Countable sets

Consider the set of even numbers E = {0,2,4,6,...}.
Are there fewer or greater elements than in the set of natural numbers?

Countable sets

Consider the set of even numbers E = {0,2,4,6,...}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

Countable sets

Consider the set of even numbers E = {0,2,4,6,...}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N'— S, we say that
the set is countable.

Countable sets

Consider the set of even numbers E = {0,2,4,6,...}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N'— S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N — E.

Countable sets

Consider the set of even numbers E = {0,2,4,6,...}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N'— S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N — E.

Any subset of A is countable: sort the subset, and map the ith number in A/ to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.

The set of all languages is uncountable
w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.

A finite length string can be regarded as a unique integer:
use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.

A finite length string can be regarded as a unique integer:
use a binary representation of the same string.

A language can be seen as a set of integers.

Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.

Example: for L = {1,11,111}, w = 10100010000000 - - -

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim
Let £ be the set of all languages. L is uncountable

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N' — L.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N' — L.
Sort the elements of £ according to the correspondence.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.
0 if the ¢th bit of w; =1

Define @ as follows. The ith bit of & = . o
1, if the ith bit of w; =0

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:

[eN]

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:
i eN]
[@ is the jth item in the list |

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:
i eN]
[@ is the jth item in the list |
@ differs from w; in the jth bit

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:
i eN]
[@ is the jth item in the list |
@ differs from w; in the jth bit
False

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:
i eN]
[@ is the jth item in the list |
@ differs from w; in the jth bit
False
@ is not the jth item in the list.

The set of all languages is uncountable

w-string is a string of infinite length over {0,1}.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an w-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1,11,111}, w = 10100010000000 - - -

Claim

Let £ be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N' — L.

Sort the elements of £ according to the correspondence.

Let w; by the w-string representing the ith language in the sorted list.

Define @ as follows. The ith bit of @ = {0 !f the ?th b!t of wi=1
1, if the ith bit of w; =0

w does not appear in this sorted list:
i eN]
[@ is the jth item in the list |
@ differs from w; in the jth bit
False
@ is not the jth item in the list.
Vj € N : @ is not the jth item in the list.

Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]

Some languages are not recognizable

Theorem

There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Some languages are not recognizable

Theorem

There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Sort the resulting list of integers.

Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Sort the resulting list of integers.
This yields a correspondence between N' — L

Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Sort the resulting list of integers.
This yields a correspondence between N' — L
L is countable.

Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Sort the resulting list of integers.

This yields a correspondence between N' — L
L is countable.

False

Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Sort the resulting list of integers.
This yields a correspondence between N' — L
L is countable.
False
JL € L : L is not recognized by any TM.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode 4.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode 4.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is (.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode 4.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is (.

Bin(i) denotes the binary representation of i € \.
M; is the TM described by Bin(i).

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode 4.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is (.

Bin(i) denotes the binary representation of i € \.

M; is the TM described by Bin(i).

Note: (M;) = Bin(i).

Sometimes we want to refer to the string representing machine M without knowing 3.
Sometimes we want to think of the set of all i € N and the machines they represent.

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

An unrecognizable language

Lp = {Bin(%) | i € N'A M; does not accept Bin(z)}

«O>r «Fr <

it
-

DA

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]
(M) € Lp (By definition of “accepts”)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]
(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]
(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)
False

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]

(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)
False

M does not accept (M)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]

(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)
False

M does not accept (M)
(M) ¢ Lp (By Definition of “not accept”)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]

(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)
False

M does not accept (M)

(M) ¢ Lp (By Definition of “not accept”)

M accepts (M) (By Definition of Lp)

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]

(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)
False
M does not accept (M)
(M) ¢ Lp (By Definition of “not accept”)
M accepts (M) (By Definition of Lp)

False

An unrecognizable language
Lp ={Bin(i) | « € N'A M, does not accept Bin(i)}

Theorem

Lp is not recognizable.

Suppose M recognizes Lp. Consider whether M accepts x = (M)
If it does, then z € Lp, because M should only accept strings in the language.
But, if M accepts x = (M), then, by the definition of Lp, = is NOT in the language!

[3M : M recognizes Lp)
[M accepts (M)]

(M) € Lp (By definition of “accepts”)
M does not accept (M) (By definition of Lp)
False
M does not accept (M)
(M) ¢ Lp (By Definition of “not accept”)
M accepts (M) (By Definition of Lp)
False

—3M : M recognizes Lp

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
Ly = {{M)0x | TM M accepts input x}

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {(M)0z | TM M accepts input z}

Theorem
Ly is not decidable

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {(M)0z | TM M accepts input z}

Theorem
Ly is not decidable

[3My : My decides Ly

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]

Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.
(M ((M*)) = 1]
My ((M*)0{M*)) =0 (By definition of M*)

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]

Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.
(M ((M*)) = 1]
My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]
My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)

False

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]

My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)
False

M*((M*)) =0

An undecidable language
Recall: We can build a universal TM that recognizes the following language:

Ly = {{M)0x | TM M accepts input x}

Theorem
Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]

My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)
False
M (M) =

My ((M*)O(M)) = (By definition of M™*)

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
Ly = {{M)0x | TM M accepts input x}

Theorem

Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]
My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)
False
M (M) =

MU((M*>O(M)) = (By definition of M™*)

M*((M*)) = (By definition of M)

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
Ly = {{M)0x | TM M accepts input x}

Theorem

Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]

My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)
False

M (M) =

M ((M*)o(M) (By definition of M™*)
M*((M) (By definition of M)

False

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
Ly = {{M)0x | TM M accepts input x}

Theorem

Ly is not decidable

[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]
My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)
False
M (M) =
MU((M*>O(M)) = (By definition of M™*)
M*((M*)) = (By definition of M)
False

—3IMy : My decides Ly

An undecidable language

Behavior of My, if it were to exist:

M :
Mo :

Ms :

(M)
accept
accept

reject

reject

(M)
accept
reject

accept

accept

(M3)
reject
reject

reject

accept

(Ma)
reject
reject

accept

reject

accept
reject

accept

reject

777

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lpayt-

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{M)0xz | TM M accepts input z}
—=3IMy : My decides Ly

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{M)0xz | TM M accepts input z}
—3My; : My decides Ly

[BMhpate : Mpare decides Liape]

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{M)0x | TM M accepts input x}
—3My; : My decides Ly

[BMhpate : Mpare decides Liape]

Define My
My ((M)0z) :

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{(M)0x | TM M accepts input =}
—3My; : My decides Ly

[BMhpate : Mpare decides Liape]

Define My

1. Simulate Mp,((M)0x).

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

Theorem

The language L,y is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{(M)0x | TM M accepts input =}
—3IMy : My decides Ly
[BMhpate : Mpare decides Liape]
Define My
My ((M)0z) :
1. Simulate M, ((M)0x).
2. If it outputs 0, halt and output 0.

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

The language L,y is undecidable.

Theorem J

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{M)0xz | TM M accepts input z}
—3IMy : My decides Ly
[BMhpate : Mpare decides Liape]
Define My
My ((M)0z) :
1. Simulate M, ((M)0x).
2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

The language L,y is undecidable.

Theorem J

We reduce the problem of deciding Ly to the problem of deciding Lpayt-
Ly = {{M)0xz | TM M accepts input z}
—3IMy : My decides Ly
[BMhpate : Mpare decides Liape]
Define My
My ((M)0z) :
1. Simulate M, ((M)0x).
2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
dMy : My decides Ly

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

The language L,y is undecidable.

Theorem J

We reduce the problem of deciding L to the problem of deciding Ly,j;.
Ly = {{(M)0x | TM M accepts input =}
—3IMy : My decides Ly
[3Mhai : Mpaie decides L,
Define My
My ((M)0z) :
1. Simulate Mp,((M)0x).
2. If it outputs 0, halt and output 0.
3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
dMy : My decides Ly
False

Reducing one computation to another

Consider the language Lhax = {(M)0x | M (z) terminates }

The language L,y is undecidable.

Theorem J

We reduce the problem of deciding L to the problem of deciding Ly,j;.
Ly = {{(M)0x | TM M accepts input =}
—3IMy : My decides Ly
[HMhah : Mhalt decides Lhalt]
Define My
My ((M)0z) :
1. Simulate Mp,((M)0x).
2. If it outputs 0, halt and output 0.
3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
dMy : My decides Ly
False
—IMhpait : Mpae decides Lyt

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable.

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable.

We reduce the problem of deciding L, to the problem of deciding Ly.

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable.

We reduce the problem of deciding L, to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
=3Mpaie + Mpaie decides Lpa

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable.

We reduce the problem of deciding L, to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mpare decides Lt

[3My : My decides Lg]

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable.

We reduce the problem of deciding L, to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

»> On input y # x, reject.

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

»> On input y # x, reject.
> Oninput y = z, run M (y) and output whatever it outputs.

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

»> On input y # x, reject.
> Oninput y = z, run M (y) and output whatever it outputs.

2. Run Mp({M")). Reverse the value of its output.

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

»> On input y # x, reject.
> Oninput y = z, run M (y) and output whatever it outputs.

2. Run Mp({M")). Reverse the value of its output.
M1 decides Lpap

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

»> On input y # x, reject.
> Oninput y = z, run M (y) and output whatever it outputs.
2. Run Mp({M")). Reverse the value of its output.
M1 decides Lpap
False

Reducing one computation to another

Consider the language Ly = {(M) | M rejects all strings }

Theorem
The language Ly is undecidable. J

We reduce the problem of deciding Lp,i; to the problem of deciding Ly.
Lpae = {(M)0z | M (x) terminates }
—IMhalt : Mhaie decides Lpaje

[3My : My decides Lg)

Define M

Mpa1e ((M)02)

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M’

»> On input y # x, reject.
> Oninput y = z, run M (y) and output whatever it outputs.
2. Run Mp({M")). Reverse the value of its output.
M1 decides Lpap
False
—3My : My decides Ly

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Define My

My ((M)) :

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Define My

My ((M)) :

1. Construct the description of a Turing machine M’ that rejects all strings.

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Define My

My ((M)) :

1. Construct the description of a Turing machine M’ that rejects all strings.

2. Run Mgq({M),{M’")), and output whatever it outputs.

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Define My

My ((M)) :

1. Construct the description of a Turing machine M’ that rejects all strings.

2. Run Mgq({M),{M’")), and output whatever it outputs.
My decides Ly

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Define My

My ((M)) :

1. Construct the description of a Turing machine M’ that rejects all strings.

2. Run Mgq({M),{M’")), and output whatever it outputs.
My decides Ly
False

Reducing one computation to another
Consider the language Lgq = {(M1)0(Ma) | L(M1) = L(M2)}

Theorem
The language Lgq is undecidable.

We reduce the problem of deciding Ly to the problem of deciding Lgq.
Ly = {(M) | M rejects all strings }
—3My : My decides Ly

[3Meq : Meq decides Lgq]

Define My

My ((M)) :

1. Construct the description of a Turing machine M’ that rejects all strings.

2. Run Mgq({M),{M’")), and output whatever it outputs.
My decides Ly
False
—IMeq : MEgq decides Lgq

