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Countable sets

Consider the set of even numbers E = {0,2,4,6,...}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N'— S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N — E.

Any subset of A is countable: sort the subset, and map the ith number in A/ to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.
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Some languages are not recognizable

Theorem
There exists a language L € L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[VL € L : L is recognized by some Turing Machine]
Assign to each L € L the smallest integer corresponding to a TM that recognizes

Sort the resulting list of integers.
This yields a correspondence between N' — L
L is countable.
False
JL € L : L is not recognized by any TM.
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Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode 4.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is (.

Bin(i) denotes the binary representation of i € \.

M; is the TM described by Bin(i).

Note: (M;) = Bin(i).

Sometimes we want to refer to the string representing machine M without knowing 3.
Sometimes we want to think of the set of all i € N and the machines they represent.
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[3My : My decides Ly]
Define M*, which on input (M), runs My ((M)0{M)) and flips the output bit.

(M ((M*)) = 1]
My ((M*)0{M*)) =0 (By definition of M*)
M*((M*)) =0 (By definition of M)
False
M (M) =
MU((M*>O(M )) = (By definition of M™*)
M*((M*)) = (By definition of M)
False

—3IMy : My decides Ly



An undecidable language

Behavior of My, if it were to exist:

M :
Mo :

Ms :

(M)
accept
accept

reject

reject

(M)
accept
reject

accept

accept

(M3)
reject
reject

reject

accept

(Ma)
reject
reject

accept

reject

accept
reject

accept

reject
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The language L,y is undecidable.

Theorem J

We reduce the problem of deciding L to the problem of deciding Ly,j;.
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