Kernels for Text

- The VSM ignores any semantic relation between words;
- One important issue is to improve the vector space representation to ensure that documents containing semantically equivalent words are mapped to *similar* feature vectors.

Semantic issues

- <u>Homonyms</u>: single word with two distinct meanings depending on context (e.g., bank, book);
- The VSM throws away the contextual information to disambiguate the meaning;
- Nevertheless, some context can still be derived from the statistics of the words in the document.

Improving the Embedding: <u>Weighting of Terms</u>

- Apply different weights to each coordinate, i.e., assign different weights to the terms;
- > In its simplest form: *binary weights*
- A weight value of 0 is assigned to uninformative terms such as and, of, the, a, etc.
- Effectively removes stop words, considered uninformative for the task at hand;
- > More general weighting schemes are also used.

Improving the Embedding: Normalization

- The longer a document the more words it contains thus, the greater the norm of its associated vector;
- If the length of the document is not relevant for the task at hand, e.g. categorization by topic, we should remove its effect from the embedding vectors;

[Normalization] > Let $\phi(x), \phi(y)$ be our representation of documents x, y> Note: we can explicitly construct the mapping ϕ by capturing important domain knowledge, e.g.: $\phi: d \rightarrow \phi(d) = (tf(t_1, d), tf(t_2, d), \dots, tf(t_N, d)) \in \Re^N$ or define it implicitly through a standard kernel function k; > In both cases: $k(x, y) = \langle \phi(x), \phi(y) \rangle$

[Normalization]

To remove the length of the documents from the embedding vectors:

$$\phi(\mathbf{x}) \rightarrow \hat{\phi}(\mathbf{x}) = \frac{\phi(\mathbf{x})}{\|\phi(\mathbf{x})\|}, \quad \phi(\mathbf{y}) \rightarrow \hat{\phi}(\mathbf{y}) = \frac{\phi(\mathbf{y})}{\|\phi(\mathbf{y})\|}$$

> This also defines a new kernel function:

$$\hat{k}(\boldsymbol{x},\boldsymbol{y}) = \left\langle \hat{\phi}(\boldsymbol{x}), \hat{\phi}(\boldsymbol{y}) \right\rangle = \left\langle \frac{\phi(\boldsymbol{x})}{\|\phi(\boldsymbol{x})\|}, \frac{\phi(\boldsymbol{y})}{\|\phi(\boldsymbol{y})\|} \right\rangle$$

[Normalization]

$$\hat{k}(\boldsymbol{x},\boldsymbol{y}) = \left\langle \hat{\phi}(\boldsymbol{x}), \hat{\phi}(\boldsymbol{y}) \right\rangle = \left\langle \frac{\phi(\boldsymbol{x})}{\|\phi(\boldsymbol{x})\|}, \frac{\phi(\boldsymbol{y})}{\|\phi(\boldsymbol{y})\|} \right\rangle$$

> [Norm of feature vectors]:

$$\begin{aligned} \left\|\phi(\boldsymbol{x})\right\|_{2} &= \sqrt{\left\|\phi(\boldsymbol{x})\right\|^{2}} = \sqrt{\left\langle\phi(\boldsymbol{x}),\phi(\boldsymbol{x})\right\rangle} = \sqrt{k(\boldsymbol{x},\boldsymbol{x})}\\ \hat{k}(\boldsymbol{x},\boldsymbol{y}) &= \left\langle\frac{\phi(\boldsymbol{x})}{\sqrt{k(\boldsymbol{x},\boldsymbol{x})}},\frac{\phi(\boldsymbol{y})}{\sqrt{k(\boldsymbol{y},\boldsymbol{y})}}\right\rangle = \frac{\left\langle\phi(\boldsymbol{x}),\phi(\boldsymbol{y})\right\rangle}{\sqrt{k(\boldsymbol{x},\boldsymbol{x})}\sqrt{k(\boldsymbol{y},\boldsymbol{y})}}\\ &= \frac{k(\boldsymbol{x},\boldsymbol{y})}{\sqrt{k(\boldsymbol{x},\boldsymbol{x})}\sqrt{k(\boldsymbol{y},\boldsymbol{y})}}\end{aligned}$$

[Normalization]

$$\hat{k}(\boldsymbol{x},\boldsymbol{y}) = \left\langle \frac{\phi(\boldsymbol{x})}{\|\phi(\boldsymbol{x})\|}, \frac{\phi(\boldsymbol{y})}{\|\phi(\boldsymbol{y})\|} \right\rangle = \frac{k(\boldsymbol{x},\boldsymbol{y})}{\sqrt{k(\boldsymbol{x},\boldsymbol{x})}\sqrt{k(\boldsymbol{y},\boldsymbol{y})}}$$

- Normalization is implemented as the first transformation or as the final embedding;
- > We can assume that when required, normalization is added as a final stage.

$\begin{aligned} \left\|\sum_{i=1}^{l} \alpha_{i} \phi(\mathbf{x}_{i})\right\|^{2} &= \left\langle\sum_{i=1}^{l} \alpha_{i} \phi(\mathbf{x}_{i}), \sum_{j=1}^{l} \alpha_{j} \phi(\mathbf{x}_{j})\right\rangle \\ &= \sum_{i=1}^{l} \alpha_{i} \sum_{j=1}^{l} \alpha_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle \\ &= \sum_{i,j=1}^{l} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) \end{aligned}$

$$\begin{split} & \left\|\phi(x) - \phi(y)\right\|^2 = \left\langle \phi(x) - \phi(y), \phi(x) - \phi(y) \right\rangle \\ & = \left\langle \phi(x), \phi(x) \right\rangle - 2\left\langle \phi(x), \phi(y) \right\rangle + \left\langle \phi(y), \phi(y) \right\rangle \\ & = k(x, x) - 2k(x, y) + k(y, y) \end{split}$$

- The operations, for example term weighting and normalization, can be performed in sequence;
- This creates a series of successive embeddings: each one adds some refinement to the semantic of the representation;
- The composition of the successive embeddings generates a single map that incorporates different aspects of domain knowledge into the representation.

Given a document, we know how to represent it as a vector:

 $\phi: d \to \phi(d) = \left(tf(t_1, d), tf(t_2, d), \cdots, tf(t_N, d)\right) \in \Re^N$

- > This preliminary embedding can then be refined by successive operations.
- Given a document-by-term matrix D, we can create the document-by-document matrix:

K = DD'

Vector space kernels

> Note:

$$K_{ij} = (DD')_{ij} = \sum_{k=1}^{N} tf(t_k, d_i)tf(t_k, d_j)$$

$$= \langle \phi(d_i), \phi(d_j) \rangle = k(d_i, d_j)$$

K is called the kernel matrix or Gram matrix

> $k(d_i, d_j)$ is called the *vector space kernel*

Nonlinear embeddings

- We focus on linear transformations of the basic VSM by leveraging the power of capturing important domain knowledge;
- It is also possible to consider nonlinear embeddings using standard kernel constructions;
- For example, a polynomial kernel over the normalized bag-of-words representation:

$$\overline{k}(d_1,d_2) = \left(k(d_1,d_2)+1\right)^d = \left(\left\langle\phi(d_1),\phi(d_2)\right\rangle+1\right)^d$$

Designing Semantic Kernels

- <u>Objective</u>: Extend the VSM representation to capture the semantic content of the words.
- > We consider transformations of the document vectors $\phi(d)$:

$$\tilde{\phi}(d) = \phi(d)S$$

where S is a matrix that could be diagonal, square, or in general any $N \times k$ matrix.

Designing Semantic Kernels

> Using the transformation $\tilde{\phi}(d) = \phi(d)S$ the corresponding kernel takes the form:

$$\tilde{k}(d_1,d_2) = \left\langle \tilde{\phi}(d_1), \tilde{\phi}(d_2) \right\rangle = \left\langle \phi(d_1)S, \phi(d_2)S \right\rangle$$
$$= \left(\phi(d_1)S\right) \left(\phi(d_2)S\right)' = \phi(d_1)SS'\phi(d_2)' = \tilde{\phi}(d_1)\tilde{\phi}(d_2)$$

- > That is: the kernel follows directly from the explicit construction of a feature vector
- > We refer to S as the *semantic matrix*.

Term proximity matrix

- The previous *tf-idf* representation down-weights irrelevant terms and highlights discriminative ones;
- But it's not capable of recognizing when two terms are semantically related;
- Thus, cannot establish a connection between two documents that share no terms, even when they address the same topic through the use of synonyms;
- The only way to achieve this connection is through the introduction of semantic similarities between terms.

Term proximity matrix $\phi(d)P = (d_1, d_2, ..., d_N)$ $\begin{pmatrix} s_{11} & s_{12} & \cdots & s_{1N} \\ s_{21} & s_{22} & \cdots & s_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ s_{N1} & s_{N2} & \cdots & s_{NN} \end{pmatrix}$ \bullet This is similar to a 'document expansion', where the document is expanded to include not only the actual terms that appear in the document, but also those that are

semantically related.

Generalized Vector Space Model (GVSM)

In GVSM a document is represented by a vector of its similarities with the different documents in the corpus:

$$\tilde{\phi}(d) = \phi(d)D'$$

where D is the document-term matrix.

- > This is equivalent to setting P = D'
- > Why such document representation captures semantic similarities?

Latent semantic kernels

- Recall that the eigenvectors define the subspace that minimizes the sum of the squared differences between the points and their projections;
- So, the eigenvectors define the subspace with minimal sum of squared residuals;
- Hence: the eigenvectors for a set of documents can be viewed as concepts described by linear combinations of terms, chosen in such a way that the documents are described as well as possible using only k such concepts.

Latent semantic kernels

> The resulting latent semantic kernel is:

$$\tilde{k}(d_1,d_2) = \phi(d_1)U_kU_k\phi(d_2)'$$

which shows that $P = U_k$

- > $P = U_k$ introduces a dimensionality reduction through the restriction to k eigenvectors;
- As k increases, we return to the treatment of all terms being semantically distinct. Hence, the value of k controls the amount of semantic smoothing that is introduced into the representation.