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Kernels for Text 

Topics 

 BOW-based representation interpreted as  
kernels; 

 Generalized vector space model; 

 Semantic kernels. 
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Representing text 
•  Bag-of-words or Vector Space Model (VSM) 

•  A bag-of-words is a vector in a space in which each 
dimension is associated with one term from the 
dictionary 

  

€ 

φ : d→φ d( ) = tf t1,d( ),tf t2,d( ),,tf tN ,d( )( )∈ ℜN

t1    t2                                 ….                    tN 

dictionary 

Document-term matrix 

                        is the term-document matrix 

                        is the term-by-term matrix 

                        is the document-by-document matrix 
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Semantic issues 

 The VSM ignores any semantic relation between 
words; 

 One important issue is to improve the vector space 
representation to ensure that documents containing 
semantically equivalent words are mapped to similar 
feature vectors. 

Semantic issues 

 Synonymous words: different words that carry the 
same meaning; 

 The VSM assigns distinct components to synonymous 
words; 

  Extra processing is necessary to embed the semantic 
relatedness of such words in the representation.  
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Semantic issues 

 Homonyms: single word with two distinct meanings 
depending on context (e.g., bank, book); 

 The VSM throws away the contextual information to 
disambiguate the meaning; 

 Nevertheless, some context can still be derived from 
the statistics of the words in the document.  

Improving the Embedding: 
Weighting of Terms 

 Apply different weights to each coordinate, i.e., assign 
different weights to the terms; 

  In its simplest form: binary weights  

 A weight value of 0 is assigned to uninformative terms 
such as and, of , the, a, etc.  

  Effectively removes stop words, considered 
uninformative for the task at hand; 

 More general weighting schemes are also used. 
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Improving the Embedding: 
Normalization 

 The longer a document the more words it contains  - 
thus, the greater the norm of its associated vector; 

  If the length of the document is not relevant for the 
task at hand, e.g. categorization by topic, we should 
remove its effect from the embedding vectors; 

 [Normalization] 

  Let                    be our representation of documents 

 Note: we can explicitly construct the mapping       by 
capturing important domain knowledge, e.g.: 

    or define it implicitly through a standard kernel 
function k; 

  In both cases:  

  

€ 

φ x( ),φ y( )   

€ 

x, y

  

€ 

φ : d→φ d( ) = tf t1,d( ),tf t2,d( ),,tf tN ,d( )( )∈ ℜN

€ 

φ

  

€ 

k x, y( ) = φ x( ),φ y( )



3/15/10 

6 

 [Normalization] 

 To remove the length of the documents from the 
embedding vectors: 

 This also defines a new kernel function:  

  

€ 

φ x( )→ ˆ φ x( ) =
φ x( )
φ x( )

,     φ y( )→  ˆ φ y( ) =
φ y( )
φ y( )

  

€ 

ˆ k x, y( ) = ˆ φ x( ), ˆ φ y( ) =
φ x( )
φ x( )

,
φ y( )
φ y( )

 [Normalization] 

  [Norm of feature vectors]: 
  

€ 

ˆ k x, y( ) = ˆ φ x( ), ˆ φ y( ) =
φ x( )
φ x( )

,
φ y( )
φ y( )

  

€ 

φ x( ) 2
= φ x( )

2
= φ x( ),φ x( ) = k x,x( )

  

€ 

ˆ k x, y( ) =
φ x( )
k x,x( )

,
φ y( )
k y, y( )

=
φ x( ),φ y( )

k x,x( ) k y, y( )

            =
k x, y( )

k x, x( ) k y, y( )



3/15/10 

7 

 [Normalization] 

  

€ 

ˆ k x, y( ) =
φ x( )
φ x( )

,
φ y( )
φ y( )

=
k x, y( )

k x,x( ) k y, y( )

 Normalization is implemented as the first 
transformation or as the final embedding; 

 We can assume that when required, normalization is 
added as a final stage. 

 Important observations 

  In general, working in a kernel-defined feature space 
means that we are not able to explicitly represent 
points; 

 The image of an input point      is            but we do not 
have access to the components of this vector; 

 We only have access to the evaluation of inner 
products between           and the images of other 
points; 

 Despite this limitation, there is a surprising amount of 
useful information than can be derived by such inner 
products… 

  

€ 

φ x( )

  

€ 

φ x( )
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 Linear combinations in feature 
space 

  

€ 

α iφ xi( )
i=1

l

∑
2

= α iφ xi( )
i=1

l

∑ , α jφ x j( )
j=1

l

∑

                     = α i α j φ xi( ),φ x j( )
j=1

l

∑
i=1

l

∑

                     = α i
i, j=1

l

∑ α jk xi,x j( )

 Distance between feature 
vectors 

  

€ 

φ x( ) −φ y( )
2

= φ x( ) −φ y( ),φ x( ) −φ y( )
                      = φ x( ),φ x( ) − 2 φ x( ),φ y( ) + φ y( ),φ y( )
                      = k x, x( ) − 2k x, y( ) + k y, y( )
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Successive embeddings 
 The operations, for example term weighting and 

normalization, can be performed in sequence; 

 This creates a series of successive embeddings: 
each one adds some refinement to the semantic of 
the representation; 

 The composition of the successive embeddings 
generates a single map that incorporates different 
aspects of domain knowledge into the 
representation. 

Vector space kernels 
 Given a document, we know how to represent it as a 

vector:  

 This preliminary embedding can then be refined by 
successive operations. 

 Given a document-by-term matrix D, we can create 
the document-by-document matrix: 

  

€ 

φ : d→φ d( ) = tf t1,d( ),tf t2,d( ),,tf tN ,d( )( )∈ ℜN

€ 

K = DD'
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Vector space kernels 
 Note:  

 K  is called the kernel matrix  or Gram matrix  

                   is called the vector space kernel 
€ 

Kij = DD'( )ij = tf tk,di( )tf tk,d j( )
k=1

N

∑

                     = φ di( ),φ d j( ) = k di,d j( )

€ 

k di,d j( )

Vector space kernels 
 Standard notation to display kernel matrices: 

  It contains all the information needed to compute 
pairwise distances within the data set; 

 The only information received by an algorithm about 
the training set comes from the kernel matrix, and 
the associated labeling information. 

    

€ 

K 1 2  l
1 k x1,x1( ) k x1,x2( )  k x1,xl( )
2 k x2,x1( ) k x2,x2( )  k x2,xl( )
    

l k xl ,x1( ) k xl ,x2( )  k xl ,xl( )



3/15/10 

11 

Nonlinear embeddings 
•  We focus on linear transformations of the basic 

VSM by leveraging the power of capturing important 
domain knowledge; 

•  It is also possible to consider nonlinear embeddings 
using standard kernel constructions; 

•  For example, a polynomial kernel over the normalized 
bag-of-words representation: 

€ 

k d1,d2( ) = k d1,d2( ) +1( )d
= φ d1( ),φ d2( ) +1( )

d

Designing Semantic Kernels 
 Objective: Extend the VSM representation to 

capture the semantic content of the words. 

 We consider transformations of the document 
vectors          :  

    where S is a matrix that could be diagonal, square, or 
in general any            matrix.  € 

φ d( )

€ 

˜ φ d( ) = φ d( )S

€ 

N × k
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Designing Semantic Kernels 

 Using the transformation                           the 
corresponding kernel takes the form: 

 That is: the kernel follows directly from the explicit 
construction of a feature vector 

 We refer to S as the semantic matrix. 

€ 

˜ φ d( ) = φ d( )S

€ 

˜ k d1,d2( ) = ˜ φ d1( ), ˜ φ d2( ) = φ d1( )S,φ d2( )S

= φ d1( )S( ) φ d2( )S( )'
= φ d1( )SS 'φ d2( )'

= ˜ φ d1( ) ˜ φ d2( )'

Designing Semantic Kernels 

 Different choices of the matrix S lead to different 
variants of the VSM; 

 We can generate S as a composition of several 
stages; 

 We might define: 

         is diagonal matrix giving the term weightings or 
term relevance; 

         is a proximity matrix defining the semantic 
relationships between the terms in the corpus of 
documents. 

€ 

S = RP
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Term weighting: construction of R 

 Not all words have the same importance in 
determining the topic of a document; 

 Unsupervised measure: The frequency of a word 
across the documents in a corpus can be used to 
quantify the amount of information carried out by a 
word; 

 Supervised measure: importance of a word with 
respect to a given topic, i.e., mutual information; 

Term weighting: construction of R 

  Inverse document frequency (idf ): weights terms as 
a function of their inverse document frequency   

   l documents; 

    df(t)  = the number of documents containing the   
term t; 

   The usual measure of inverse document 
frequency for a term t is: 

€ 

w t( ) = ln l
df t( )
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Term weighting: resulting kernel 

 Given a term weighting           (whether obtained via 
idf  or some alternative scheme), we can define a 
new VSM;  

 We can choose the matrix R to be diagonal with entries 

  Thus, the associated kernel computes the inner 
product between documents in the new VSM 
representation             :  € 

Rtt = w t( )€ 

w t( )

€ 

φ d( )R

€ 

˜ k d1,d2( ) = φ d1( )RR'φ d2( )'
= w t( )2 tf t,d1( ) 

t=1

N

∑ tf t,d2( )

Term proximity matrix 

 The previous tf-idf representation down-weights 
irrelevant terms and highlights discriminative ones; 

  But it’s not capable of recognizing when two terms 
are semantically related; 

 Thus, cannot establish a connection between two 
documents that share no terms, even when they 
address the same topic through the use of 
synonyms; 

 The only way to achieve this connection is through 
the introduction of semantic similarities between 
terms. 



3/15/10 

15 

Term proximity matrix 

 The embedding of semantic similarity within the 
VSM can be achieved through the matrix P 

 A proximity matrix P should have positive off-
diagonal terms             when the term i is 
semantically related to term j 

 Given such a matrix, a document is represented as a 
new less sparse vector   

Term proximity matrix 

 The new vector has non-zero entries for all terms 
that are semantically similar to those present in the 
document d 
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Term proximity matrix 

  This is similar to a ‘document expansion’, where the 
document is expanded to include not only the actual terms 
that appear in the document, but also those that are 
semantically related. 

Term proximity matrix: resulting kernel 

 Given a proximity matrix P, the corresponding 
vector space kernel is: 

 Alternatively we can view 

 Thus        encodes the amount of semantic relation 
between terms i and j 

€ 

˜ k d1,d2( ) = φ d1( )PP 'φ d2( )'

€ 

PP ' =Q      Qij = siks jk
k=1

N

∑

€ 

Qij

€ 

˜ k d1,d2( ) = φ d1( )iQijφ d2( )'
j

i, j
∑
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Explicit construction of the proximity 
matrix 

  Construct P by using an external source of domain 
knowledge 

 A semantic network such Wordnet provides a way to 
obtain term-similarity information 

 A semantic network encodes relationships between 
words in a hierarchical fashion, where the more 
general terms are placed higher in the tree 
structure 

Explicit construction of the proximity 
matrix 

 We can use the distance between two terms on the 
hierarchical tree provided by Wordnet to give an 
estimate of their semantic proximity 

everything 

sports politics health business 

baseball 

hockey 

soccer 

foreign 

domestic 

 .... 

 .... 

 .... 

 .... 

 .... 
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Term proximity matrix: resulting kernel 

 We can embed this information in the matrix  P  by 
setting       equal to the inverse of the distance 
between terms  i and j  in the tree (i.e., inverse of 
the length of the shortest path connecting them). 

 The use of this semantic proximity gives rise to the 
vector space kernel: 

Generalized Vector Space Model (GVSM) 

  Construct P directly from the data; 

 Main idea: two terms are considered semantically 
related if they frequently co-occur in the same 
documents; 

 Thus, two documents can be seen as similar even 
they do not share any terms, but the terms they 
contain co-occur in other documents. 
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Generalized Vector Space Model (GVSM) 

  In GVSM a document is represented by a vector of 
its similarities with the different documents in the 
corpus: 

    where D is the document-term matrix. 

 This is equivalent to setting 

 Why such document representation captures 
semantic similarities? 

€ 

˜ φ d( ) = φ d( )D'

€ 

P = D'

Generalized Vector Space Model (GVSM) 

  Lets compute the corresponding kernel: 

    where 

 Thus               is nonzero if and only if there is at 
least one document in the corpus in which the terms 
i and j co-occur. 

 The strength of the association between two terms 
i and j depends on how often (in how many 
documents) they co-occur in the given corpus. 

€ 

˜ k d1,d2( ) = φ d1( )D'Dφ d2( )'

€ 

D'D( )ij = tf i,d( )tf j,d( )
d
∑

€ 

D'D( )ij
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Latent semantic kernels 

 Though appealing, the GVSM is too naïve it its use 
of the co-occurrence information. 

  Latent semantic kernels provide a more subtle use 
of this information to create refined semantics. 

  Conceptually, latent semantic indexing (LSI) follows 
the same approach as GVSM: it extracts semantic 
information from the co-occurrences of terms. 

 The technique used to extract the information is 
different though: LSI makes use of SVD. 

 We’ll see that this technique amounts to a special 
choice of the matrix P. 

Latent semantic kernels 

  Recall that the SVD of the term-by-document 
matrix        is: 

         is a diagonal matrix, the columns of  U are the 
eigenvectors of  

  LSI projects the documents into the space spanned 
by the first k columns of U, and uses these new k-
dimensional vectors for subsequent processing: 

    where            is the matrix containing the first k 
columns of U. 

€ 

D'

€ 

D' =U ΣV '

€ 

D'D

€ 

d→φ d( )Uk

€ 

Uk
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Latent semantic kernels 

  Recall that the eigenvectors define the subspace 
that minimizes the sum of the squared differences 
between the points and their projections; 

 So, the eigenvectors define the subspace with 
minimal sum of squared residuals; 

 Hence: the eigenvectors for a set of documents can 
be viewed as concepts described by linear 
combinations of terms, chosen in such a way that 
the documents are described as well as possible 
using only k such concepts.  

Latent semantic kernels 

 Note that terms that co-occur frequently will tend 
to align in the same eigenvectors, since SVD merges 
highly correlated dimensions in order to define a 
small number of new dimensions that can 
reconstruct the whole feature vector. 

 Hence: SVD exploits co-occurrence information to 
maximize the amount of information extracted by a 
given number of dimensions.  
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Latent semantic kernels 

 The resulting latent semantic kernel is: 

    which shows that 

               introduces  a dimensionality reduction 
through the restriction to k eigenvectors; 

 As k increases, we return to the treatment of all 
terms being semantically distinct. Hence, the value 
of k controls the amount of semantic smoothing that is 
introduced into the representation. 

€ 

˜ k d1,d2( ) = φ d1( )UkUk
' φ d2( )'

€ 

P =Uk

€ 

P =Uk


