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Manifold learning: 

Isomap 
and 

Locally Linear Embedding 

Motivation 
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Another example 

Isomap: Goals 

•  Discover the intrinsic degrees of freedom in the data 

•  Learn the underlying global geometry of the data using 
local metric information 

•  It’s a nonlinear dimensionality reduction technique 
(unlike PCA) 

•  Like PCA: noniterative, polynomial time, global optimality 

•  Applications in vision, speech, motor control, biological 
sciences (and more) 
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Isomap: overall approach 

•  Construct neighbourhood graph G 
•  For each pair of points in G, compute shortest path 

distances ---- geodesic distances. 
•  Use Classical MDS with geodesic distances. 

–  Euclidean distance Geodesic distance 

Isomap: the algorithm 
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The algorithm: Step 3 

•  The cost function minimized in Step 3 is: 

•  where      is the matrix of Euclidean distances 

    and      is an operator that converts distances into dot 
products  
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Isomap: Results 
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Isomap: Results 

Isomap vs. PCA vs. MDS 

Face images Swiss roll 

Hand images Handwritten 2s 
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Isomap: Results 

3-dimensional embedding 

4-dimensional embedding 

6-dimensional embedding 

Review: Isomap 

•  Isomap is still a global approach 
–  All pairwise distances considered 

•  The resulting distance matrix is dense 
–  Isomap does not scale to large datasets 
–  Landmark Isomap proposed to overcome this problem 

•   LLE (Local Linear Embedding) 
–  local approach 
–  The resulting matrix is sparse 

•  Apply efficient sparse matrix solvers 
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Local Linear Embedding (LLE) 

•  Local Linear Embedding (LLE) 
–  Intuition 
–  Least squares problem 
–  Eigenvalue problem 

Characterictics of a Manifold 

M 

x1 

x2 R2 

Rn 

z 

x 

x: coordinate for z 

Locally it is a linear patch 

Key: how to combine all local 
patches together? 
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LLE: Intuition 

•  Assumption: a manifold is approximately “linear” when 
viewed locally, that is, within a small neighborhood 
–  Approximation error, e(W), can be made small: 

•  Locality is enforced by the constraint Wij=0 if  zj is not a 
neighbor of zi  

•  A good projection should preserve this local geometric 
property as much as possible 

We expect each data point and its  
neighbors to lie on or close 
 to a locally linear patch of the 
manifold. 

Each point can be written as a 
linear combination of its 
neighbors. 
The weights chosen to 
minimize the reconstruction 
Error. 

LLE: Intuition 
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•  The weights that minimize the reconstruction errors are 
invariant to rotation, rescaling and translation of the data points. 

–  Invariance to translation is enforced by adding the constraint that the 
weights sum to one. 

–  The weights characterize the intrinsic geometric properties of each 
neighborhood. 

•  The same weights that reconstruct the data points in D 
dimensions should reconstruct it in the manifold in d 
dimensions. 
–  Local geometry is preserved 

LLE: Intuition 

LLE: Intuition 

Use the same weights  
from the original space 

Low-dimensional embedding 

the i-th row of W 
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Local Linear Embedding (LLE) 

•  Assumption: manifold is approximately “linear” when viewed locally, that 
is, in a small neighborhood 

•  Approximation error, ε(W), can be made small 

•  Meaning of W: a linear representation of every data point by its neighbors 
–  This is an intrinsic geometrical property of the manifold 

•  A good projection should preserve this geometric property as much as 
possible 

Constrained Least Square problem 

Compute the optimal weight for each point individually:  

Neighbors of x 

Zero for all non-neighbors of x 
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Finding a Map to a Lower Dimensional 
Space 

  

€ 
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i
∑
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= Y −YW T
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2
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F

2
= trace(Y (I −W )T (I −W )YT )

= trace(YMYT )
where  Y = [Y1,Y2,,Yn ].

Derivation for mapping Y: 

Eigenvalue problem 

Add the following constraint:  

The optimal d-dimensional embedding is given by the bottom  
2nd to (d+1)-th eigenvectors of the following matrix: (Note that 
0 is its smallest eigenvalue.) 
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The LLE algorithm 

Examples 

Images of faces mapped into the embedding space described by the first two  
coordinates of LLE. Representative faces are shown next to circled points. The  
bottom images correspond to points along the top-right path (linked by solid line)  
illustrating one particular mode of variability in pose and expression.  
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Some Limitations of LLE 

•  Require dense data points on the manifold for good 
estimation 

•  A good neighborhood seems essential to their success 
–  How to choose k? 

Experiment on LLE 
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Applications 

•  Image Processing Using Locally Linear Embedding 

•  Feature Dimension Reduction For Microarray Data Analysis 
Using Locally Linear Embedding  

•  Locally linear embedding algorithm. Extensions and 
applications 
–  http://herkules.oulu.fi/isbn9514280415/isbn9514280415.pdf 


