CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1™): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G




CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.

A, receives challenge (G, q, g, h) and has to find x such that g*¥ = h.



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.

A, receives challenge (G, q, g, h) and has to find x such that g*¥ = h.
A, sends s = (G, q,g, h) to A, who returns x = (x1,x2) and & = (%1, %2).



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.

A, receives challenge (G, q, g, h) and has to find x such that g*¥ = h.

A, sends s = (G, q,g, h) to A, who returns x = (x1,x2) and & = (%1, %2).
If h=1, return x =0

Otherwise, return [(x; — %1)(%2 — x2) ™! mod q].



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.

A, receives challenge (G, q, g, h) and has to find x such that g*¥ = h.

A, sends s = (G, q,g, h) to A, who returns x = (x1,x2) and & = (%1, %2).
If h=1, return x =0

Otherwise, return [(x; — %1)(%2 — x2) ™! mod q].

Analysis:
H*(x1,x2) = H®(%1, %2)
= gxl e = gfq h>?2



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.

A, receives challenge (G, q, g, h) and has to find x such that g*¥ = h.

A, sends s = (G, q,g, h) to A, who returns x = (x1,x2) and & = (%1, %2).
If h=1, return x =0

Otherwise, return [(x; — %1)(%2 — x2) ™! mod q].

Analysis:
H*(x1,x2) = H®(%1, %2)
= gxl e = gfq h>?2

N g(X1—>?1) — pla—x2)



CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1"): Run (G, q,g) < G(1"). Select h + G.
Output s = (G, q, g, h).
H?(x1,x2): on input (x1,x2) € Zg X Zg, output gXth2 € G

Theorem: If the discrete logarithm problem is hard relative to G, then the
construction above is a fixed-length, collision resistant hash function.

Proof idea: Let M = (Gen, H) as described above. Suppose there exists a p.p.t.
adversary A such that Hash-Coll 4 1(n) = €(n). We'll show A, that solves the discrete
logarithm problem with the same probability.

A, receives challenge (G, q, g, h) and has to find x such that g*¥ = h.

A, sends s = (G, q,g, h) to A, who returns x = (x1,x2) and & = (%1, %2).
If h=1, return x =0

Otherwise, return [(x; — %1)(%2 — x2) ™! mod q].

Analysis:
H*(x1,x2) = H®(%1, %2)
= g pe = gl p
= gla—51) = pl—x)

= g(lefq)(?z*)Q)_l — /-,(f<2*><2)(?2*><2)_1 —nl=h



