Countable sets

Consider the set of even numbers $E=\{0,2,4,6, \ldots\}$.
Are there fewer or greater elements than in the set of natural numbers?

Countable sets

Consider the set of even numbers $E=\{0,2,4,6, \ldots\}$.
Are there fewer or greater elements than in the set of natural numbers?
If a function is both one-to-one and onto, then we say it is bijective, or a correspondence.

Countable sets

Consider the set of even numbers $E=\{0,2,4,6, \ldots\}$.
Are there fewer or greater elements than in the set of natural numbers?
If a function is both one-to-one and onto, then we say it is bijective, or a correspondence.

If a set S has a correspondence with the natural numbers, i.e. $f: \mathcal{N} \rightarrow S$, we say that the set is countable.

Countable sets

Consider the set of even numbers $E=\{0,2,4,6, \ldots\}$.
Are there fewer or greater elements than in the set of natural numbers?
If a function is both one-to-one and onto, then we say it is bijective, or a correspondence.

If a set S has a correspondence with the natural numbers, i.e. $f: \mathcal{N} \rightarrow S$, we say that the set is countable.
$f(a)=2 a$ is a correspondence, $f: \mathcal{N} \rightarrow E$.

Countable sets

Consider the set of even numbers $E=\{0,2,4,6, \ldots\}$.
Are there fewer or greater elements than in the set of natural numbers?
If a function is both one-to-one and onto, then we say it is bijective, or a correspondence.

If a set S has a correspondence with the natural numbers, i.e. $f: \mathcal{N} \rightarrow S$, we say that the set is countable.
$f(a)=2 a$ is a correspondence, $f: \mathcal{N} \rightarrow E$.
Any subset of \mathcal{N} is countable: sort the subset, and map the i th number in \mathcal{N} to the i th element in the sorting.

The set of all TMs is countable! Each one can be encoded as a unique integer.
Sort the TM descriptions, and map from the naturals.

The set of all languages is uncountable
ω-string is a string of infinite length over $\{0,1\}$.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence. Let ω_{i} by the ω-string representing the i th language in the sorted list.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:

$$
[j \in \mathcal{N}]
$$

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:
$[j \in \mathcal{N}]$
[$\bar{\omega}$ is the j th item in the list]

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:
$[j \in \mathcal{N}]$
[$\bar{\omega}$ is the j th item in the list]
$\bar{\omega}$ differs from ω_{j} in the j th bit

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:
$[j \in \mathcal{N}]$
[$\bar{\omega}$ is the j th item in the list]
$\bar{\omega}$ differs from ω_{j} in the j th bit False

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:
$[j \in \mathcal{N}]$
[$\bar{\omega}$ is the j th item in the list]
$\bar{\omega}$ differs from ω_{j} in the j th bit False
$\bar{\omega}$ is not the j th item in the list.

The set of all languages is uncountable

ω-string is a string of infinite length over $\{0,1\}$.
A finite length string can be regarded as a unique integer:
use a binary representation of the same string.
A language can be seen as a set of integers.
Represent a language using an ω-string:
The i th bit is 1 iff the string corresponding to integer i is in the language.
Example: for $L=\{1,11,111\}, \omega=10100010000000 \cdots$

Claim

Let \mathcal{L} be the set of all languages. \mathcal{L} is uncountable
Suppose \mathcal{L} were countable.
Then there is a correspondence $f: \mathcal{N} \rightarrow \mathcal{L}$.
Sort the elements of \mathcal{L} according to the correspondence.
Let ω_{i} by the ω-string representing the i th language in the sorted list.
Define $\bar{\omega}$ as follows. The i th bit of $\bar{\omega}= \begin{cases}0 & \text { if the } i \text { th bit of } \omega_{i}=1 \\ 1, & \text { if the } i \text { th bit of } \omega_{i}=0\end{cases}$
$\bar{\omega}$ does not appear in this sorted list:
$[j \in \mathcal{N}]$
[$\bar{\omega}$ is the j th item in the list]
$\bar{\omega}$ differs from ω_{j} in the j th bit False
$\bar{\omega}$ is not the j th item in the list.
$\forall j \in \mathcal{N}: \bar{\omega}$ is not the j th item in the list.

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.
Suppose otherwise, towards a contradiction:
$[\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.
Suppose otherwise, towards a contradiction:
[$\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]
Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes it.

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.
Suppose otherwise, towards a contradiction:
[$\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]
Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes it.

Sort the resulting list of integers.

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[$\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]
Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes it.

Sort the resulting list of integers.
This yields a correspondence between $\mathcal{N} \rightarrow \mathcal{L}$

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[$\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]
Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes it.

Sort the resulting list of integers.
This yields a correspondence between $\mathcal{N} \rightarrow \mathcal{L}$
\mathcal{L} is countable.

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[$\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]
Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes it.

Sort the resulting list of integers.
This yields a correspondence between $\mathcal{N} \rightarrow \mathcal{L}$
\mathcal{L} is countable.
False

Some languages are not recognizable

Theorem

There exists a language $L \in \mathcal{L}$ that is not recognized by any Turing Machine.

Suppose otherwise, towards a contradiction:
[$\forall L \in \mathcal{L}: L$ is recognized by some Turing Machine]
Assign to each $L \in \mathcal{L}$ the smallest integer corresponding to a TM that recognizes it.

Sort the resulting list of integers.
This yields a correspondence between $\mathcal{N} \rightarrow \mathcal{L}$
\mathcal{L} is countable.
False
$\exists L \in \mathcal{L}: L$ is not recognized by any TM.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string. Interpret this binary string as an integer.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.
Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.
Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.
Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is \emptyset.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.
Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.
Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is \emptyset.
$\operatorname{Bin}(i)$ denotes the binary representation of $i \in \mathcal{N}$.
M_{i} is the TM described by $\operatorname{Bin}(i)$.

An unrecognizable language: Notation

Recall, every TM can be described using an integer:
Write the transition function out as a binary string.
Interpret this binary string as an integer.
Does every integer represent a valid TM? No!
We can write it in binary, but it might not correctly encode δ.
Nevertheless, we will consider every integer as representing a TM.
If it does not correctly encode a TM, we will say the language of that TM is \emptyset.
$\operatorname{Bin}(i)$ denotes the binary representation of $i \in \mathcal{N}$.
M_{i} is the TM described by $\operatorname{Bin}(i)$.
Note: $\left\langle M_{i}\right\rangle=\operatorname{Bin}(i)$.
Sometimes we want to refer to the string representing machine M without knowing i.
Sometimes we want to think of the set of all $i \in \mathcal{N}$ and the machines they represent.

An unrecognizable language

$$
L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i} \text { does not accept } \operatorname{Bin}(i)\right\}
$$

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$

An unrecognizable language

$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.

An unrecognizable language

$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language. But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

An unrecognizable language

$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language. But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!
[$\exists M: M$ recognizes $\left.L_{D}\right]$

An unrecognizable language

$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language. But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

$$
\begin{gathered}
{\left[\exists M: M \text { recognizes } L_{D}\right]} \\
{[M \text { accepts }\langle M\rangle]}
\end{gathered}
$$

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language. But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.
But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
```



```
    M does not accept }\langleM\rangle\quad\mathrm{ (By definition of }\mp@subsup{L}{D}{}\mathrm{ )
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.
But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
    M does not accept \langleM\rangle (By definition of LL}\mp@subsup{L}{D}{}\mathrm{ )
    False
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.
But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
    M does not accept }\langleM\rangle\quad\mathrm{ (By definition of }\mp@subsup{L}{D}{}\mathrm{ )
    False
M does not accept \langleM\rangle
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.
But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
    M does not accept \langleM\rangle (By definition of }\mp@subsup{L}{D}{}\mathrm{ )
    False
M does not accept \langleM\rangle
<M\rangle\not\in\mp@subsup{L}{D}{}\quad (By Definition of "not accept")
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.
But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
    M does not accept \langleM\rangle (By definition of }\mp@subsup{L}{D}{}\mathrm{ )
    False
M does not accept \langleM\rangle
<M\rangle\not\in\mp@subsup{L}{D}{}
M accepts }\langleM\rangle\quad\mathrm{ (By Definition of }\mp@subsup{L}{D}{}\mathrm{ )
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language.
But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
    M does not accept \langleM\rangle (By definition of }\mp@subsup{L}{D}{}\mathrm{ )
    False
M does not accept \langleM\rangle
<M\rangle\not\in\mp@subsup{L}{D}{}\quad (By Definition of "not accept")
M accepts }\langleM\rangle\quad(By Definition of LLD
False
```

An unrecognizable language
$L_{D}=\left\{\operatorname{Bin}(i) \mid i \in \mathcal{N} \wedge M_{i}\right.$ does not accept $\left.\operatorname{Bin}(i)\right\}$

Theorem

L_{D} is not recognizable.
Suppose M recognizes L_{D}. Consider whether M accepts $x=\langle M\rangle$
If it does, then $x \in L_{D}$, because M should only accept strings in the language. But, if M accepts $x=\langle M\rangle$, then, by the definition of L_{D}, x is NOT in the language!

```
[ }\existsM:M\mathrm{ recognizes }\mp@subsup{L}{D}{}
    [M accepts }\langleM\rangle\mathrm{ ]
    \langleM\rangle\in\mp@subsup{L}{D}{}\quad (By definition of "accepts")
    M does not accept \langleM\rangle (By definition of }\mp@subsup{L}{D}{}\mathrm{ )
    False
M does not accept \langleM\rangle
<M\rangle\not\in\mp@subsup{L}{D}{}\quad (By Definition of "not accept")
M accepts }\langleM\rangle\quad\mathrm{ (By Definition of }\mp@subsup{L}{D}{}\mathrm{ )
False
\neg\existsM:M recognizes }\mp@subsup{L}{D}{
```


An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem
L_{U} is not decidable

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

$$
\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]
$$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

$$
\begin{aligned}
& {\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]} \\
& \left.M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 \quad \text { (By definition of } M^{*}\right)
\end{aligned}
$$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

$$
\begin{array}{ll}
{\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]} & \\
M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 & \text { (By definition of } \left.M^{*}\right) \\
M^{*}\left(\left\langle M^{*}\right\rangle\right)=0 & \text { (By definition of } \left.M_{U}\right)
\end{array}
$$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

$$
\begin{array}{ll}
{\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]} & \\
M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 & \text { (By definition of } \left.M^{*}\right) \\
M^{*}\left(\left\langle M^{*}\right\rangle\right)=0 & \text { (By definition of } \left.M_{U}\right) \\
\text { False } &
\end{array}
$$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

$$
\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]
$$

$$
\left.M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 \quad \text { (By definition of } M^{*}\right)
$$

$$
M^{*}\left(\left\langle M^{*}\right\rangle\right)=0
$$

(By definition of M_{U})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit. $\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]$
$M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 \quad$ (By definition of M^{*})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
(By definition of M_{U})
False
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
$M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=1 \quad$ (By definition of M^{*})

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit.

$$
\begin{array}{ll}
{\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]} & \\
M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 & \text { (By definition of } \left.M^{*}\right) \\
M^{*}\left(\left\langle M^{*}\right\rangle\right)=0 & \text { (By definition of } \left.M_{U}\right)
\end{array}
$$

$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
$M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=1$
(By definition of M^{*})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=1$
(By definition of M_{U})

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit. $\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]$
$M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 \quad$ (By definition of M^{*})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
(By definition of M_{U})
False
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
$M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=1$
(By definition of M^{*})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=1$
False

An undecidable language

Recall: We can build a universal TM that recognizes the following language: $L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$

Theorem

L_{U} is not decidable
$\left[\exists M_{U}: M_{U}\right.$ decides $\left.L_{U}\right]$
Define M^{*}, which on input $\langle M\rangle$, runs $M_{U}(\langle M\rangle 0\langle M\rangle)$ and flips the output bit. $\left[M^{*}\left(\left\langle M^{*}\right\rangle\right)=1\right]$ $M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=0 \quad$ (By definition of M^{*})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
(By definition of M_{U})
False
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=0$
$M_{U}\left(\left\langle M^{*}\right\rangle 0\left\langle M^{*}\right\rangle\right)=1$
(By definition of M^{*})
$M^{*}\left(\left\langle M^{*}\right\rangle\right)=1$
(By definition of M_{U})
False
$\neg \exists M_{U}: M_{U}$ decides L_{U}

An undecidable language

Behavior of M_{U}, if it were to exist:

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
$\left[\exists M_{\text {halt }}: M_{\text {halt }}\right.$ decides $\left.L_{\text {halt }}\right]$

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

1. Simulate $M_{\text {halt }}(\langle M\rangle 0 x)$.

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

1. Simulate $M_{\text {halt }}(\langle M\rangle 0 x)$.
2. If it outputs 0 , halt and output 0 .

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

1. Simulate $M_{\text {halt }}(\langle M\rangle 0 x)$.
2. If it outputs 0 , halt and output 0 .
3. If it outputs 1 , simulate M on input x until it halts. Output whatever M outputs.

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

1. Simulate $M_{\text {halt }}(\langle M\rangle 0 x)$.
2. If it outputs 0 , halt and output 0 .
3. If it outputs 1 , simulate M on input x until it halts. Output whatever M outputs. $\exists M_{U}: M_{U}$ decides L_{U}

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

1. Simulate $M_{\text {halt }}(\langle M\rangle 0 x)$.
2. If it outputs 0 , halt and output 0 .
3. If it outputs 1 , simulate M on input x until it halts. Output whatever M outputs. $\exists M_{U}: M_{U}$ decides L_{U}
False

Reducing one computation to another

Consider the language $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$

Theorem

The language $L_{\text {halt }}$ is undecidable.

We reduce the problem of deciding L_{U} to the problem of deciding $L_{\text {halt }}$.
$L_{U}=\{\langle M\rangle 0 x \mid$ TM M accepts input $x\}$
$\neg \exists M_{U}: M_{U}$ decides L_{U}
[$\exists M_{\text {halt }}: M_{\text {halt }}$ decides $\left.L_{\text {halt }}\right]$
Define M_{U}
$\underline{M_{U}(\langle M\rangle 0 x):}$

1. Simulate $M_{\text {halt }}(\langle M\rangle 0 x)$.
2. If it outputs 0 , halt and output 0 .
3. If it outputs 1 , simulate M on input x until it halts. Output whatever M outputs. $\exists M_{U}: M_{U}$ decides L_{U}
False
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}.

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
[$\exists M_{\emptyset}: M_{\emptyset}$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$ $\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows.

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

- On input $y \neq x$, reject.

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$M_{\text {halt }}(\langle M\rangle 0 x):$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

- On input $y \neq x$, reject.
- On input $y=x$, run $M(y)$ and output whatever it outputs.

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$M_{\text {halt }}(\langle M\rangle 0 x):$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

- On input $y \neq x$, reject.
- On input $y=x$, run $M(y)$ and output whatever it outputs.

2. Run $M_{\emptyset}\left(\left\langle M^{\prime}\right\rangle\right)$. Reverse the value of its output.

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

- On input $y \neq x$, reject.
- On input $y=x$, run $M(y)$ and output whatever it outputs.

2. Run $M_{\emptyset}\left(\left\langle M^{\prime}\right\rangle\right)$. Reverse the value of its output. $M_{\text {halt }}$ decides $L_{\text {halt }}$

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

- On input $y \neq x$, reject.
- On input $y=x$, run $M(y)$ and output whatever it outputs.

2. Run $M_{\emptyset}\left(\left\langle M^{\prime}\right\rangle\right)$. Reverse the value of its output.
$M_{\text {halt }}$ decides $L_{\text {halt }}$
False

Reducing one computation to another

Consider the language $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$

Theorem

The language L_{\emptyset} is undecidable.

We reduce the problem of deciding $L_{\text {halt }}$ to the problem of deciding L_{\emptyset}. $L_{\text {halt }}=\{\langle M\rangle 0 x \mid M(x)$ terminates $\}$
$\neg \exists M_{\text {halt }}: M_{\text {halt }}$ decides $L_{\text {halt }}$
$\left[\exists M_{\emptyset}: M_{\emptyset}\right.$ decides $\left.L_{\emptyset}\right]$
Define $M_{\text {halt }}$
$\underline{M_{\text {halt }}(\langle M\rangle 0 x):}$

1. Write down a description of a TM M^{\prime} that modifies the behavior of M as follows. M^{\prime} :

- On input $y \neq x$, reject.
- On input $y=x$, run $M(y)$ and output whatever it outputs.

2. Run $M_{\emptyset}\left(\left\langle M^{\prime}\right\rangle\right)$. Reverse the value of its output.
$M_{\text {halt }}$ decides $L_{\text {halt }}$
False
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}

Reducing one computation to another
Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Reducing one computation to another
Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}. $L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
$\left[\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}\right.$ decides L_{EQ}]

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
[$\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}$ decides L_{EQ}]
Define M_{\emptyset}
$\underline{M_{\emptyset}(\langle M\rangle):}$

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
$\left[\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}\right.$ decides L_{EQ}]
Define M_{\emptyset}
$M_{\emptyset}(\langle M\rangle)$:

1. Construct the description of a Turing machine M^{\prime} that rejects all strings.

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
$\left[\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}\right.$ decides L_{EQ}]
Define M_{\emptyset}
$\underline{M_{\emptyset}(\langle M\rangle):}$

1. Construct the description of a Turing machine M^{\prime} that rejects all strings.
2. Run $M_{\mathrm{EQ}}\left(\langle M\rangle,\left\langle M^{\prime}\right\rangle\right)$, and output whatever it outputs.

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
$\left[\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}\right.$ decides L_{EQ}]
Define M_{\emptyset}
$\underline{M_{\emptyset}(\langle M\rangle):}$

1. Construct the description of a Turing machine M^{\prime} that rejects all strings.
2. Run $M_{\mathrm{EQ}}\left(\langle M\rangle,\left\langle M^{\prime}\right\rangle\right)$, and output whatever it outputs.
M_{\emptyset} decides L_{\emptyset}

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
[$\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}$ decides L_{EQ}]
Define M_{\emptyset}
$\underline{M_{\emptyset}(\langle M\rangle):}$

1. Construct the description of a Turing machine M^{\prime} that rejects all strings.
2. Run $M_{\mathrm{EQ}}\left(\langle M\rangle,\left\langle M^{\prime}\right\rangle\right)$, and output whatever it outputs.
M_{\emptyset} decides L_{\emptyset}
False

Reducing one computation to another

Consider the language $L_{\mathrm{EQ}}=\left\{\left\langle M_{1}\right\rangle 0\left\langle M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Theorem

The language L_{EQ} is undecidable.

We reduce the problem of deciding L_{\emptyset} to the problem of deciding L_{EQ}.
$L_{\emptyset}=\{\langle M\rangle \mid M$ rejects all strings $\}$
$\neg \exists M_{\emptyset}: M_{\emptyset}$ decides L_{\emptyset}
[$\exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}$ decides L_{EQ}]
Define M_{\emptyset}
$\underline{M_{\emptyset}(\langle M\rangle):}$

1. Construct the description of a Turing machine M^{\prime} that rejects all strings.
2. Run $M_{\mathrm{EQ}}\left(\langle M\rangle,\left\langle M^{\prime}\right\rangle\right)$, and output whatever it outputs.
M_{\emptyset} decides L_{\emptyset} False
$\neg \exists M_{\mathrm{EQ}}: M_{\mathrm{EQ}}$ decides L_{EQ}
