
Countable sets

Consider the set of even numbers E = {0, 2, 4, 6, . . .}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N → S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N → E.

Any subset of N is countable: sort the subset, and map the ith number in N to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

Countable sets

Consider the set of even numbers E = {0, 2, 4, 6, . . .}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N → S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N → E.

Any subset of N is countable: sort the subset, and map the ith number in N to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

Countable sets

Consider the set of even numbers E = {0, 2, 4, 6, . . .}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N → S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N → E.

Any subset of N is countable: sort the subset, and map the ith number in N to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

Countable sets

Consider the set of even numbers E = {0, 2, 4, 6, . . .}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N → S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N → E.

Any subset of N is countable: sort the subset, and map the ith number in N to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

Countable sets

Consider the set of even numbers E = {0, 2, 4, 6, . . .}.
Are there fewer or greater elements than in the set of natural numbers?

If a function is both one-to-one and onto, then we say it is bijective, or a
correspondence.

If a set S has a correspondence with the natural numbers, i.e. f : N → S, we say that
the set is countable.

f(a) = 2a is a correspondence, f : N → E.

Any subset of N is countable: sort the subset, and map the ith number in N to the
ith element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.

A finite length string can be regarded as a unique integer:
use a binary representation of the same string.

A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.

A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.

Represent a language using an ω-string:
The ith bit is 1 iff the string corresponding to integer i is in the language.

Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.

Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.

Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.

Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.

Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:

[j ∈ N]
[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]

ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit

False
ω̄ is not the jth item in the list.

∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.

∀j ∈ N : ω̄ is not the jth item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over {0, 1}.
A finite length string can be regarded as a unique integer:

use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:

The ith bit is 1 iff the string corresponding to integer i is in the language.
Example: for L = {1, 11, 111}, ω = 10100010000000 · · ·

Claim

Let L be the set of all languages. L is uncountable

Suppose L were countable.
Then there is a correspondence f : N → L.
Sort the elements of L according to the correspondence.
Let ωi by the ω-string representing the ith language in the sorted list.

Define ω̄ as follows. The ith bit of ω̄ =

{
0 if the ith bit of ωi = 1

1, if the ith bit of ωi = 0

ω̄ does not appear in this sorted list:
[j ∈ N]

[ω̄ is the jth item in the list]
ω̄ differs from ωj in the jth bit
False

ω̄ is not the jth item in the list.
∀j ∈ N : ω̄ is not the jth item in the list.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.
Sort the resulting list of integers.
This yields a correspondence between N → L
L is countable.
False

∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]

Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes
it.

Sort the resulting list of integers.
This yields a correspondence between N → L
L is countable.
False

∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.

Sort the resulting list of integers.
This yields a correspondence between N → L
L is countable.
False

∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.
Sort the resulting list of integers.

This yields a correspondence between N → L
L is countable.
False

∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.
Sort the resulting list of integers.
This yields a correspondence between N → L

L is countable.
False

∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.
Sort the resulting list of integers.
This yields a correspondence between N → L
L is countable.

False
∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.
Sort the resulting list of integers.
This yields a correspondence between N → L
L is countable.
False

∃L ∈ L : L is not recognized by any TM.

Some languages are not recognizable

Theorem

There exists a language L ∈ L that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[∀L ∈ L : L is recognized by some Turing Machine]
Assign to each L ∈ L the smallest integer corresponding to a TM that recognizes

it.
Sort the resulting list of integers.
This yields a correspondence between N → L
L is countable.
False

∃L ∈ L : L is not recognized by any TM.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is ∅.
Bin(i) denotes the binary representation of i ∈ N .
Mi is the TM described by Bin(i).
Note: 〈Mi〉 = Bin(i).
Sometimes we want to refer to the string representing machine M without knowing i.
Sometimes we want to think of the set of all i ∈ N and the machines they represent.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is ∅.
Bin(i) denotes the binary representation of i ∈ N .
Mi is the TM described by Bin(i).
Note: 〈Mi〉 = Bin(i).
Sometimes we want to refer to the string representing machine M without knowing i.
Sometimes we want to think of the set of all i ∈ N and the machines they represent.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is ∅.

Bin(i) denotes the binary representation of i ∈ N .
Mi is the TM described by Bin(i).
Note: 〈Mi〉 = Bin(i).
Sometimes we want to refer to the string representing machine M without knowing i.
Sometimes we want to think of the set of all i ∈ N and the machines they represent.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is ∅.
Bin(i) denotes the binary representation of i ∈ N .
Mi is the TM described by Bin(i).

Note: 〈Mi〉 = Bin(i).
Sometimes we want to refer to the string representing machine M without knowing i.
Sometimes we want to think of the set of all i ∈ N and the machines they represent.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.

Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.

Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is ∅.
Bin(i) denotes the binary representation of i ∈ N .
Mi is the TM described by Bin(i).
Note: 〈Mi〉 = Bin(i).
Sometimes we want to refer to the string representing machine M without knowing i.
Sometimes we want to think of the set of all i ∈ N and the machines they represent.

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉

If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.

But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]

[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]

〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)

M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)

False
M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉

〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)

M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)

False
¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An unrecognizable language

LD = {Bin(i) | i ∈ N ∧Mi does not accept Bin(i)}

Theorem

LD is not recognizable.

Suppose M recognizes LD. Consider whether M accepts x = 〈M〉
If it does, then x ∈ LD, because M should only accept strings in the language.
But, if M accepts x = 〈M〉, then, by the definition of LD, x is NOT in the language!

[∃M : M recognizes LD]
[M accepts 〈M〉]
〈M〉 ∈ LD (By definition of “accepts”)
M does not accept 〈M〉 (By definition of LD)
False

M does not accept 〈M〉
〈M〉 /∈ LD (By Definition of “not accept”)
M accepts 〈M〉 (By Definition of LD)
False

¬∃M : M recognizes LD

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]

Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False

M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False

¬∃MU : MU decides LU

An undecidable language

Recall: We can build a universal TM that recognizes the following language:
LU = {〈M〉0x | TM M accepts input x}

Theorem

LU is not decidable

[∃MU : MU decides LU]
Define M∗, which on input 〈M〉, runs MU

(
〈M〉0〈M〉

)
and flips the output bit.

[M∗
(
〈M∗〉

)
= 1]

MU

(
〈M∗〉0〈M∗〉

)
= 0 (By definition of M∗)

M∗
(
〈M∗〉

)
= 0 (By definition of MU)

False
M∗
(
〈M∗〉

)
= 0

MU

(
〈M∗〉0〈M∗〉

)
= 1 (By definition of M∗)

M∗
(
〈M∗〉

)
= 1 (By definition of MU)

False
¬∃MU : MU decides LU

An undecidable language

Behavior of MU , if it were to exist:

〈M1〉 〈M2〉 〈M3〉 〈M4〉

M1 : accept accept reject reject . . . accept

M2 : accept reject reject reject . . . reject

M3 : reject accept reject accept . . . accept

...
...

...
...

...
. . . reject

M∗ : reject accept accept reject . . . ???

...
...

...
...

...
...

. . .



Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.

LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]

Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.

∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False

¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language Lhalt = {〈M〉0x |M(x) terminates }

Theorem

The language Lhalt is undecidable.

We reduce the problem of deciding LU to the problem of deciding Lhalt.
LU = {〈M〉0x | TM M accepts input x}
¬∃MU : MU decides LU

[∃Mhalt : Mhalt decides Lhalt]
Define MU
MU (〈M〉0x) :

1. Simulate Mhalt(〈M〉0x).

2. If it outputs 0, halt and output 0.

3. If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.
∃MU : MU decides LU

False
¬∃Mhalt : Mhalt decides Lhalt

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.

Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]

Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.

M ′ :
I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.

I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.

Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False

¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language L∅ = {〈M〉 |M rejects all strings }

Theorem

The language L∅ is undecidable.

We reduce the problem of deciding Lhalt to the problem of deciding L∅.
Lhalt = {〈M〉0x |M(x) terminates }
¬∃Mhalt : Mhalt decides Lhalt

[∃M∅ : M∅ decides L∅]
Define Mhalt
Mhalt(〈M〉0x) :

1. Write down a description of a TM M ′ that modifies the behavior of M as follows.
M ′ :

I On input y 6= x, reject.
I On input y = x, run M(y) and output whatever it outputs.

2. Run M∅(〈M ′〉). Reverse the value of its output.
Mhalt decides Lhalt

False
¬∃M∅ : M∅ decides L∅

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.

L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]

Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.

M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅

False
¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

Reducing one computation to another

Consider the language LEQ = {〈M1〉0〈M2〉 | L(M1) = L(M2)}

Theorem

The language LEQ is undecidable.

We reduce the problem of deciding L∅ to the problem of deciding LEQ.
L∅ = {〈M〉 |M rejects all strings }
¬∃M∅ : M∅ decides L∅

[∃MEQ : MEQ decides LEQ]
Define M∅
M∅(〈M〉) :

1. Construct the description of a Turing machine M ′ that rejects all strings.

2. Run MEQ(〈M〉, 〈M ′〉), and output whatever it outputs.
M∅ decides L∅
False

¬∃MEQ : MEQ decides LEQ

