
Hash Functions

A hash function is a family of functions that:

I are length reducing (the output is smaller than the input),

I and for which it is hard to find collisions.

(Gen, h)
Gen(1n): Output key s.
hs(x): on input x ∈ {0, 1}∗, output y ∈ {0, 1}`(n)

For fixed-length hash functions, x ∈ {0, 1}`′(n), and `′(n) > `(n).

Security:
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Unkeyed Hash Functions in practice

In practice, we most commonly use SHA-256 or its recent replacement, SHA-3.

These are unkeyed hash functions.
They’ve through a rigorous trial-by-fire, and we believe that nobody can find a single
collision.
However, what does that mean, formally?!

Consider the following adversary:
A1,2 :

Output 1, 2.
Most likely, A1,2 does not find a collision.

Consider the following adversary:
A1,3 :

Output 1, 3.
Most likely, A1,3 does not find a collision.

Consider the following adversary:
Ai,j :

Output i , j .
For some i , j , Ai,j is a polynomial time adversary that outputs a collision!!

However, if Ai,j were given a randomly chose key s, it is very unlikely that i , j
constitute a collision for the specific hash function hs .
Put another way: we believe there is no adversary that can win for many keys
simultaneously. So choosing a random key is safe.
In practice, we don’t know of any adversaries that can find any collision in SHA-256 or
SHA-3, so we use these unkeyed hash functions anyway.
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Do hash outputs look random?

We shouldn’t confuse pseudorandom functions with hash functions!

The security definition only says that it is hard to find collisions. It does not say that
the output looks like a random string.

Let (Gen, h) be a collision resistant hash function.

Define (Gen, ĥ):

ĥs(x) = 1||hs(x)

Exercise: prove that if (Gen, h) is collision resistant, then (Gen, ĥ) is collision resistant.

Clearly the output of ĥ is not random looking!
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ĥs(x) = 1||hs(x)

Exercise: prove that if (Gen, h) is collision resistant, then (Gen, ĥ) is collision resistant.
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Weaker Security Notions

A weaker security notion, called second pre-image resistance, or target collision
resistance, is implied by collision resistance.

Second Preimage Resistance:
A is given random key s, and a random input x .
A has to output x̂ such that hs(x̂) = hs(x).

Clearly if A can win at this game, there exists an adversary Â that can win at the
collision resistant game.
Â can simply sample x itself, run A to get x̂ , and output collision x , x̂ .

Preimage Resistance:
A is given a random key s and a random output y .
A has to output some x such that hs(x) = y .

Claim: If A can win at this game, then there exists an adversary Â that can win at
the second preimage resistance game.
Â is given s and x .
It computes y = hs(x), and gives s, y to A.
A returns x̂ such that hs(x̂) = y . If x̂ 6= x , Â outputs x̂ and wins.

Pr[x̂ 6= x] = |h−1(y)|−1

|h−1(y)|
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Â can simply sample x itself, run A to get x̂ , and output collision x , x̂ .

Preimage Resistance:
A is given a random key s and a random output y .
A has to output some x such that hs(x) = y .

Claim: If A can win at this game, then there exists an adversary Â that can win at
the second preimage resistance game.
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