Consider the set of even numbers $E = \{0, 2, 4, 6, \ldots\}.$

Are there fewer or greater elements than in the set of natural numbers?

Consider the set of even numbers $E = \{0, 2, 4, 6, \ldots\}$.

Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is *bijective*, or a *correspondence*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the set of even numbers $E = \{0, 2, 4, 6, \ldots\}$.

Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is *bijective*, or a *correspondence*.

If a set S has a correspondence with the natural numbers, i.e. $f:\mathcal{N}\to S,$ we say that the set is *countable*.

Consider the set of even numbers $E = \{0, 2, 4, 6, \ldots\}$.

Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is *bijective*, or a *correspondence*.

If a set S has a correspondence with the natural numbers, i.e. $f:\mathcal{N}\to S,$ we say that the set is *countable*.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

f(a) = 2a is a correspondence, $f : \mathcal{N} \to E$.

Consider the set of even numbers $E = \{0, 2, 4, 6, \ldots\}$.

Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is *bijective*, or a *correspondence*.

If a set S has a correspondence with the natural numbers, i.e. $f:\mathcal{N}\to S,$ we say that the set is countable.

f(a) = 2a is a correspondence, $f : \mathcal{N} \to E$.

Any subset of ${\cal N}$ is countable: sort the subset, and map the $i{\rm th}$ number in ${\cal N}$ to the $i{\rm th}$ element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer. Sort the TM descriptions, and map from the naturals.

 $\omega\text{-string}$ is a string of infinite length over $\{0,1\}.$

 ω -string is a string of infinite length over $\{0, 1\}$. A finite length string can be regarded as a unique integer: use a binary representation of the same string.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ω-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer: use a binary representation of the same string.
A language can be seen as a set of integers.

ω-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer: use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose ${\mathcal L}$ were countable.

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable. Then there is a correspondence $f: \mathcal{N} \to \mathcal{L}$.

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable. Then there is a correspondence $f: \mathcal{N} \to \mathcal{L}$. Sort the elements of \mathcal{L} according to the correspondence.

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable.

Then there is a correspondence $f : \mathcal{N} \to \mathcal{L}$.

Sort the elements of \mathcal{L} according to the correspondence.

Let ω_i by the ω -string representing the *i*th language in the sorted list.

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable.

Then there is a correspondence $f : \mathcal{N} \to \mathcal{L}$.

Sort the elements of $\ensuremath{\mathcal{L}}$ according to the correspondence.

Let ω_i by the ω -string representing the *i*th language in the sorted list.

Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1\\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases}$

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 10100010000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable.

Then there is a correspondence $f : \mathcal{N} \to \mathcal{L}$.

Sort the elements of $\ensuremath{\mathcal{L}}$ according to the correspondence.

Let ω_i by the ω -string representing the *i*th language in the sorted list.

Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1\\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases}$

 $\bar{\omega}$ does not appear in this sorted list:

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 10100010000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable.

Then there is a correspondence $f : \mathcal{N} \to \mathcal{L}$.

Sort the elements of \mathcal{L} according to the correspondence.

Let ω_i by the ω -string representing the *i*th language in the sorted list.

Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1 \\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \\ \bar{\omega} & \text{does not appear in this sorted list:} \end{cases}$

 $[j \in \mathcal{N}]$

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable. Then there is a correspondence $f: \mathcal{N} \to \mathcal{L}$. Sort the elements of \mathcal{L} according to the correspondence. Let ω_i by the ω -string representing the *i*th language in the sorted list. Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1 \\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases}$ $\bar{\omega}$ does not appear in this sorted list: $[j \in \mathcal{N}]$ $[\bar{\omega} \text{ is the } j\text{th item in the list }]$

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable. Then there is a correspondence $f: \mathcal{N} \to \mathcal{L}$. Sort the elements of \mathcal{L} according to the correspondence. Let ω_i by the ω -string representing the *i*th language in the sorted list. Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1 \\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases}$ $\bar{\omega}$ does not appear in this sorted list: $[j \in \mathcal{N}]$ $[\bar{\omega} \text{ is the } j\text{th item in the list }]$ $\bar{\omega}$ differs from ω_j in the jth bit

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an $\omega\text{-string:}$

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

$$\begin{split} & \text{Suppose } \mathcal{L} \text{ were countable.} \\ & \text{Then there is a correspondence } f: \mathcal{N} \to \mathcal{L}. \\ & \text{Sort the elements of } \mathcal{L} \text{ according to the correspondence.} \\ & \text{Let } \omega_i \text{ by the } \omega\text{-string representing the } i\text{th language in the sorted list.} \\ & \text{Define } \bar{\omega} \text{ as follows. The } i\text{th bit of } \bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1 \\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases} \\ & \bar{\omega} \text{ does not appear in this sorted list:} \\ & [j \in \mathcal{N}] \\ & [\bar{\omega} \text{ is the } j\text{th item in the list }] \\ & \bar{\omega} \text{ differs from } \omega_j \text{ in the } j\text{th bit} \\ & \text{False} \end{split}$$

◆ロト ◆昼 → ◆ 臣 → ◆ 臣 → のへぐ

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an $\omega\text{-string:}$

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 10100010000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose ${\mathcal L}$ were countable.

Then there is a correspondence $f : \mathcal{N} \to \mathcal{L}$.

Sort the elements of $\ensuremath{\mathcal{L}}$ according to the correspondence.

Let ω_i by the ω -string representing the *i*th language in the sorted list.

Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1\\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases}$

 $\bar{\omega}$ does not appear in this sorted list:

 $\begin{array}{l} [j \in \mathcal{N}] \\ [\bar{\omega} \text{ is the } j \text{th item in the list }] \\ \bar{\omega} \text{ differs from } \omega_j \text{ in the } j \text{th bit} \\ \text{False} \end{array}$

 $\bar{\omega}$ is not the *j*th item in the list.

 ω -string is a string of infinite length over $\{0, 1\}$.

A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an ω -string:

The *i*th bit is 1 iff the string corresponding to integer *i* is in the language. Example: for $L = \{1, 11, 111\}, \omega = 1010001000000\cdots$

Claim

Let ${\mathcal L}$ be the set of all languages. ${\mathcal L}$ is uncountable

Suppose \mathcal{L} were countable. Then there is a correspondence $f: \mathcal{N} \to \mathcal{L}$. Sort the elements of \mathcal{L} according to the correspondence. Let ω_i by the ω -string representing the *i*th language in the sorted list. Define $\bar{\omega}$ as follows. The *i*th bit of $\bar{\omega} = \begin{cases} 0 & \text{if the } i\text{th bit of } \omega_i = 1 \\ 1, & \text{if the } i\text{th bit of } \omega_i = 0 \end{cases}$ $\bar{\omega}$ does not appear in this sorted list: $\begin{bmatrix} j \in \mathcal{N} \end{bmatrix} \\ \begin{bmatrix} \bar{\omega} & \text{is the } j\text{th item in the list} \end{bmatrix} \\ \bar{\omega} & \text{differs from } \omega_j & \text{in the } j\text{th bit } \text{False} \\ \bar{\omega} & \text{is not the } j\text{th item in the list.} \end{cases}$ $\forall j \in \mathcal{N} : \bar{\omega} & \text{is not the } j\text{th item in the list.}$

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Suppose otherwise, towards a contradiction: $[\forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine}]$

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction: $\begin{bmatrix} \forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine} \\ \text{Assign to each } L \in \mathcal{L} \text{ the smallest integer corresponding to a TM that recognizes it.} \end{aligned}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:

 $[\forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine}]$ Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

it.

Sort the resulting list of integers.

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:

 $[\forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine}]$ Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

it.

Sort the resulting list of integers.

This yields a correspondence between $\mathcal{N} \to \mathcal{L}$

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:

 $[\forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine}]$ Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

it.

Sort the resulting list of integers. This yields a correspondence between $\mathcal{N} \to \mathcal{L}$ is countable.

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:

 $[\forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine}]$ Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

it.

```
Sort the resulting list of integers. This yields a correspondence between \mathcal{N} \to \mathcal{L}
\mathcal{L} is countable. False
```

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:

 $[\forall L \in \mathcal{L} : L \text{ is recognized by some Turing Machine}]$ Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

it.

Sort the resulting list of integers.

This yields a correspondence between $\mathcal{N} \to \mathcal{L}$

 $\mathcal L$ is countable.

False

 $\exists L \in \mathcal{L} : L \text{ is not recognized by any TM.}$

Recall, every TM can be described using an integer: Write the transition function out as a binary string. Interpret this binary string as an integer.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall, every TM can be described using an integer: Write the transition function out as a binary string. Interpret this binary string as an integer.

Does every integer represent a valid TM? No! We can write it in binary, but it might not correctly encode δ .

Recall, every TM can be described using an integer: Write the transition function out as a binary string. Interpret this binary string as an integer.

Does every integer represent a valid TM? No! We can write it in binary, but it might not correctly encode δ .

Nevertheless, we will consider every integer as representing a TM. If it does not correctly encode a TM, we will say the language of that TM is \emptyset .

Recall, every TM can be described using an integer: Write the transition function out as a binary string. Interpret this binary string as an integer.

Does every integer represent a valid TM? No! We can write it in binary, but it might not correctly encode δ .

Nevertheless, we will consider every integer as representing a TM. If it does not correctly encode a TM, we will say the language of that TM is \emptyset .

```
Bin(i) denotes the binary representation of i \in \mathcal{N}.
M_i is the TM described by Bin(i).
```

Recall, every TM can be described using an integer: Write the transition function out as a binary string. Interpret this binary string as an integer.

Does every integer represent a valid TM? No! We can write it in binary, but it might not correctly encode δ .

Nevertheless, we will consider every integer as representing a TM. If it does not correctly encode a TM, we will say the language of that TM is \emptyset .

```
 \begin{array}{l} {\rm Bin}(i) \mbox{ denotes the binary representation of } i \in \mathcal{N}. \\ M_i \mbox{ is the TM described by } {\rm Bin}(i). \end{array}
```

```
Note: \langle M_i \rangle = \mathsf{Bin}(i).
```

Sometimes we want to refer to the string representing machine M without knowing i. Sometimes we want to think of the set of all $i \in \mathcal{N}$ and the machines they represent.
$L_D = {Bin(i) | i \in \mathcal{N} \land M_i \text{ does not accept } Bin(i)}$

 $L_D = {Bin(i) | i \in \mathcal{N} \land M_i \text{ does not accept } Bin(i)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

 L_D is not recognizable.

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

Suppose M recognizes L_D . Consider whether M accepts $x = \langle M \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

Suppose M recognizes L_D . Consider whether M accepts $x = \langle M \rangle$ If it does, then $x \in L_D$, because M should only accept strings in the language.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

Suppose M recognizes L_D . Consider whether M accepts $x = \langle M \rangle$ If it does, then $x \in L_D$, because M should only accept strings in the language. But, if M accepts $x = \langle M \rangle$, then, by the definition of L_D , x is NOT in the language!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

Suppose M recognizes L_D . Consider whether M accepts $x = \langle M \rangle$ If it does, then $x \in L_D$, because M should only accept strings in the language. But, if M accepts $x = \langle M \rangle$, then, by the definition of L_D , x is NOT in the language!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $[\exists M : M \text{ recognizes } L_D]$

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\begin{bmatrix} \exists M : M \text{ recognizes } L_D \end{bmatrix} \\ \begin{bmatrix} M \text{ accepts } \langle M \rangle \end{bmatrix}$

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
\begin{bmatrix} \exists M : M \text{ recognizes } L_D \end{bmatrix} \\ \begin{bmatrix} M \text{ accepts } \langle M \rangle \end{bmatrix} \\ \langle M \rangle \in L_D \end{bmatrix}
```

(By definition of "accepts")

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 \begin{array}{l} [\exists M : M \text{ recognizes } L_D] \\ [M \text{ accepts } \langle M \rangle] \\ \langle M \rangle \in L_D \\ M \text{ does not accept } \langle M \rangle \end{array}
```

(By definition of "accepts") (By definition of L_D)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 [\exists M : M \text{ recognizes } L_D] \\ [M \text{ accepts } \langle M \rangle] \\ \langle M \rangle \in L_D \\ M \text{ does not accept } \langle M \rangle \\ \text{False}
```

(By definition of "accepts") (By definition of L_D)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 [\exists M : M \text{ recognizes } L_D] \\ [M \text{ accepts } \langle M \rangle] \\ \langle M \rangle \in L_D \\ M \text{ does not accept } \langle M \rangle \\ \textbf{False} \\ M \text{ does not accept } \langle M \rangle
```

(By definition of "accepts") (By definition of L_D)

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 \begin{split} [\exists M: M \text{ recognizes } L_D] \\ & [M \text{ accepts } \langle M \rangle] \\ & \langle M \rangle \in L_D \\ & M \text{ does not accept } \langle M \rangle \\ & \textbf{False} \\ M \text{ does not accept } \langle M \rangle \\ & \langle M \rangle \notin L_D \end{split}
```

(By definition of "accepts") (By definition of L_D)

(By Definition of "not accept")

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 \begin{split} [\exists M: M \text{ recognizes } L_D] \\ & [M \text{ accepts } \langle M \rangle] \\ & \langle M \rangle \in L_D \\ & M \text{ does not accept } \langle M \rangle \\ & \textbf{False} \\ M \text{ does not accept } \langle M \rangle \\ & \langle M \rangle \notin L_D \\ & M \text{ accepts } \langle M \rangle \end{split}
```

(By definition of "accepts") (By definition of L_D)

(By Definition of "not accept") (By Definition of L_D)

・ロト・西ト・西ト・日・ 日・ シュウ

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 \begin{array}{l} [\exists M: M \ \text{recognizes} \ L_D] \\ & [M \ \text{accepts} \ \langle M \rangle] \\ & \langle M \rangle \in L_D \\ & M \ \text{does not accept} \ \langle M \rangle \\ & \textbf{False} \\ M \ \text{does not accept} \ \langle M \rangle \\ & \langle M \rangle \notin L_D \\ & M \ \text{accepts} \ \langle M \rangle \\ & \textbf{False} \\ \end{array}
```

(By definition of "accepts") (By definition of L_D)

(By Definition of "not accept") (By Definition of L_D)

 $L_D = \{\mathsf{Bin}(i) \mid i \in \mathcal{N} \land M_i \text{ does not accept } \mathsf{Bin}(i)\}$

Theorem

 L_D is not recognizable.

```
Suppose M recognizes L_D. Consider whether M accepts x = \langle M \rangle
If it does, then x \in L_D, because M should only accept strings in the language.
But, if M accepts x = \langle M \rangle, then, by the definition of L_D, x is NOT in the language!
```

```
 [\exists M : M \text{ recognizes } L_D] \\ [M \text{ accepts } \langle M \rangle] \\ \langle M \rangle \in L_D \\ M \text{ does not accept } \langle M \rangle \\ \textbf{False} \\ M \text{ does not accept } \langle M \rangle \\ \langle M \rangle \notin L_D \\ M \text{ accepts } \langle M \rangle \\ \textbf{False} \\ \neg \exists M : M \text{ recognizes } L_D
```

(By definition of "accepts") (By definition of L_D)

```
(By Definition of "not accept")
(By Definition of L_D)
```

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

Recall: We can build a universal TM that *recognizes* the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Recall: We can build a universal TM that *recognizes* the following language: $L_U = \{\langle M \rangle 0x \mid TM \ M \ accepts input \ x\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

 L_U is not decidable

Recall: We can build a universal TM that *recognizes* the following language: $L_U = \{\langle M \rangle 0x \mid TM \ M \ accepts input \ x\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

 L_U is not decidable

 $[\exists M_U : M_U \text{ decides } L_U]$

Recall: We can build a universal TM that *recognizes* the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

 $[\exists M_U : M_U \text{ decides } L_U]$ Define M^* , which on input $\langle M \rangle$, runs $M_U(\langle M \rangle 0 \langle M \rangle)$ and flips the output bit.

Recall: We can build a universal TM that *recognizes* the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

 $\begin{array}{l} [\exists M_U:M_U \mbox{ decides } L_U] \\ \mbox{Define } M^*, \mbox{ which on input } \langle M \rangle, \mbox{ runs } M_U \big(\langle M \rangle 0 \langle M \rangle \big) \mbox{ and flips the output bit.} \\ [M^* \big(\langle M^* \rangle \big) = 1] \end{array}$

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} &[\exists M_U: M_U \text{ decides } L_U] \\ &\text{Define } M^*, \text{ which on input } \langle M \rangle, \text{ runs } M_U \big(\langle M \rangle 0 \langle M \rangle \big) \text{ and flips the output bit.} \\ & [M^* \big(\langle M^* \rangle \big) = 1] \\ & M_U \big(\langle M^* \rangle 0 \langle M^* \rangle \big) = 0 \\ \end{split}$$
 (By definition of M^*)

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} [\exists M_U : M_U \text{ decides } L_U] \\ \text{Define } M^*, \text{ which on input } \langle M \rangle, \text{ runs } M_U \big(\langle M \rangle 0 \langle M \rangle \big) \text{ and flips the output bit.} \\ [M^* \big(\langle M^* \rangle \big) = 1] \\ M_U \big(\langle M^* \rangle 0 \langle M^* \rangle \big) = 0 \\ M^* \big(\langle M^* \rangle \big) = 0 \\ \end{split}$$
 (By definition of M^*) (By definition of M_U)

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

 $\begin{array}{l} [\exists M_U: M_U \mbox{ decides } L_U] \\ \mbox{Define } M^*, \mbox{ which on input } \langle M \rangle, \mbox{ runs } M_U \big(\langle M \rangle 0 \langle M \rangle \big) \mbox{ and flips the output bit.} \\ [M^* \big(\langle M^* \rangle \big) = 1] \\ M_U \big(\langle M^* \rangle 0 \langle M^* \rangle \big) = 0 & (\mbox{By definition of } M^*) \\ M^* \big(\langle M^* \rangle \big) = 0 & (\mbox{By definition of } M_U) \\ \mbox{False} \end{array}$

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} [\exists M_U: M_U \mbox{ decides } L_U] \\ \mbox{Define } M^*, \mbox{ which on input } \langle M \rangle, \mbox{ runs } M_U\big(\langle M \rangle 0 \langle M \rangle\big) \mbox{ and flips the output bit.} \\ & [M^*\big(\langle M^* \rangle\big) = 1] \\ & M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 0 \qquad (\mbox{By definition of } M^*) \\ & M^*\big(\langle M^* \rangle\big) = 0 \qquad (\mbox{By definition of } M_U\big) \\ & \mbox{False} \\ & M^*\big(\langle M^* \rangle\big) = 0 \end{split}$$

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} [\exists M_U : M_U \mbox{ decides } L_U] \\ \mbox{Define } M^*, \mbox{ which on input } \langle M \rangle, \mbox{ runs } M_U\big(\langle M \rangle 0 \langle M \rangle\big) \mbox{ and flips the output bit.} \\ & [M^*\big(\langle M^* \rangle\big) = 1] \\ & M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 0 \qquad (\mbox{By definition of } M^*) \\ & M^*\big(\langle M^* \rangle\big) = 0 \qquad (\mbox{By definition of } M_U\big) \\ & \mbox{False} \\ & M^*\big(\langle M^* \rangle\big) = 0 \\ & M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 1 \qquad (\mbox{By definition of } M^*) \end{split}$$

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} [\exists M_U : M_U \text{ decides } L_U] \\ \text{Define } M^*, \text{ which on input } \langle M \rangle, \text{ runs } M_U \big(\langle M \rangle 0 \langle M \rangle \big) \text{ and flips the output bit.} \\ & [M^* (\langle M^* \rangle) = 1] \\ & M_U \big(\langle M^* \rangle 0 \langle M^* \rangle \big) = 0 \\ & M^* \big(\langle M^* \rangle \big) = 0 \\ & \text{False} \\ M^* \big(\langle M^* \rangle \big) = 0 \\ & M_U \big(\langle M^* \rangle 0 \langle M^* \rangle \big) = 1 \\ & M_U \big(\langle M^* \rangle 0 \langle M^* \rangle \big) = 1 \\ & \text{(By definition of } M^* \big) \\ M^* \big(\langle M^* \rangle \big) = 1 \\ & \text{(By definition of } M_U \big) \end{split}$$

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} [\exists M_U: M_U \mbox{ decides } L_U] \\ \mbox{Define } M^*, \mbox{ which on input } \langle M \rangle, \mbox{ runs } M_U\big(\langle M \rangle 0 \langle M \rangle\big) \mbox{ and flips the output bit.} \\ & [M^*\big(\langle M^* \rangle\big) = 1] \\ & M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 0 & (\mbox{By definition of } M^*) \\ & M^*\big(\langle M^* \rangle\big) = 0 & (\mbox{By definition of } M_U\big) \\ & \mbox{False} \\ & M^*\big(\langle M^* \rangle\big) = 0 & \\ & M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 1 & (\mbox{By definition of } M^*) \\ & M^*\big(\langle M^* \rangle\big) = 1 & (\mbox{By definition of } M_U\big) \\ & \mbox{False} \\ & \mbox{False} \\ \end{split}$$

Recall: We can build a universal TM that recognizes the following language: $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$

Theorem

 L_U is not decidable

$$\begin{split} [\exists M_U: M_U \text{ decides } L_U] \\ \text{Define } M^*, \text{ which on input } \langle M \rangle, \text{ runs } M_U\big(\langle M \rangle 0 \langle M \rangle\big) \text{ and flips the output bit.} \\ [M^*\big(\langle M^* \rangle\big) = 1] \\ M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 0 \qquad (\text{By definition of } M^*) \\ M^*\big(\langle M^* \rangle\big) = 0 \qquad (\text{By definition of } M_U) \\ \text{False} \\ M^*\big(\langle M^* \rangle\big) = 0 \\ M_U\big(\langle M^* \rangle 0 \langle M^* \rangle\big) = 1 \qquad (\text{By definition of } M^*) \\ M^*\big(\langle M^* \rangle\big) = 1 \qquad (\text{By definition of } M_U) \\ \text{False} \\ \neg \exists M_U: M_U \text{ decides } L_U \end{split}$$

Behavior of M_U , if it were to exist:

/	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		\
M_1 :	\underline{accept}	accept	reject	reject		accept
M_2 :	accept	\underline{reject}	reject	reject		reject
M_3 :	reject	accept	\underline{reject}	accept		accept
:	÷	:	:	:	·	reject
M^* :	reject	accept	accept	reject		???
÷	÷	:	:		:	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

The language L_{halt} is undecidable.

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid TM \ M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $M_U(\langle M \rangle 0x) :$

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $\underline{M}_U(\langle M \rangle 0x) :$

1. Simulate $M_{halt}(\langle M \rangle 0x)$.
Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $\underline{M_U(\langle M \rangle 0x) :}$

- 1. Simulate $M_{halt}(\langle M \rangle 0x)$.
- 2. If it outputs 0, halt and output 0.

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $M_U(\langle M \rangle 0x) :$

- 1. Simulate $M_{halt}(\langle M \rangle 0x)$.
- 2. If it outputs 0, halt and output 0.
- 3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $M_U(\langle M \rangle 0x) :$

1. Simulate $M_{halt}(\langle M \rangle 0x)$.

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs. $\exists M_U: M_U \mbox{ decides } L_U$

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $M_U(\langle M \rangle 0x) :$

1. Simulate $M_{halt}(\langle M \rangle 0x)$.

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs. $\exists M_U: M_U \mbox{ decides } L_U$ False

Consider the language $L_{halt} = \{ \langle M \rangle 0x \mid M(x) \text{ terminates } \}$

Theorem

The language L_{halt} is undecidable.

We reduce the problem of deciding L_U to the problem of deciding L_{halt} . $L_U = \{\langle M \rangle 0x \mid \text{TM } M \text{ accepts input } x\}$ $\neg \exists M_U : M_U \text{ decides } L_U$ $[\exists M_{halt} : M_{halt} \text{ decides } L_{halt}]$ Define M_U $M_U(\langle M \rangle 0x) :$

1. Simulate $M_{halt}(\langle M \rangle 0x)$.

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs. $\exists M_U: M_U \mbox{ decides } L_U$ False

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\neg \exists M_{\mathsf{halt}} : M_{\mathsf{halt}} \text{ decides } L_{\mathsf{halt}}$

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

<□ > < @ > < E > < E > E のQ @

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

The language L_{\emptyset} is undecidable.

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x) :$

1. Write down a description of a TM M' that modifies the behavior of M as follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x) :$

1. Write down a description of a TM M^\prime that modifies the behavior of M as follows. $\underline{M^\prime:}$

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

1. Write down a description of a TM M' that modifies the behavior of M as follows. $\underline{M':}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• On input $y \neq x$, reject.

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

1. Write down a description of a TM M' that modifies the behavior of M as follows. $\underline{M':}$

- On input $y \neq x$, reject.
- On input y = x, run M(y) and output whatever it outputs.

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

1. Write down a description of a TM M' that modifies the behavior of M as follows. $\underline{M':}$

- On input $y \neq x$, reject.
- On input y = x, run M(y) and output whatever it outputs.
- 2. Run $M_{\emptyset}(\langle M' \rangle)$. Reverse the value of its output.

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

1. Write down a description of a TM M' that modifies the behavior of M as follows. $\underline{M':}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- On input $y \neq x$, reject.
- On input y = x, run M(y) and output whatever it outputs.

2. Run $M_{\emptyset}(\langle M'\rangle).$ Reverse the value of its output. $M_{\rm halt}$ decides $L_{\rm halt}$

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

1. Write down a description of a TM M' that modifies the behavior of M as follows. $\underline{M':}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- On input $y \neq x$, reject.
- On input y = x, run M(y) and output whatever it outputs.

2. Run $M_{\emptyset}(\langle M'\rangle).$ Reverse the value of its output. $M_{\rm halt}$ decides $L_{\rm halt}$ False

Consider the language $L_{\emptyset} = \{ \langle M \rangle \mid M \text{ rejects all strings } \}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding L_{halt} to the problem of deciding L_{\emptyset} . $L_{halt} = \{\langle M \rangle 0x \mid M(x) \text{ terminates } \}$ $\neg \exists M_{halt} : M_{halt} \text{ decides } L_{halt}$ $[\exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}]$ Define M_{halt} $M_{halt}(\langle M \rangle 0x)$:

1. Write down a description of a TM M' that modifies the behavior of M as follows. $\underline{M':}$

- On input $y \neq x$, reject.
- On input y = x, run M(y) and output whatever it outputs.

2. Run $M_{\emptyset}(\langle M' \rangle)$. Reverse the value of its output.

 M_{halt} decides L_{halt}

False

 $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$ Define M_{\emptyset} $M_{\emptyset}(\langle M \rangle)$:

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$ Define M_{\emptyset} $M_{\emptyset}(\langle M \rangle)$:

1. Construct the description of a Turing machine M' that rejects all strings.

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$ Define M_{\emptyset} $M_{\emptyset}(\langle M \rangle)$:

1. Construct the description of a Turing machine M' that rejects all strings.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2. Run $M_{\text{EQ}}(\langle M \rangle, \langle M' \rangle)$, and output whatever it outputs.

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$ Define M_{\emptyset} $M_{\emptyset}(\langle M \rangle)$:

1. Construct the description of a Turing machine M' that rejects all strings.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2. Run $M_{\sf EQ}(\langle M\rangle,\langle M'\rangle),$ and output whatever it outputs. M_{\emptyset} decides L_{\emptyset}

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$ Define M_{\emptyset} $\underline{M_{\emptyset}(\langle M \rangle)}$:

1. Construct the description of a Turing machine M' that rejects all strings.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2. Run $M_{\sf EQ}(\langle M\rangle,\langle M'\rangle),$ and output whatever it outputs. M_{\emptyset} decides L_{\emptyset} False

Consider the language $L_{EQ} = \{ \langle M_1 \rangle 0 \langle M_2 \rangle \mid L(M_1) = L(M_2) \}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ} . $L_{\emptyset} = \{\langle M \rangle \mid M \text{ rejects all strings } \}$ $\neg \exists M_{\emptyset} : M_{\emptyset} \text{ decides } L_{\emptyset}$ $[\exists M_{EQ} : M_{EQ} \text{ decides } L_{EQ}]$ Define M_{\emptyset} $\underline{M}_{\emptyset}(\langle M \rangle)$:

1. Construct the description of a Turing machine M' that rejects all strings.

2. Run $M_{\mathsf{EQ}}(\langle M \rangle, \langle M' \rangle)$, and output whatever it outputs. M_{\emptyset} decides L_{\emptyset} False $\neg \exists M_{\mathsf{EQ}} : M_{\mathsf{EQ}}$ decides L_{EQ}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・