we repeat this experiment 20 times, which results in a total of 100 runs. We 
then compare the accuracy, or the percentage of discords found, of our representation 
against the raw data, both using Euclidean distance. The accuracy results are shown in 
Table 2.  

Table 2. Accuracy of our approach on clustering, classification, and discord discovery com-
pared to other methods. Our approach achieves the best accuracy for all tasks. All numbers are 
between 0 and 1. 

 Euclidean DTW Bag-of-Patterns 
k-means 0.4644 N/A 0.7133 

NN 0.44 0.728 0.996 
Discord 0.35 N/A 0.85 
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One of the reasons that our approach works so much better than using the raw data is 
that the ECG data are not at all aligned, even for datasets in the same class. Another 
reason is that sometimes an ECG data might contain local anomalies within the data; such 
anomalies can easily throw off the distances computed using the shape-based approach. 

We conclude this experiment by noting that the definition of discord can be easily 
extended to top k-discords. Applying k-discords discovery algorithm will allow us to 
find both global (i.e. data that do not belong in the cluster) and local (i.e. anomalies 
that occur within one time series) anomalies. 

5   Conclusion 

Most existing work on time series similarity search focuses on finding shaped-based 
similarity. While these shape-based approaches work reasonably well for short time 
series data, the accuracy typically degrades if the sequences are long. For long time 
sequences, it is more appropriate to measure the similarity by looking at their higher-
level structures, rather than point-to-point, local comparisons.   

In this work, we proposed a histogram-based similarity measure, BOP. Similar to 
the bag-of-words representation for textual data, our approach counts the frequency of 
occurrences of each pattern in the time series. We then compare the frequencies (or 
the histograms) of patters in the time series to obtain a (dis)similarity measure.  

Our experimental results show that our approach is superior to existing approaches 
in the tasks of clustering, classification, and anomaly detection. Furthermore, our 
approach has several advantages over existing structure-based similarity measures. 
Specifically, our approach considers local structures as well as global structure, by 
using subsequences to build our final representation. Our representation allows users 
to understand the pattern distribution by examining the histograms. Furthermore, our 
representation is suitable for streaming data, since the frequency vectors are built 
incrementally. 

We would like to note that since our approach determines similarity based on 
structures of the data, the input sequences should be reasonably long, or long enough 
such that the structures (or lack of structures) can be meaningfully captured and 
summarized.  

For future work, we will explore our representation on other types of data such as 
images. We will also try other existing distance measures such as cosine similarity, 
and/or devise a distance measure more suitable than Euclidean Distance. 
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