
Computability

What we’ve been studying is often called computability theory.
We’ve learned that:

I Regular Languages can be generated by Deterministic Regular Grammars, and
Regular Languages can be recognized by Deterministic Finite Automata.

I Non-determinism in regular grammars and in finite automata does not change
what is computable. (That is, they generate and recognize the same class of
languages.)

I Context Free Languages are generated by Context Free Grammars and
Context Free Languages are recognized by NPDAs.

I Context Free Languages are a super-set of the Regular Languages:
There are some languages that are computable by CFGs and NPDAs, but not
computable by Regular Grammars and DFAs.

I Non-Determinism does impact what is computable when modeling CFLs:
There is a CFL that is computable by an NPDA, but not by a DPDA.

I There exist languages that are not computable by DFGs and NPDAs.

Still to come:

I Some of these languages are computable by Turing Machines

I Some languages are not computable by any machine!!!! (Wow.)
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Turing Machines

Invented by Alan Turing in the 1930’s to try and capture what tasks are computable.

Believed to be as powerful as any model of computation.
Certainly as powerful as any computer you use.

What about quantum computers?

I They seem to make certain computations faster

I We have limited proof that the same speedups are impossible on classical
machines.

I They do not change what is computable.
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Turing Machines

Still a state machine. Two relaxations:

I The input isn’t read-once anymore. Read/Write, and can be repeatedly accessed.

I The memory isn’t constrained to be a stack.

Input starts out on an Infinite “tape” of cells, one character per cell:
∆, x1, x2, . . . , xn,∆,∆, . . .
The “tape head” (pointer?) starts at the left-most point, the ∆ before the input.

During each transition, write a new symbol, and move the pointer 1 cell (R or L).
A string is accepted if it ends in a special (sink) accept state.
A string is rejected if the machine halts in a special reject state, or if it runs forever!
If a TM halts on every input, we say it decides the language that it accepts.
If a TM runs for ever on some input, we say it recognizes the language that it accepts.
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Computability

Nondeterminism does impact what is computable on a Turing Machine.

Imagine L is decided by a non-deterministic TM, M .
You can construct a deterministic TM that simulates M , trying every possible choice.

Time complexity:
How many transitions does our TM require?
We measure runtime as a function: the number of transitions, as a function of the
input size.
How many transitions did we need for anbncn?

Known: Random Access Memory can improve runtime. (Think of Binary search)
Conjectured: Quantum computation can improve runtime.
Conjectured: Non-determinism can improve runtime:
P is the class of languages decidable in polynomial time on a deterministic TM.
NP is the class of languages decidable in polynomial time on a non-deterministic TM.

P 6= NP?

Since 2000, there has been a $1 Million prize offered for proving the conjecture.

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
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We measure runtime as a function: the number of transitions, as a function of the
input size.
How many transitions did we need for anbncn?

Known: Random Access Memory can improve runtime. (Think of Binary search)
Conjectured: Quantum computation can improve runtime.

Conjectured: Non-determinism can improve runtime:
P is the class of languages decidable in polynomial time on a deterministic TM.
NP is the class of languages decidable in polynomial time on a non-deterministic TM.
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Formalizing and Serializing TMs

A TM is a 7-tuple: M = (Q,Σ,Γ, q0, qa, qr, δ), where:

I Q is the finite set of states.

I Σ is the input alphabet, and ∆ /∈ Σ.

I Γ is the tape alphabet, Σ ⊂ Γ and ∆ ∈ Γ.

I q0 ∈ Q is the start state.

I qa ∈ Q is the accept state.

I qr ∈ Q is the reject state.

I δ is the transition function, δ : Q \ {qa, qr} × Γ→ Q× Γ× {L,R}

What does it take to write down the description of a TM?
We can represent the description using a binary string.
Lot’s of ways to do this, but here is one:
Q = {q1, q2, q3, q4} can be written as 010110111011110.
Σ = {a, b, c} can be written as 0101101110.
We will talk about the descriptions of machines.
When we talk about the binary string representing machine M , we will write 〈M〉.

We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}
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