









| Isomap: the algorithm |                                           |                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| 2                     | Compute shortest paths                    | Initialize $d_G(i,j) = d_X(i,j)$ if $i,j$ are linked by an edge;<br>$d_G(i,j) = \infty$ otherwise. Then for each value of $k = 1, 2,, N$ in turn, replace all entries $d_G(i,j)$ by<br>$\min\{d_G(i,j), d_G(i,k) + d_G(k,j)\}$ . The matrix of final<br>values $D_G = \{d_G(i,j)\}$ will contain the shortest path<br>distances between all pairs of points in $G$ (16, 19). |
| 3                     | Construct <i>d</i> -dimensional embedding | Let $\lambda_{\rho}$ be the $\rho$ -th eigenvalue (in decreasing order) of<br>the matrix $\tau(D_G)$ (17), and $v_{\rho}^i$ be the <i>i</i> -th<br>component of the $\rho$ -th eigenvector. Then set the<br>$\rho$ -th component of the <i>d</i> -dimensional coordinate<br>vector $\mathbf{y}_i$ equal to $\sqrt{\lambda_{\rho}}v_{\rho}^i$ .                               |

# The algorithm: Step 3

• The cost function minimized in Step 3 is:

$$E = \left\| \tau(D_G) - \tau(D_Y) \right\|_2$$

- where  $D_{Y}$  is the matrix of Euclidean distances

$$d_{Y}(i,j) = \left\| y_{i} - y_{j} \right\|$$

and  $\,\tau\,$  is an operator that converts distances into dot products















#### LLE: Intuition

- Assumption: a manifold is approximately "linear" when viewed locally, that is, within a small neighborhood
  - Approximation error, e(W), can be made small:

$$min_W \parallel X_i - \sum_{j=1}^K W_{ij} X_j \parallel^2$$
 (1)

- Locality is enforced by the constraint W<sub>ij</sub>=0 if z<sub>j</sub> is not a neighbor of z<sub>i</sub>
- A good projection should preserve this local geometric property as much as possible









A good projection should preserve this geometric property as much as possible



# Finding a Map to a Lower Dimensional Space

Derivation for mapping Y:

$$\Phi(Y) = \sum_{i} \left\| Y_{i} - \sum_{j} W_{ij} Y_{j} \right\|^{2} = \sum_{i} \left\| Y_{i} - [Y_{1}, Y_{2}, \dots, Y_{n}] W_{i}^{T} \right\|^{2}$$
  

$$= \left\| [Y_{1}, Y_{2}, \dots, Y_{n}] - [Y_{1}, Y_{2}, \dots, Y_{n}] [W_{1}^{T}, W_{2}^{T}, \dots, W_{n}^{T}] \right\|_{F}^{2}$$
  

$$= \left\| Y - Y W^{T} \right\|_{F}^{2} = \left\| Y (I - W^{T}) \right\|_{F}^{2} = \operatorname{trace}(Y (I - W)^{T} (I - W) Y^{T})$$
  

$$= \operatorname{trace}(Y M Y^{T})$$
  
where  $Y = [Y_{1}, Y_{2}, \dots, Y_{n}].$ 

## Eigenvalue problem

Add the following constraint:

Also, to avoid degenerate solutions, we constrain the embedding vectors to have unit covariance, with outer products that satisfy

$$\frac{1}{N}\sum_{i}\vec{Y}_{i}\vec{Y}_{i}^{\top} = I, \qquad (10)$$

 $\sum_i \vec{Y_i} = \vec{0}.$ 

The optimal d-dimensional embedding is given by the bottom  $2^{nd}$  to (d+1)-th eigenvectors of the following matrix: (Note that 0 is its smallest eigenvalue.)

$$\mathbf{M} = (\mathbf{I} - \mathbf{W})^T (\mathbf{I} - \mathbf{W})$$

### The LLE algorithm

#### LLE ALGORITHM

- 1. Compute the neighbors of each data point,  $\vec{X}_i$ .
- 2. Compute the weights  $W_{ij}$  that best reconstruct each data point  $\vec{X}_i$  from its neighbors, minimizing the cost in eq. (1) by constrained linear fits.
- Compute the vectors \$\vec{Y}\_i\$ best reconstructed by the weights \$W\_{ij}\$, minimizing the quadratic form in eq. (2) by its bottom nonzero eigenvectors.

Figure 2: Summary of the LLE algorithm, mapping high dimensional data points,  $\vec{X_i}$ , to low dimensional embedding vectors,  $\vec{Y_i}$ .







