Kernels for Text

Topics

BOW-based representation interpreted as kernels;

Generalized vector space model:

Semantic kernels.

Representing text

- Bag-of-words or Vector Space Model (VSM) dictionary

- A bag-of-words is a vector in a space in which each dimension is associated with one term from the dictionary

Document-term matrix

$$
D=\left(\begin{array}{ccc}
t f\left(t_{1}, d_{1}\right) & \cdots & f\left(t_{N}, d_{1}\right) \\
\vdots & \ddots & \vdots \\
t f\left(t_{1}, d_{l}\right) & \cdots & t f\left(t_{N}, d_{l}\right)
\end{array}\right)
$$

$>D^{\prime}[N \times l]$ is the term-document matrix
$D^{\prime} D[N \times N]$ is the term-by-term matrix
$>D D^{\prime}[l \times l]$ is the document-by-document matrix

Semantic issues

> The VSM ignores any semantic relation between words;
$>$ One important issue is to improve the vector space representation to ensure that documents containing semantically equivalent words are mapped to similar feature vectors.

Semantic issues

> Synonymous words: different words that carry the same meaning:
> The VSM assigns distinct components to synonymous words;
$>$ Extra processing is necessary to embed the semantic relatedness of such words in the representation.

Semantic issues

> Homonyms: single word with two distinct meanings depending on context (e.g., bank, book);
> The VSM throws away the contextual information to disambiguate the meaning:
$>$ Nevertheless, some context can still be derived from the statistics of the words in the document.

Improving the Embedding: Weighting of Terms

Apply different weights to each coordinate, i.e., assign different weights to the terms;
$>$ In its simplest form: binary weights
$>$ A weight value of 0 is assigned to uninformative terms such as and, of , the, a, etc.
> Effectively removes stop words, considered uninformative for the task at hand;
> More general weighting schemes are also used.

Improving the Embedding: Normalization

$>$ The longer a document the more words it contains thus, the greater the norm of its associated vector:
$>$ If the length of the document is not relevant for the task at hand, e.g. categorization by topic, we should remove its effect from the embedding vectors;

[Normalization]

Let $\phi(\boldsymbol{x}), \phi(\boldsymbol{y})$ be our representation of documents $\boldsymbol{x}, \boldsymbol{y}$
> Note: we can explicitly construct the mapping ϕ by capturing important domain knowledge, e.g.:
$\phi: d \rightarrow \phi(d)=\left(t f\left(t_{1}, d\right), t f\left(t_{2}, d\right), \cdots, t f\left(t_{N}, d\right)\right) \in \mathfrak{R}^{N}$
or define it implicitly through a standard kernel function k;

In both cases: $k(\boldsymbol{x}, \boldsymbol{y})=\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\rangle$

[Normalization]

$>$ To remove the length of the documents from the embedding vectors:

$$
\phi(x) \rightarrow \hat{\phi}(x)=\frac{\phi(x)}{\|\phi(x)\|}, \quad \phi(y) \rightarrow \hat{\phi}(y)=\frac{\phi(y)}{\|\phi(y)\|}
$$

This also defines a new kernel function:

$$
\hat{k}(\boldsymbol{x}, \boldsymbol{y})=\langle\hat{\phi}(\boldsymbol{x}), \hat{\phi}(\boldsymbol{y})\rangle=\left\langle\frac{\phi(\boldsymbol{x})}{\|\phi(\boldsymbol{x})\|}, \frac{\phi(\boldsymbol{y})}{\|\phi(\boldsymbol{y})\|}\right\rangle
$$

[Normalization]

$$
\hat{k}(\boldsymbol{x}, \boldsymbol{y})=\langle\hat{\phi}(\boldsymbol{x}), \hat{\phi}(\boldsymbol{y})\rangle=\left\langle\frac{\phi(\boldsymbol{x})}{\|\phi(\boldsymbol{x})\|} \frac{\phi(\boldsymbol{y})}{\|\phi(\boldsymbol{y})\|}\right\rangle
$$

$$
\begin{aligned}
\|\phi(\boldsymbol{x})\|_{2} & =\sqrt{\|\phi(\boldsymbol{x})\|^{2}}=\sqrt{\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{x})\rangle}=\sqrt{k(\boldsymbol{x}, \boldsymbol{x})} \\
\hat{k}(\boldsymbol{x}, \boldsymbol{y}) & =\left\langle\frac{\phi(\boldsymbol{x})}{\sqrt{k(\boldsymbol{x}, \boldsymbol{x})}}, \frac{\phi(\boldsymbol{y})}{\sqrt{k(\boldsymbol{y}, \boldsymbol{y})}}\right\rangle=\frac{\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\rangle}{\sqrt{k(\boldsymbol{x}, \boldsymbol{x})} \sqrt{k(\boldsymbol{y}, \boldsymbol{y})}} \\
& =\frac{k(\boldsymbol{x}, \boldsymbol{y})}{\sqrt{k(\boldsymbol{x}, \boldsymbol{x})} \sqrt{k(\boldsymbol{y}, \boldsymbol{y})}}
\end{aligned}
$$
\]

[Normalization]

$$
\hat{k}(\boldsymbol{x}, \boldsymbol{y})=\left\langle\frac{\phi(\boldsymbol{x})}{\|\phi(\boldsymbol{x})\|}, \frac{\phi(\boldsymbol{y})}{\|\phi(\boldsymbol{y})\|}\right\rangle=\frac{k(\boldsymbol{x}, \boldsymbol{y})}{\sqrt{k(\boldsymbol{x}, \boldsymbol{x})} \sqrt{k(\boldsymbol{y}, \boldsymbol{y})}}
$$

Normalization is implemented as the first transformation or as the final embedding:
$>$ We can assume that when required, normalization is added as a final stage.

Important observations

$>$ In general, working in a kernel-defined feature space means that we are not able to explicitly represent points;
$>$ The image of an input point \boldsymbol{x} is $\phi(\boldsymbol{x})$ but we do not have access to the components of this vector;
$>$ We only have access to the evaluation of inner products between $\phi(\boldsymbol{x})$ and the images of other points;
$>$ Despite this limitation, there is a surprising amount of useful information than can be derived by such inner products...

Linear combinations in feature space

$$
\begin{aligned}
\left\|\sum_{i=1}^{l} \alpha_{i} \phi\left(\boldsymbol{x}_{i}\right)\right\|^{2} & =\left\langle\sum_{i=1}^{l} \alpha_{i} \phi\left(\boldsymbol{x}_{i}\right), \sum_{j=1}^{l} \alpha_{j} \phi\left(\boldsymbol{x}_{j}\right)\right\rangle \\
& =\sum_{i=1}^{l} \alpha_{i} \sum_{j=1}^{l} \alpha_{j}\left\langle\phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right)\right\rangle \\
& =\sum_{i, j=1}^{l} \alpha_{i} \alpha_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
\end{aligned}
$$

Distance between feature
vectors

$\\|\phi(\boldsymbol{x})-\phi(\boldsymbol{y})\\|^{2}$	$=\langle\phi(\boldsymbol{x})-\phi(\boldsymbol{y}), \phi(\boldsymbol{x})-\phi(\boldsymbol{y})\rangle$
	$=\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{x})\rangle-2\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\rangle+\langle\phi(\boldsymbol{y}), \phi(\boldsymbol{y})\rangle$
	$=k(\boldsymbol{x}, \boldsymbol{x})-2 k(\boldsymbol{x}, \boldsymbol{y})+k(\boldsymbol{y}, \boldsymbol{y})$

Successive embeddings

$>$ The operations, for example term weighting and normalization, can be performed in sequence;
> This creates a series of successive embeddings: each one adds some refinement to the semantic of the representation;
$>$ The composition of the successive embeddings generates a single map that incorporates different aspects of domain knowledge into the representation.

Vector space kernels

> Given a document, we know how to represent it as a vector:
$\phi: d \rightarrow \phi(d)=\left(t f\left(t_{1}, d\right), t f\left(t_{2}, d\right), \cdots, t f\left(t_{N}, d\right)\right) \in \mathfrak{R}^{N}$
> This preliminary embedding can then be refined by successive operations.
> Given a document-by-term matrix D, we can create the document-by-document matrix:

$$
K=D D^{\prime}
$$

Vector space kernels

> Note:

$$
\begin{aligned}
K_{i j}=\left(D D^{\prime}\right)_{i j} & =\sum_{k=1}^{N} t f\left(t_{k}, d_{i}\right) t f\left(t_{k}, d_{j}\right) \\
& =\left\langle\phi\left(d_{i}\right), \phi\left(d_{j}\right)\right\rangle=k\left(d_{i}, d_{j}\right)
\end{aligned}
$$

K is called the kernel matrix or Gram matrix
$>k\left(d_{i}, d_{j}\right)$ is called the vector space kernel

Vector space kernels

Standard notation to display kernel matrices:

K	1	2	\cdots	l
1	$k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right)$	$k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$	\cdots	$k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{l}\right)$
2	$k\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{1}\right)$	$k\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right)$	\cdots	$k\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{l}\right)$
\vdots	\vdots	\vdots	\ddots	\vdots
l	$k\left(\boldsymbol{x}_{l}, \boldsymbol{x}_{1}\right)$	$k\left(\boldsymbol{x}_{l}, \boldsymbol{x}_{2}\right)$	\cdots	$k\left(\boldsymbol{x}_{l}, \boldsymbol{x}_{l}\right)$

> It contains all the information needed to compute pairwise distances within the data set;
\Rightarrow The only information received by an algorithm about the training set comes from the kernel matrix, and the associated labeling information.

Nonlinear embeddings

- We focus on linear transformations of the basic VSM by leveraging the power of capturing important domain knowledge;
- It is also possible to consider nonlinear embeddings using standard kernel constructions;
- For example, a polynomial kernel over the normalized bag-of-words representation:

$$
\bar{k}\left(d_{1}, d_{2}\right)=\left(k\left(d_{1}, d_{2}\right)+1\right)^{d}=\left(\left\langle\phi\left(d_{1}\right), \phi\left(d_{2}\right)\right\rangle+1\right)^{d}
$$

Designing Semantic Kernels

> Objective: Extend the VSM representation to capture the semantic content of the words.
$>$ We consider transformations of the document vectors $\phi(d)$:

$$
\tilde{\phi}(d)=\phi(d) S
$$

where S is a matrix that could be diagonal, square, or in general any $N \times k$ matrix.

Designing Semantic Kernels

Using the transformation $\tilde{\phi}(d)=\phi(d) S$ the corresponding kernel takes the form:

$$
\begin{aligned}
& \tilde{k}\left(d_{1}, d_{2}\right)=\left\langle\tilde{\phi}\left(d_{1}\right), \tilde{\phi}\left(d_{2}\right)\right\rangle=\left\langle\phi\left(d_{1}\right) S, \phi\left(d_{2}\right) S\right\rangle \\
& =\left(\phi\left(d_{1}\right) S\right)\left(\phi\left(d_{2}\right) S\right)^{\prime}=\phi\left(d_{1}\right) S S^{\prime} \phi\left(d_{2}\right)^{\prime}=\tilde{\phi}\left(d_{1}\right) \tilde{\phi}\left(d_{2}\right)^{\prime}
\end{aligned}
$$

> That is: the kernel follows directly from the explicit construction of a feature vector

- We refer to S as the semantic matrix.

Designing Semantic Kernels

Different choices of the matrix S lead to different variants of the VSM;
\rightarrow We can generate S as a composition of several stages:
$>$ We might define:

$$
S=R P
$$

$>R$ is diagonal matrix giving the term weightings or term relevance;
$\Rightarrow P$ is a proximity matrix defining the semantic relationships between the terms in the corpus of documents.

Term weighting: construction of R

$>$ Not all words have the same importance in determining the topic of a document;
$>$ Unsupervised measure: The frequency of a word across the documents in a corpus can be used to quantify the amount of information carried out by a word;
$>$ Supervised measure: importance of a word with respect to a given topic, i.e., mutual information;

Term weighting: construction of R

Inverse document frequency (idf): weights terms as a function of their inverse document frequency
> l documents;
$>d f(t)=$ the number of documents containing the term t;
> The usual measure of inverse document frequency for a term t is:

$$
w(t)=\ln \left(\frac{l}{d f(t)}\right)
$$

Term weighting: resulting kernel

$>$ Given a term weighting $w(t)$ (whether obtained via idf or some alternative scheme), we can define a new VSM;
$>$ We can choose the matrix R to be diagonal with entries

$$
R_{t t}=w(t)
$$

$>$ Thus, the associated kernel computes the inner product between documents in the new VSM representation $\phi(d) R$:
$\tilde{k}\left(d_{1}, d_{2}\right)=\phi\left(d_{1}\right) R R^{\prime} \phi\left(d_{2}\right)^{\prime}=\sum_{t=1}^{N} w(t)^{2} t f\left(t, d_{1}\right) t f\left(t, d_{2}\right)$

Term proximity matrix

> The previous t f-idf representation down-weights irrelevant terms and highlights discriminative ones;

But it's not capable of recognizing when two terms are semantically related;
$>$ Thus, cannot establish a connection between two documents that share no terms, even when they address the same topic through the use of synonyms:
$>$ The only way to achieve this connection is through the introduction of semantic similarities between terms.

Term proximity matrix

$>$ The embedding of semantic similarity within the VSM can be achieved through the matrix P
> A proximity matrix P should have positive offdiagonal terms $P_{i j}>0$ when the term i is semantically related to term j
$>$ Given such a matrix, a document is represented as a new less sparse vector

$$
\phi(d) P
$$

$$
\begin{gathered}
\text { Term proximity matrix } \\
\phi(d) P=\underset{\phi(d)}{\left(d_{1}, d_{2, \ldots,}, d_{N}\right)}\left(\begin{array}{cccc}
\stackrel{s_{11}}{ } & s_{12} & \cdots & s_{1 N} \\
s_{21} & s_{22} & \cdots & s_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
s_{N 1} & s_{N 2} & \cdots & s_{N N}
\end{array}\right) \\
\stackrel{P}{\longleftrightarrow}
\end{gathered}
$$

> The new vector has non-zero entries for all terms that are semantically similar to those present in the document d

$$
\begin{gathered}
\text { Term proximity matrix } \\
\phi(d) P=\underset{\phi(d)}{\left(d_{1}, d_{2, \cdots}, d_{N}\right)}\left(\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 N} \\
s_{21} & s_{22} & \cdots & s_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
s_{N 1} & s_{N 2} & \cdots & s_{N N}
\end{array}\right) \\
P
\end{gathered}
$$

This is similar to a 'document expansion', where the document is expanded to include not only the actual terms that appear in the document, but also those that are semantically related.

Term proximity matrix: resulting kernel

$>$ Given a proximity matrix P, the corresponding vector space kernel is:

$$
\tilde{k}\left(d_{1}, d_{2}\right)=\phi\left(d_{1}\right) P P^{\prime} \phi\left(d_{2}\right)^{\prime}
$$

Alternatively we can view $P P^{\prime}=Q \quad Q_{i j}=\sum_{k=1}^{N} s_{i k} s_{j k}$
Thus $Q_{i j}$ encodes the amount of semantic relation between terms i and j

$$
\tilde{k}\left(d_{1}, d_{2}\right)=\sum_{i, j} \phi\left(d_{1}\right)_{i} Q_{i j} \phi\left(d_{2}\right)_{j}^{\prime}
$$

Explicit construction of the proximity matrix

> Construct P by using an external source of domain knowledge

- A semantic network such Wordnet provides a way to obtain term-similarity information

A semantic network encodes relationships between words in a hierarchical fashion, where the more general terms are placed higher in the tree structure

Explicit construction of the proximity matrix

> We can use the distance between two terms on the hierarchical tree provided by Wordnet to give an estimate of their semantic proximity

Term proximity matrix: resulting kernel

$>$ We can embed this information in the matrix P by setting $P_{i j}$ equal to the inverse of the distance between terms i and j in the tree (i.e., inverse of the length of the shortest path connecting them).
$>$ The use of this semantic proximity gives rise to the vector space kernel:

$$
\widetilde{k}\left(d_{1}, d_{2}\right)=\phi\left(d_{1}\right) P P^{\prime} \phi\left(d_{2}\right)^{\prime}
$$

Generalized Vector Space Model (GVSM)

Construct P directly from the data;
$>$ Main idea: two terms are considered semantically related if they frequently co-occur in the same documents;
> Thus, two documents can be seen as similar even they do not share any terms, but the terms they contain co-occur in other documents.

Generalized Vector Space Model (GVSM)

$>$ In GVSM a document is represented by a vector of its similarities with the different documents in the corpus:

$$
\tilde{\phi}(d)=\phi(d) D^{\prime}
$$

where D is the document-term matrix.
$>$ This is equivalent to setting $P=D^{\prime}$
> Why such document representation captures semantic similarities?

Generalized Vector Space Model (GVSM)

Lets compute the corresponding kernel:

$$
\tilde{k}\left(d_{1}, d_{2}\right)=\phi\left(d_{1}\right) D^{\prime} D \phi\left(d_{2}\right)^{\prime}
$$

where $\left(D^{\prime} D\right)_{i j}=\sum_{d} t f(i, d) t f(j, d)$
$>$ Thus $\left(D^{\prime} D\right)_{i j}$ is nonzero if and only if there is at least one document in the corpus in which the terms i and j co-occur.
$>$ The strength of the association between two terms i and j depends on how often (in how many documents) they co-occur in the given corpus.

Latent semantic kernels

$>$ Though appealing, the GVSM is too naïve it its use of the co-occurrence information.
> Latent semantic kernels provide a more subtle use of this information to create refined semantics.
$>$ Conceptually, latent semantic indexing (LSI) follows the same approach as GVSM: it extracts semantic information from the co-occurrences of terms.
$>$ The technique used to extract the information is different though: LSI makes use of SVD.
$>$ We'll see that this technique amounts to a special choice of the matrix P.

Latent semantic kernels

$>$ Recall that the SVD of the term-by-document matrix D^{\prime} is:

$$
D^{\prime}=U \Sigma V^{\prime}
$$

$>\Sigma$ is a diagonal matrix, the columns of U are the eigenvectors of $D D$
$>$ LSI projects the documents into the space spanned by the first k columns of U, and uses these new k dimensional vectors for subsequent processing:

$$
d \rightarrow \phi(d) U_{k}
$$

where U_{k} is the matrix containing the first k columns of U.

Latent semantic kernels

$>$ Recall that the eigenvectors define the subspace that minimizes the sum of the squared differences between the points and their projections;
$>$ So, the eigenvectors define the subspace with minimal sum of squared residuals;
> Hence: the eigenvectors for a set of documents can be viewed as concepts described by linear combinations of terms, chosen in such a way that the documents are described as well as possible using only k such concepts.

Latent semantic kernels

$>$ Note that terms that co-occur frequently will tend to align in the same eigenvectors, since SVD merges highly correlated dimensions in order to define a small number of new dimensions that can reconstruct the whole feature vector.
> Hence: SVD exploits co-occurrence information to maximize the amount of information extracted by a given number of dimensions.

Latent semantic kernels

$>$ The resulting latent semantic kernel is:

$$
\tilde{k}\left(d_{1}, d_{2}\right)=\phi\left(d_{1}\right) U_{k} U_{k}^{\prime} \phi\left(d_{2}\right)^{\prime}
$$

which shows that $P=U_{k}$
$>P=U_{k}$ introduces a dimensionality reduction through the restriction to k eigenvectors;
$>$ As k increases, we return to the treatment of all terms being semantically distinct. Hence, the value of k controls the amount of semantic smoothing that is introduced into the representation.

