

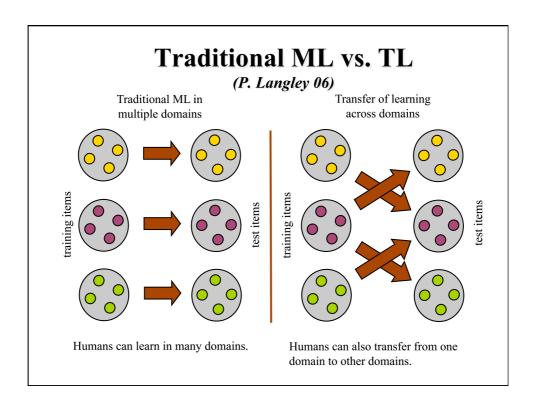
Transfer Learning: Definition

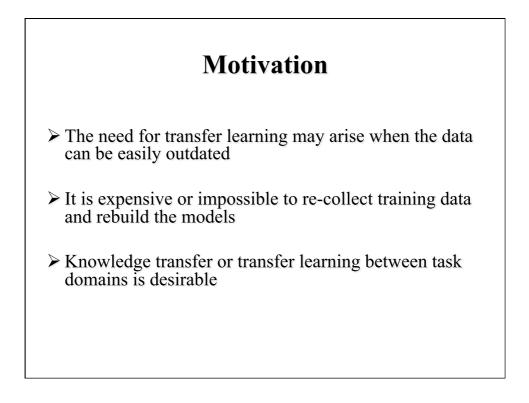
Transfer Learning (TL):

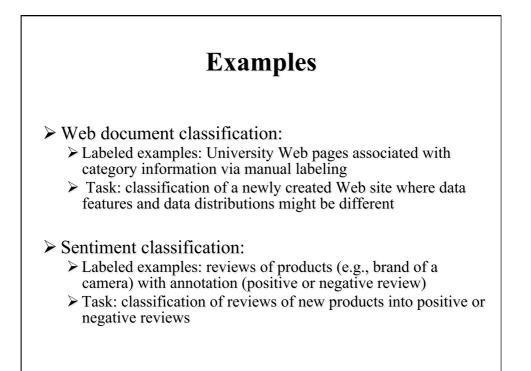
The ability of a system to recognize and apply knowledge and skills learned in previous tasks to novel tasks (in new domains)

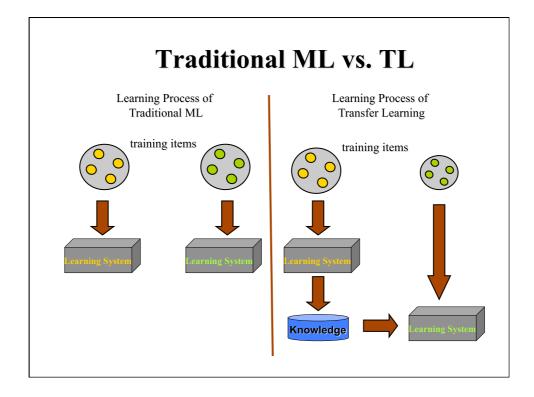
It is motivated by human learning. People can often transfer knowledge learnt previously to novel situations

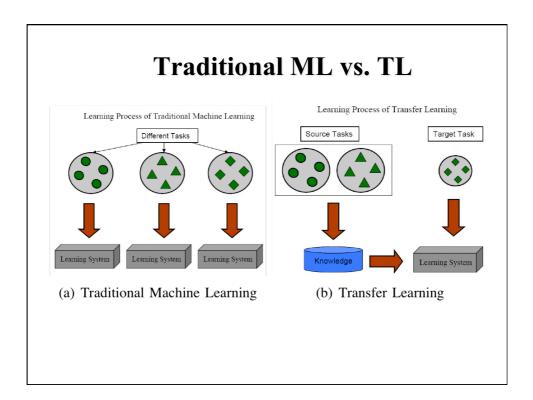
- ✓ Chess → Checkers
- ✓ Mathematics \rightarrow Computer Science
- ✓ Table Tennis → Tennis









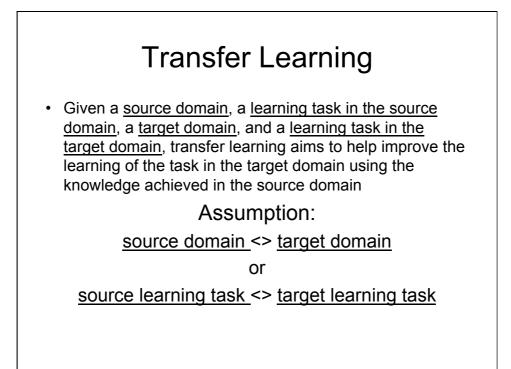


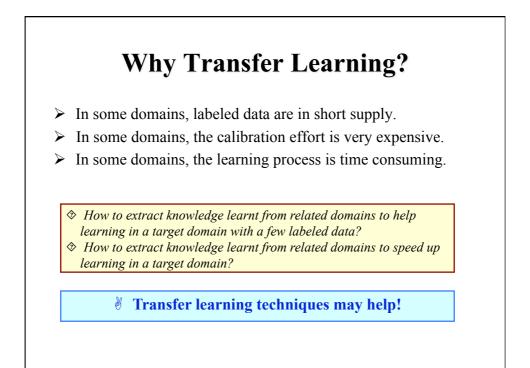
	Notation
Domain:	
It consists of two com	ponents: A feature space $ \mathcal{X} , $ a marginal distribution
$\mathcal{P}(X)$, where $X =$	$\{x_1, x_2, \dots, x_n\} \in \mathcal{X}$
In general, if two do or different marginal	mains are different, then they may have different feature space distributions.
Task:	
Given a specific doma	ain and label space ${\mathcal Y}$, for each x_i in the domain, to
predict its correspond	ding label y_i , where $y_i \in \mathcal{Y}$
predict its correspond	ks are different, then they may have different label spaces or

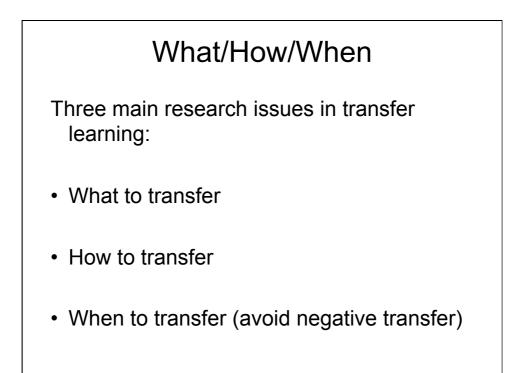
Notation

In many cases, two domains and two tasks are considered:

Source domain: $\mathcal{P}(X_S), \text{ where } X_S = \{x_{S_1}, x_{S_2}, ..., x_{S_{n_S}}\} \in \mathcal{X}_S$ Task in the source domain: $\mathcal{P}(Y_S | X_S), \text{ where } Y_S = \{y_{S_1}, y_{S_2}, ..., y_{S_{n_S}}\} \text{ and } y_{S_i} \in \mathcal{Y}_S$ Target domain: $\mathcal{P}(X_T), \text{ where } X_T = \{x_{T_1}, x_{T_2}, ..., x_{T_{n_T}}\} \in \mathcal{X}_T$ Task in the target domain $\mathcal{P}(Y_T | X_T), \text{ where } Y_T = \{y_{T_1}, y_{T_2}, ..., y_{T_{n_T}}\} \text{ and } y_{T_i} \in \mathcal{Y}_T$

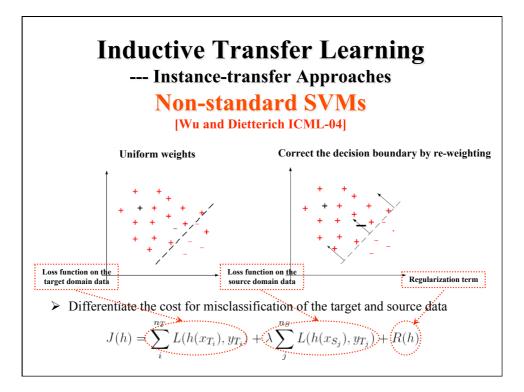


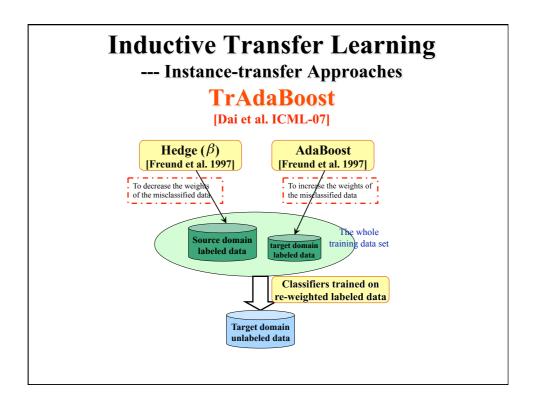


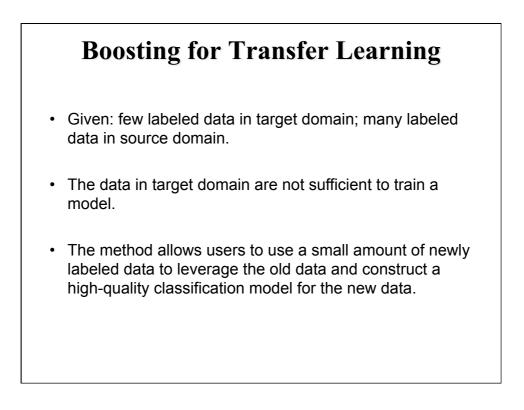


Inductive Transfer Learning Instance-transfer Approaches

- Assumption: the source domain and target domain data use exactly the same features and labels.
- Motivation: Although the source domain data can not be reused directly, there are some parts of the data that can still be reused by re-weighting.
- Main Idea: Discriminatively adjust weighs of data in the source domain for use in the target domain.





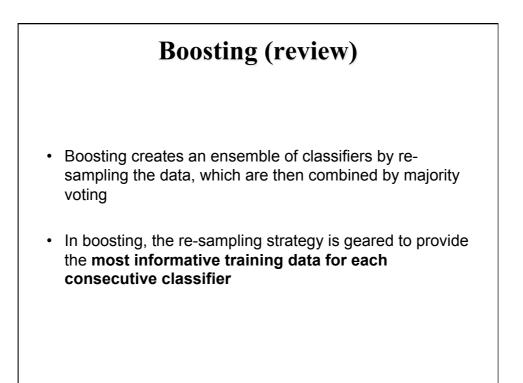


Boosting for Transfer Learning

- Which old data are useful for the target domain?
- Although training data in source domain are out-dated, parts of the data can still be reused in training a classifier for the new data.
- Idea: leverage the training data in target domain to vote on the usefulness of each of the training data in source domain.

Boosting for Transfer Learning

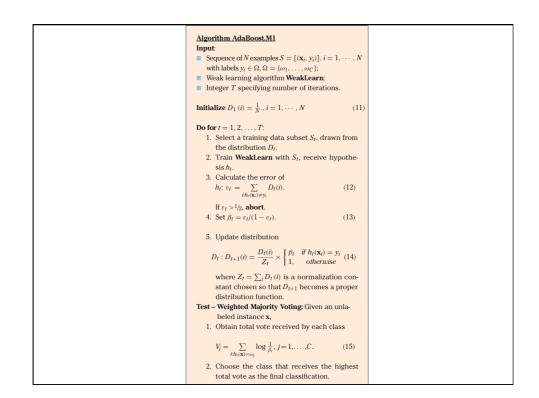
- **Same-distribution training data**: training data in target domain. They have the same distribution as test data.
- **Diff-distribution training data**: training data in source domain. They may have a different distribution from test data.
- <u>Task</u>: use boosting to filter out the diff-distribution training data that are very different from the same-distribution data by automatically adjusting the weights of training instances. Use remaining diff-distribution data as additional training instances.

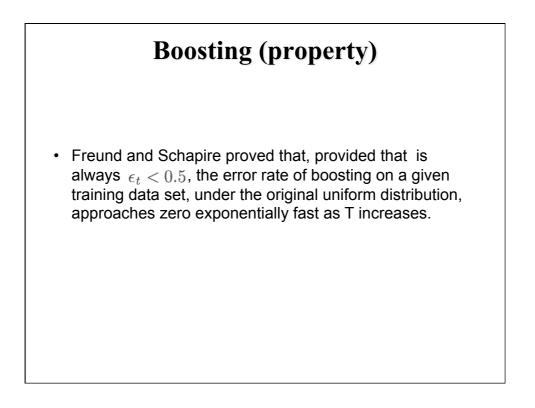


Boosting (Adaboost.M1) Freund and Schapire, 1996

- Generates a set of classifiers, and combines them through weighted majority voting of the classes predicted by the individual classifiers
- Classifiers are trained using instances drawn from an iteratively updated distribution of the training data
- The distribution ensures that instances misclassified by the previous classifier are more likely to be included in the training data of the next classifier
- Thus, consecutive classifiers' training data are more geared towards increasingly hard-to-classify instances

2/22/10





Boosting (property)

• Thus, a succession of weak classifiers can be boosted to a strong classifier that is at least as accurate as, and usually more accurate than, the best weak classifier on the training data.

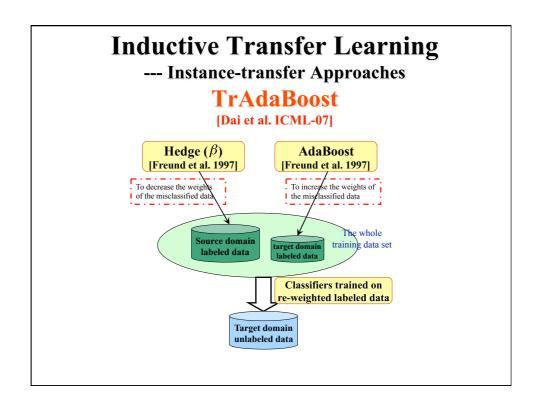
Boosting for Transfer Learning

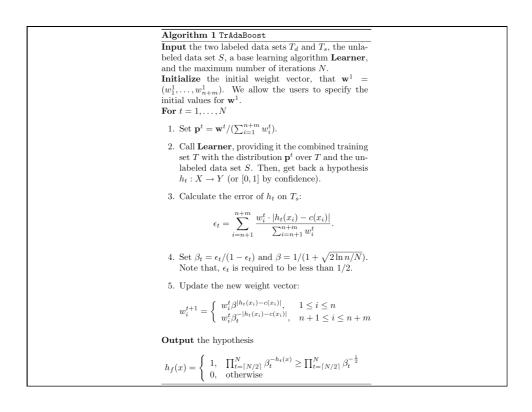
Notation:

- T_d : diff-distribution training data (size n)
- T_s : same-distribution training data (size m)
- $T = \{(x_i, y_i)\}$: combined training set (size n+m)

$$x_i = \begin{cases} x_i^d, & i = 1, \cdots, n \\ x_i^s, & i = n+1, \cdots, n+m \end{cases}$$

• Train a classifier $\hat{c}: X \to Y$ that minimizes prediction error on the unlabeled data set S. We assume $Y \in \{0,1\}$





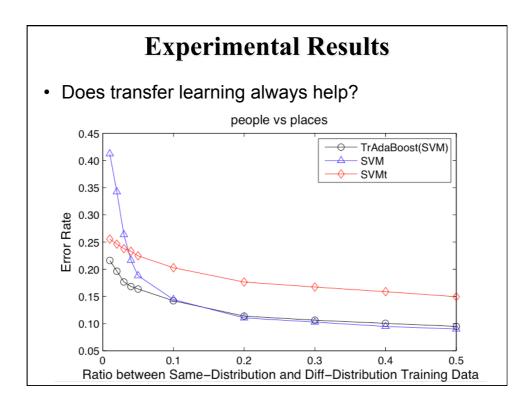
Datasets. 20 New	sgroups, SRAA	, Reute	ers-21578	
Data Set	KL-divergence	$\begin{array}{c c} & \text{Size} \\ \hline & T_d \\ \hline & T_s \cup S \\ \hline \end{array}$		
rec vs talk	1.102	3,669	3,561	
rec vs sci	1.021	3,961	3,965	
sci vs talk	0.854	3,374	3,828	
auto vs aviation	1.126	8,000	8,000	
real vs simulated	1.048	8,000	8,000	
orgs vs people	0.303	1,016	1,046	
orgs vs places	0.329	1,079	1,080	
people vs places	0.307	1,239	1,210	
edible vs poisonous	1.315	4,608	3,516	
$D_{\kappa L}$	$P \parallel Q) = \sum_{i} P(i) \log \frac{H}{Q}$	$\frac{P(i)}{Q(i)}$		

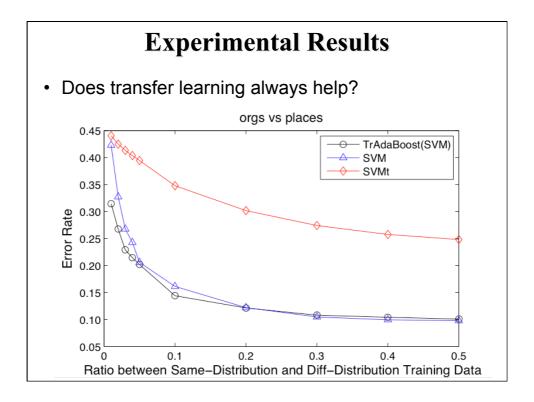
Experimental Evaluation Baseline methods 				
Baseline	Traini labeled	ng Data unlabeled	Test Data	Basic Learner
SVM	T_s	Ø	S	SVM
SVMt	$T_s \cup T_d$	Ø	S	$_{\rm SVM}$
TSVM	T_s	S	S	TSVM
TSVMt	$T_s \cup T_d$	S	S	TSVM

Experimental Results					
Error rates for supervised learning(same-distr/diff-distr=0.01):					
Data Set	SVM	SVMt	AUX	TrAdaBoost(SVM)	
rec vs talk	0.222	0.127	0.127	0.080	
rec vs sci	0.240	0.164	0.153	0.097	
sci vs talk	0.234	0.177	0.173	0.125	
	0.131	0.192	0.188	0.096	
auto vs aviation	1 0.101				
auto vs aviation real vs simulated	0.140	0.219	0.210	0.119	
real vs simulated		$0.219 \\ 0.285$	$\frac{0.210}{0.287}$	0.119 0.280	
	0.140				
real vs simulated orgs vs people	0.140 0.494	0.285	0.287	0.280	

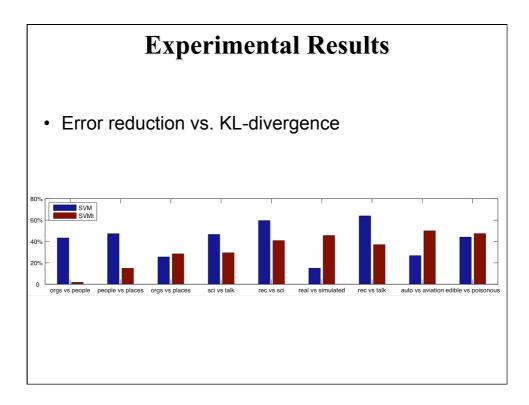
Experimental Results				
Error rates for sem	i-supervi	sed lear	ning	
only 1 positive and	1 nega	tive exar	mple in same-distr	
Data Set	TSVM	TSVMt	TrAdaBoost(TSVM)	
rec vs talk	0.059	0.040	0.021	
rec vs sci	0.067	0.062	0.013	
m sci vs talk	0.173	0.106	0.075	
auto vs aviation	0.043	0.103	0.038	
real vs simulated	0.144	0.131	0.102	
orgs vs people	0.358	0.292	0.248	
orgs vs places	0.424	0.436	0.304	
people vs places	0.307	0.225	0.179	
	0.439	0.179	0.160	

ſ



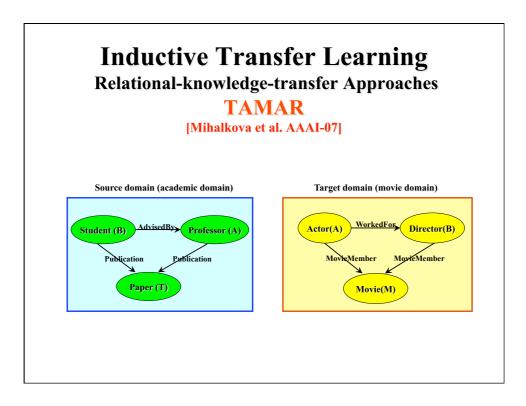






Issues

- The authors (Dai et al., ICML 2007) have shown convergence of the prediction error on the same distribution data, but the improvement is sensitive to the quality (or KL-divergence) of diff-distribution examples.
- Can we analyze auxiliary data and determine in a principled way whether transfer learning will help? (when? question)
- TrAdaBoost can transfer knowledge from only one distribution. How can we deal with multiple distributions simultaneously?



Inductive Transfer Learning Relational-knowledge-transfer Approaches

TAMAR

[Mihalkova et al. AAAI-07]

Assumption: If the target domain and source domain are related, then there may be some relationship between domains being similar, which can be used for transfer learning

Input:

- 1. Relational data in the source domain and a statistical relational model, Markov Logic Network (MLN), which has been learnt in the source domain.
- 2. Relational data in the target domain.

Output: A new statistical relational model, MLN, in the target domain.

Goal: To learn a MLN in the target domain more efficiently and effectively.