4/5/10

N_ @ ! d_ E E
m_ a_ﬂ_ =
& @ anm Em
I_ ﬂ_ h_ i B

Hm I_ s 3

....Em

L

Left-right pose

NS Lighting direction

< - asod umop-dn




B Bottom loop articulation

Top arch articulation

-
&
m o

Discover the intrinsic degrees of freedom in the data

Learn the underlying global geometry of the data using
local metric information

It's a nonlinear dimensionality reduction technique
(unlike PCA)

Like PCA: noniterative, polynomial time, global optimality

Applications in vision, speech, motor control, biological
sciences (and more)
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» Construct neighbourhood graph G

» For each pair of points in G, compute shortest path
distances ---- geodesic distances.

» Use Classical MDS with geodesic distances.
— Euclidean distance> Geodesic distance

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points / and j if [as measured by d,(i,j)] they are
closer than e (e-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to d,(i.j).

2 Compute shortest paths Initialize d(i,j) = d,(i.j) if i,j are linked by an edge;
dgl(i,j) = = otherwise. Then for each value of k =
1,2, ..., Nin turn, replace all entries d_(i,j) by
min{d(i,j), d,(i.k) + d(k.j)}. The matrix of final
values D, = {d,(i,j)} will contain the shortest path
distances between all pairs of points in G (76, 19).

3 Construct d-dimensional embedding  Let N, be the p-th eigenvalue (in decreasing order) of
the matrix 7(Dg) (77), and v, be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector y; equal to \/EVL.
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* The cost function minimized in Step 3 is:

E =|t(D;) - r(DY)H2

» where D, is the matrix of Euclidean distances

dY(i’j) = Hyi - yJ'H

and T is an operator that converts distances into dot
products
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3-dimensional embedding
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4-dimensional embedding

6-dimensional embedding

* Isomap is still a global approach
— All pairwise distances considered

» The resulting distance matrix is dense
— Isomap does not scale to large datasets
— Landmark Isomap proposed to overcome this problem

* LLE (Local Linear Embedding)
— local approach

— The resulting matrix is sparse
» Apply efficient sparse matrix solvers
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* Local Linear Embedding (LLE)

— Intuition

— Least squares problem
— Eigenvalue problem

Rn

Locally it is a linear patch

Key: how to combine all local
patches together?

R2

x: coordinate for z
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+ Assumption: a manifold is approximately “linear” when
viewed locally, that is, within a small neighborhood

— Approximation error, e(W), can be made small:

K
miny || X; — > Wi X; |? (1)
j=1

* Locality is enforced by the constraint W;=0 if zis not a
neighbor of z

* A good projection should preserve this local geometric
property as much as possible

%9 o @ Select neighbors

0 0., We expect each data point and its
o neighbors to lie on or close
0 5 to a locally linear patch of the
Xi. 5 . manifold.
[} b5
[¢} Each point can be written as a
on® o 0 linear combination of its
g ° neighbors.
The weights chosen to
@ minimize the reconstruction
Reconstruct with Error.
linear weights
Ny K
0 o . y)
p ¢ minyy || X; =) WiiXj | (L
0 i po
Q S .]:]'

4/5/10



* The weights that minimize the reconstruction errors are
invariant to rotation, rescaling and translation of the data points.

— Invariance to translation is enforced by adding the constraint that the
weights sum to one.

— The weights characterize the intrinsic geometric properties of each
neighborhood.

* The same weights that reconstruct the data points in D

dimensions should reconstruct it in the manifold in d
dimensions.

— Local geometry is preserved

Low-dimensional embedding

. ° oo o 00-2--? Select neighbors
o © X; = N .~
C S ° N
° 5 PR
. ° Yaxn = [Y1[Y2l...|YN]
[e1S) o ° .
L <] o 3
\ ®
Reconstruct with

linear weights

N
“ miny > || Y- YW |12
i=1

the i-th row of W

Map to embedded coordinates  US€ the same weights
from the original space
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Assumption: manifold is approximately “linear” when viewed locally, that
is, in a small neighborhood

Approximation error, ¢(W), can be made small

Meaning of W: a linear representation of every data point by its neighbors
— This is an intrinsic geometrical property of the manifold

A good projection should preserve this geometric property as much as
possible

Compute the optimal weight for each point individually:

2 2
£ = |T— Y wm| = 2w (- 77,)' = 2k wjwkCi,
Neighbors of x Cjk = (& —1j;) - (¥ — k).

This error can be minimized m closed form, using a Lagrange multiplier to enforce
the constraint that ), wj = 1. In terms of the inverse local covariance matrix, the
optimal weights are given by:

—1
¥ Cj

Wj = =—————. (5)

v—1
Z/‘I!A (’[m

Zero for all non-neighbors of x
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Derivation for mapping Y:

2
- Sl -

‘2
F

= HY—YWTHi = HY(I—WT)Hi = trace(Y(I-W) (I -W)Y")

qn=z

= H[YI,Y;,.“’YH]_[YI,Y2’._.’Yn][WlT’W2T’._.’WnT]

Y- YWY,
J

= trace(YMY")
where Y =[Y.Y,,.--.Y ].

Add the following constraint: > i =0.

Also, to avoid degenerate solutions, we constrain the embedding vectors to have
unit covariance, with outer products that satisfy

] -
=Y VY =1, (10)
T

The optimal d-dimensional embedding is given by the bottom
2nd to (d+1)-th eigenvectors of the following matrix: (Note that
0 is its smallest eigenvalue.)

M= (I-W)T(I-W)
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LLE ALGORITHM

[

. Compute the neighbors of each data point, X;.

2. Compute the weights W;; that best reconstruct each data pomt X; from
1ts neighbors, minimizing the cost m eq. (1) by constramed linear fits.

3. Compute the vectors Y; best reconstructed by the weights W;;, mininuzing

the quadratic form m eq. (2) by 1ts bottom nonzero eigenvectors.

Figure 2: Summary of the LLE algorithm, mapping high dimensional data points,
Xi. to low dimensional embedding vectors, Y;.
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Images of faces mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points. The
bottom images correspond to points along the top-right path (linked by solid line)

illustrating one particular mode of variability in pose and expression.
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* Require dense data points on the manifold for good
estimation

* A good neighborhood seems essential to their success
— How to choose k?
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4 4 4
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Fic. 5. S-curve (top left) and computed 2D coordinates by LLE with verious neighborhood size k.
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Image Processing Using Locally Linear Embedding

Feature Dimension Reduction For Microarray Data Analysis
Using Locally Linear Embedding

Locally linear embedding algorithm. Extensions and
applications

— http://herkules.oulu.fi/lisbn9514280415/isbn9514280415.pdf
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