
1

CS 656 1

Data L ink Layer , Par t 2
Error  Detection and Correction

These slides are created by Dr. Yih Huang of George 
Mason University. Students registered in Dr. 
Huang's courses at GMU can make a single 

machine-readable copy and print a single copy of 
each slide for their own reference, so long as each 
slide contains the copyright statement, and GMU 
facilities are not used to produce paper copies. 

Permission for any other use, either in machine-
readable or printed form, must be obtained from 

the author in writing.
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Transmission Errors

�Causes: noises, attenuation, distortion, 
crosstalk, losing synchronization

�Error detection
– Parity checks, cyclic redundancy codes, …

�Error correction
– send redundant information with data 
– when receiving data incorrectly, the 

receiver makes “educated guess” about the 
original data

– Ex. Hamming code



2

CS 656 3

Par ity Checks
� Add an extra bit to a string of bits in order to make 

the total number of 1’s even (even parity) or odd  
(odd parity)

� Example (even parity): 0 1 1 0 1 1 0 1 1
� Advantages

– detects any single bit error
– in fact, detects any error involving odd number 

of bits
� Disadvantages

– only 50% chance of detecting burst er rors
– an n-bit burst error is a string of bits inverted 

during transmission
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Cyclic Redundancy Codes (CRC)

� Basic idea: treat string of bits as coefficients of a 
polynomial that uses modulo 2 arithmetic

– Ex. 1 0 1 0 0 1 represents  x5 +  x3 + 1.

� Additions and subtractions are equivalent to 
Exclusive-OR:

1 0 0 1 1 0 1 1     1 1 1 1 0 0 0 0

+ 1 1 0 0 1 0 1 0   - 1 0 1 0 0 1 1 0
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Method
�Sender:

– divide string (frame) by a generator 
polynomial G(x)

– tag the remainder (called a checksum) 
onto the frame when it is transmitted 

�Receiver:
– divide the entire frame by G(x)
– a non-zero remainder indicates errors

�Example: 
– data: 1010001101, G(x): 110101 
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1 0 1 0 0 0 1 1 0 1 0 0 0 0 0
1 1 0 1 0 1

1 1 1 0 1 1
1 1 0 1 0 1

1 1 1 0 1 0
1 1 0 1 0 1

1 1 1 1 1 0
1 1 0 1 0 1

1 0 1 1 0 0
1 1 0 1 0 1

1 1 0 0 1 0
1 1 0 1 0 1

0 1 1 1 0

1 1 0 1 0 1

6-bit generator 
produces 5-bit 

remainder

Transmitted data:
1 0 1 0 0 0 1 1 0 1 0 1 1 1 0
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How CRC Works ?
� D(x): data

� D’ (x): data with appended 0s

– Let D’ (x) = P(x)G(x) + R(x)

� T(x): transmitted bits; must be a multiple of G(x)

� Suppose the received bits R(x)=T(x), then G(x)
also divides R(x).

� To detect errors, the receiver tests if G(x) | R(x).

1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 D’(x)
- 0 1 1 1 0 R(x)

1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 T(x)=D’ (x)-R(x)
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When Does CRC Fail ?
� E(x): error bits

� That is, R(x) = T(x) + E(x)

� R(x) is accepted by the receiver if G(x)|R(x)

� Hence, what is the relationship between G(x) and 
E(x) to cause the CRC to fail ?

Transmitted: 11010101010001111
+     Errors: 00001000111000100

Received: 11011101101001011 
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Example of  a CRC Failure

� From the earlier example:

– G(x) = x5 + x4 + x2 + 1   (110101)

– D(x): 1 0 1 0 0 0 1 1 0 1

– T(x): 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0

– E(x): 1 1 1         1

– R(x): 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1

– Please check that E(x)=G(x)*(x2+1)

– You can check for yourself that R(x) will be 
(incorrectly) accepted by the receiver.
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Generators Are Not Born Equal
� If G(x) contains two or more terms, then it 

can detect all single bit errors.

– Why?
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�detects all double errors if 

– x does not divide G(x), and 

– G(x) does not dividexk + 1 for any k < K
where K is the frame length

Why?
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�detects all odd errors if G(x) contains x + 1 
as a factor.  Why?
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Other  CRC Proper ties

� If G(x) satisfies all the above properties, 
then

– all burst errors of length r or less are 
detected, where r is the degree of G(x),

– burst errors of  length r + 1 are missed 
with probability

– burst errors of  length r + 2 or more are 
missed with probability

121 −r

r21
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Common Generators

�CRC-8: x8 + x2 + x + 1 (used with ATM)

�CRC-CCITT: x16 + x12 + x5 + 1 (used with 
HDLC)

– catch all single, double, and odd errors

– catch all burst errors of length of 16 or less

– catch 99.997% of burst errors of length 17

– catch 99.998% of length 18 or more

�CRC –32:  x32 + x26 + x23 + x22 + x16 + x12 + 
x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (used 
with Ethernet)
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Error  Correcting Codes
�Frame consists of mdata bits and r check bits.
�The resulting n = m +r bit unit is called a 

codeword.
�The number of bits by which two codewords 

differ is called the Hamming Distance.
�To detect d-bit errors, we need distance of d + 

1 between any pair of codewords.
– codewords with single parity bit have a 

minimum distance of 2
�To correct d-bit errors, we need distance of 2d 

+ 1.
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An Example
� Consider a (inefficient) coding scheme where each 

bit is simply repeated three times.

� The minimum Hamming distance among the 
above codewords is 3.

� This scheme can detect any 2-bit errors.

000 
001 
010 
011 
100 
101 
110 
111 

000 
000 
000 
000 
111 
111 
111 
111 

000 
000 
111 
111 
000 
000 
111 
111 

000 
111 
000 
111 
000 
111 
000 
111 
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A Naïve Error  Correction Method
�The above scheme can also be used to 

correct 1-bit errors. 

�When receiving an invalid codeword, we 
assume that the original data is the closest, 
valid codeword.

000 000 000

100 000 000

000 000 010

010 000 000

000 100 000

000 010 000 000 001 000

000 000 100

000 000 001

000 000 111

100 000 111

001 000 111

000 000 011

000 001 111 000 010 111

000 100 111

000 000 101

000 000 110 010 000 111

001 000 000
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To Correct 1-Bit Er rors
�each of the 2m legal codewords must have n 

+ 1 bit patterns dedicated to it.

� that is, (n + 1)2m < = 2n

�divide both sides by 2m to obtain

�Examples:

– 11 data bits, how many check bits ?

– 16 data bits, how many check bits ?

– 32 data bits, how many check bits ?

rrm 2)1( ≤++
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Hamming Codes
Achieves the theoretical lower bound of check bits.
� number bits 1 to n
� power-of-2 positions are check bits
� the value of each check bit 2k depends on the 

parity of the bits whose label contains that 2k when 
written as the sum of powers of 2.

� to find out the incorrect bit, determine if check bits 
are correct

� add 2k to a counter c if the check bit is one of the 
wrong parity.

� in the end, if c = 0, then it gives the position of the 
incorrect bit.
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Example
original data:  1 0 1 0 1 1 0

codeword: 0 1 1 1 0 1 0 0 1  1  0    

bit numbers: 1 2 3 4 5 6 7 8 9 10 11

0001 1
0010    2
0011 3
0100    4
0101 5
0110    6
0111 7
1000    8
1001 9
1010  10
1011 11
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Error  Cor rection in Action

received: 0 1 1 1 1 1 0 0 1  1  0 
bit numbers: 1 2 3 4 5 6 7 8 9 10 11

Parity checks:
20 = 1, fail
21 = 2, pass
22 = 4, fail
23 = 8, pass

Error

Denote pass by 0 and fail by 1.
We have:  0   1   0   1 = 5

2023 22 21

CS 656 22

Discussion

� In a nutshell, error correction technologies 
are educated guestson the part of the 
receiver.

�Error corrections are typically used by 
applications that
– can tolerate occasional errors
– but cannot tolerate the delays of data 

retransmissions 
�Example: multimedia playback


