CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

```
Fixed-Length CRHF
Gen(\mp@subsup{1}{}{n}): Run (G,q,g)\leftarrow\mathcal{G(1'). Select }h\leftarrowG.
    Output s=(G,q,g,h).
H
```


CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

```
Fixed-Length CRHF
Gen(\mp@subsup{1}{}{n}): Run (G,q,g)\leftarrow\mathcal{G}(\mp@subsup{1}{}{n}). Select }h\leftarrowG
    Output s=(G,q,g,h).
H
```

Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen $\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.
Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash- Coll $_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen $\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash- Coll $_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.
\mathcal{A}_{r} receives challenge (G, q, g, h) and has to find \times such that $g^{x}=h$.

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

$\operatorname{Gen}\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.
Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash- Coll $_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.
\mathcal{A}_{r} receives challenge (G, q, g, h) and has to find x such that $g^{x}=h$.
\mathcal{A}_{r} sends $s=(G, q, g, h)$ to \mathcal{A}, who returns $x=\left(x_{1}, x_{2}\right)$ and $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)$.

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen $\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.
Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash- Coll $_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.
\mathcal{A}_{r} receives challenge (G, q, g, h) and has to find x such that $g^{x}=h$.
\mathcal{A}_{r} sends $s=(G, q, g, h)$ to \mathcal{A}, who returns $x=\left(x_{1}, x_{2}\right)$ and $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)$.
If $h=1$, return $x=0$
Otherwise, return $\left[\left(x_{1}-\hat{x}_{1}\right)\left(\hat{x}_{2}-x_{2}\right)^{-1} \bmod q\right]$.

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen $\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.
Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash-Coll ${ }_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.
\mathcal{A}_{r} receives challenge (G, q, g, h) and has to find x such that $g^{x}=h$.
\mathcal{A}_{r} sends $s=(G, q, g, h)$ to \mathcal{A}, who returns $x=\left(x_{1}, x_{2}\right)$ and $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)$.
If $h=1$, return $x=0$
Otherwise, return $\left[\left(x_{1}-\hat{x}_{1}\right)\left(\hat{x}_{2}-x_{2}\right)^{-1} \bmod q\right]$.
Analysis:

$$
\begin{aligned}
H^{s}\left(x_{1}, x_{2}\right) & =H^{s}\left(\hat{x}_{1}, \hat{x}_{2}\right) \\
& \Rightarrow g^{x_{1}} h^{x_{2}}=g^{\hat{x}_{1}} h^{\hat{x}_{2}}
\end{aligned}
$$

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen $\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash-Coll ${ }_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.
\mathcal{A}_{r} receives challenge (G, q, g, h) and has to find x such that $g^{x}=h$.
\mathcal{A}_{r} sends $s=(G, q, g, h)$ to \mathcal{A}, who returns $x=\left(x_{1}, x_{2}\right)$ and $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)$.
If $h=1$, return $x=0$
Otherwise, return $\left[\left(x_{1}-\hat{x}_{1}\right)\left(\hat{x}_{2}-x_{2}\right)^{-1} \bmod q\right]$.
Analysis:

$$
\begin{aligned}
H^{s}\left(x_{1}, x_{2}\right) & =H^{s}\left(\hat{x}_{1}, \hat{x}_{2}\right) \\
& \Rightarrow g^{x_{1}} h^{x_{2}}=g^{\hat{x}_{1}} h^{\hat{x}_{2}} \\
& \Rightarrow g^{\left(x_{1}-\hat{x}_{1}\right)}=h^{\left(\hat{x}_{2}-x_{2}\right)}
\end{aligned}
$$

CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

$\operatorname{Gen}\left(1^{n}\right)$: Run $(G, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Select $h \leftarrow G$.
Output $s=(G, q, g, h)$.
$H^{s}\left(x_{1}, x_{2}\right)$: on input $\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$, output $g^{x_{1}} h^{x_{2}} \in \mathcal{G}$
Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi=($ Gen, H) as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash-Coll ${ }_{\mathcal{A}, \Pi}(n)=\epsilon(n)$. We'll show \mathcal{A}_{r} that solves the discrete logarithm problem with the same probability.
\mathcal{A}_{r} receives challenge (G, q, g, h) and has to find x such that $g^{x}=h$.
\mathcal{A}_{r} sends $s=(G, q, g, h)$ to \mathcal{A}, who returns $x=\left(x_{1}, x_{2}\right)$ and $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)$.
If $h=1$, return $x=0$
Otherwise, return $\left[\left(x_{1}-\hat{x}_{1}\right)\left(\hat{x}_{2}-x_{2}\right)^{-1} \bmod q\right]$.
Analysis:

$$
\begin{aligned}
H^{s}\left(x_{1}, x_{2}\right) & =H^{s}\left(\hat{x}_{1}, \hat{x}_{2}\right) \\
& \Rightarrow g^{x_{1}} h^{x_{2}}=g^{\hat{x}_{1}} h^{\hat{x}_{2}} \\
& \Rightarrow g^{\left(x_{1}-\hat{x}_{1}\right)}=h^{\left(\hat{x}_{2}-x_{2}\right)} \\
& \Rightarrow g^{\left(x_{1}-\hat{x}_{1}\right)\left(\hat{x}_{2}-x_{2}\right)^{-1}}=h^{\left(\hat{x}_{2}-x_{2}\right)\left(\hat{x}_{2}-x_{2}\right)^{-1}}=h^{1}=h
\end{aligned}
$$

