
3/15/10

1

Kernels for Text

Topics

 BOW-based representation interpreted as
kernels;

 Generalized vector space model;

 Semantic kernels.

3/15/10

2

Representing text
•  Bag-of-words or Vector Space Model (VSM)

•  A bag-of-words is a vector in a space in which each
dimension is associated with one term from the
dictionary

€

φ : d→φ d() = tf t1,d(),tf t2,d(),,tf tN ,d()()∈ ℜN

t1 t2 …. tN

dictionary

Document-term matrix

  is the term-document matrix

  is the term-by-term matrix

  is the document-by-document matrix

3/15/10

3

Semantic issues

 The VSM ignores any semantic relation between
words;

 One important issue is to improve the vector space
representation to ensure that documents containing
semantically equivalent words are mapped to similar
feature vectors.

Semantic issues

 Synonymous words: different words that carry the
same meaning;

 The VSM assigns distinct components to synonymous
words;

  Extra processing is necessary to embed the semantic
relatedness of such words in the representation.

3/15/10

4

Semantic issues

 Homonyms: single word with two distinct meanings
depending on context (e.g., bank, book);

 The VSM throws away the contextual information to
disambiguate the meaning;

 Nevertheless, some context can still be derived from
the statistics of the words in the document.

Improving the Embedding:
Weighting of Terms

 Apply different weights to each coordinate, i.e., assign
different weights to the terms;

  In its simplest form: binary weights

 A weight value of 0 is assigned to uninformative terms
such as and, of , the, a, etc.

  Effectively removes stop words, considered
uninformative for the task at hand;

 More general weighting schemes are also used.

3/15/10

5

Improving the Embedding:
Normalization

 The longer a document the more words it contains -
thus, the greater the norm of its associated vector;

  If the length of the document is not relevant for the
task at hand, e.g. categorization by topic, we should
remove its effect from the embedding vectors;

 [Normalization]

  Let be our representation of documents

 Note: we can explicitly construct the mapping by
capturing important domain knowledge, e.g.:

 or define it implicitly through a standard kernel
function k;

  In both cases:

€

φ x(),φ y()

€

x, y

€

φ : d→φ d() = tf t1,d(),tf t2,d(),,tf tN ,d()()∈ ℜN

€

φ

€

k x, y() = φ x(),φ y()

3/15/10

6

 [Normalization]

 To remove the length of the documents from the
embedding vectors:

 This also defines a new kernel function:

€

φ x()→ ˆ φ x() =
φ x()
φ x()

, φ y()→ ˆ φ y() =
φ y()
φ y()

€

ˆ k x, y() = ˆ φ x(), ˆ φ y() =
φ x()
φ x()

,
φ y()
φ y()

 [Normalization]

  [Norm of feature vectors]:

€

ˆ k x, y() = ˆ φ x(), ˆ φ y() =
φ x()
φ x()

,
φ y()
φ y()

€

φ x() 2
= φ x()

2
= φ x(),φ x() = k x,x()

€

ˆ k x, y() =
φ x()
k x,x()

,
φ y()
k y, y()

=
φ x(),φ y()

k x,x() k y, y()

 =
k x, y()

k x, x() k y, y()

3/15/10

7

 [Normalization]

€

ˆ k x, y() =
φ x()
φ x()

,
φ y()
φ y()

=
k x, y()

k x,x() k y, y()

 Normalization is implemented as the first
transformation or as the final embedding;

 We can assume that when required, normalization is
added as a final stage.

 Important observations

  In general, working in a kernel-defined feature space
means that we are not able to explicitly represent
points;

 The image of an input point is but we do not
have access to the components of this vector;

 We only have access to the evaluation of inner
products between and the images of other
points;

 Despite this limitation, there is a surprising amount of
useful information than can be derived by such inner
products…

€

φ x()

€

φ x()

3/15/10

8

 Linear combinations in feature
space

€

α iφ xi()
i=1

l

∑
2

= α iφ xi()
i=1

l

∑ , α jφ x j()
j=1

l

∑

 = α i α j φ xi(),φ x j()
j=1

l

∑
i=1

l

∑

 = α i
i, j=1

l

∑ α jk xi,x j()

 Distance between feature
vectors

€

φ x() −φ y()
2

= φ x() −φ y(),φ x() −φ y()
 = φ x(),φ x() − 2 φ x(),φ y() + φ y(),φ y()
 = k x, x() − 2k x, y() + k y, y()

3/15/10

9

Successive embeddings
 The operations, for example term weighting and

normalization, can be performed in sequence;

 This creates a series of successive embeddings:
each one adds some refinement to the semantic of
the representation;

 The composition of the successive embeddings
generates a single map that incorporates different
aspects of domain knowledge into the
representation.

Vector space kernels
 Given a document, we know how to represent it as a

vector:

 This preliminary embedding can then be refined by
successive operations.

 Given a document-by-term matrix D, we can create
the document-by-document matrix:

€

φ : d→φ d() = tf t1,d(),tf t2,d(),,tf tN ,d()()∈ ℜN

€

K = DD'

3/15/10

10

Vector space kernels
 Note:

 K is called the kernel matrix or Gram matrix

  is called the vector space kernel
€

Kij = DD'()ij = tf tk,di()tf tk,d j()
k=1

N

∑

 = φ di(),φ d j() = k di,d j()

€

k di,d j()

Vector space kernels
 Standard notation to display kernel matrices:

  It contains all the information needed to compute
pairwise distances within the data set;

 The only information received by an algorithm about
the training set comes from the kernel matrix, and
the associated labeling information.

€

K 1 2 l
1 k x1,x1() k x1,x2() k x1,xl()
2 k x2,x1() k x2,x2() k x2,xl()

l k xl ,x1() k xl ,x2() k xl ,xl()

3/15/10

11

Nonlinear embeddings
•  We focus on linear transformations of the basic

VSM by leveraging the power of capturing important
domain knowledge;

•  It is also possible to consider nonlinear embeddings
using standard kernel constructions;

•  For example, a polynomial kernel over the normalized
bag-of-words representation:

€

k d1,d2() = k d1,d2() +1()d
= φ d1(),φ d2() +1()

d

Designing Semantic Kernels
 Objective: Extend the VSM representation to

capture the semantic content of the words.

 We consider transformations of the document
vectors :

 where S is a matrix that could be diagonal, square, or
in general any matrix. €

φ d()

€

˜ φ d() = φ d()S

€

N × k

3/15/10

12

Designing Semantic Kernels

 Using the transformation the
corresponding kernel takes the form:

 That is: the kernel follows directly from the explicit
construction of a feature vector

 We refer to S as the semantic matrix.

€

˜ φ d() = φ d()S

€

˜ k d1,d2() = ˜ φ d1(), ˜ φ d2() = φ d1()S,φ d2()S

= φ d1()S() φ d2()S()'
= φ d1()SS 'φ d2()'

= ˜ φ d1() ˜ φ d2()'

Designing Semantic Kernels

 Different choices of the matrix S lead to different
variants of the VSM;

 We can generate S as a composition of several
stages;

 We might define:

  is diagonal matrix giving the term weightings or
term relevance;

  is a proximity matrix defining the semantic
relationships between the terms in the corpus of
documents.

€

S = RP

3/15/10

13

Term weighting: construction of R

 Not all words have the same importance in
determining the topic of a document;

 Unsupervised measure: The frequency of a word
across the documents in a corpus can be used to
quantify the amount of information carried out by a
word;

 Supervised measure: importance of a word with
respect to a given topic, i.e., mutual information;

Term weighting: construction of R

  Inverse document frequency (idf): weights terms as
a function of their inverse document frequency

  l documents;

  df(t) = the number of documents containing the
term t;

  The usual measure of inverse document
frequency for a term t is:

€

w t() = ln l
df t()

3/15/10

14

Term weighting: resulting kernel

 Given a term weighting (whether obtained via
idf or some alternative scheme), we can define a
new VSM;

 We can choose the matrix R to be diagonal with entries

  Thus, the associated kernel computes the inner
product between documents in the new VSM
representation : €

Rtt = w t()€

w t()

€

φ d()R

€

˜ k d1,d2() = φ d1()RR'φ d2()'
= w t()2 tf t,d1()

t=1

N

∑ tf t,d2()

Term proximity matrix

 The previous tf-idf representation down-weights
irrelevant terms and highlights discriminative ones;

  But it’s not capable of recognizing when two terms
are semantically related;

 Thus, cannot establish a connection between two
documents that share no terms, even when they
address the same topic through the use of
synonyms;

 The only way to achieve this connection is through
the introduction of semantic similarities between
terms.

3/15/10

15

Term proximity matrix

 The embedding of semantic similarity within the
VSM can be achieved through the matrix P

 A proximity matrix P should have positive off-
diagonal terms when the term i is
semantically related to term j

 Given such a matrix, a document is represented as a
new less sparse vector

Term proximity matrix

 The new vector has non-zero entries for all terms
that are semantically similar to those present in the
document d

3/15/10

16

Term proximity matrix

  This is similar to a ‘document expansion’, where the
document is expanded to include not only the actual terms
that appear in the document, but also those that are
semantically related.

Term proximity matrix: resulting kernel

 Given a proximity matrix P, the corresponding
vector space kernel is:

 Alternatively we can view

 Thus encodes the amount of semantic relation
between terms i and j

€

˜ k d1,d2() = φ d1()PP 'φ d2()'

€

PP ' =Q Qij = siks jk
k=1

N

∑

€

Qij

€

˜ k d1,d2() = φ d1()iQijφ d2()'
j

i, j
∑

3/15/10

17

Explicit construction of the proximity
matrix

  Construct P by using an external source of domain
knowledge

 A semantic network such Wordnet provides a way to
obtain term-similarity information

 A semantic network encodes relationships between
words in a hierarchical fashion, where the more
general terms are placed higher in the tree
structure

Explicit construction of the proximity
matrix

 We can use the distance between two terms on the
hierarchical tree provided by Wordnet to give an
estimate of their semantic proximity

everything

sports politics health business

baseball

hockey

soccer

foreign

domestic

3/15/10

18

Term proximity matrix: resulting kernel

 We can embed this information in the matrix P by
setting equal to the inverse of the distance
between terms i and j in the tree (i.e., inverse of
the length of the shortest path connecting them).

 The use of this semantic proximity gives rise to the
vector space kernel:

Generalized Vector Space Model (GVSM)

  Construct P directly from the data;

 Main idea: two terms are considered semantically
related if they frequently co-occur in the same
documents;

 Thus, two documents can be seen as similar even
they do not share any terms, but the terms they
contain co-occur in other documents.

3/15/10

19

Generalized Vector Space Model (GVSM)

  In GVSM a document is represented by a vector of
its similarities with the different documents in the
corpus:

 where D is the document-term matrix.

 This is equivalent to setting

 Why such document representation captures
semantic similarities?

€

˜ φ d() = φ d()D'

€

P = D'

Generalized Vector Space Model (GVSM)

  Lets compute the corresponding kernel:

 where

 Thus is nonzero if and only if there is at
least one document in the corpus in which the terms
i and j co-occur.

 The strength of the association between two terms
i and j depends on how often (in how many
documents) they co-occur in the given corpus.

€

˜ k d1,d2() = φ d1()D'Dφ d2()'

€

D'D()ij = tf i,d()tf j,d()
d
∑

€

D'D()ij

3/15/10

20

Latent semantic kernels

 Though appealing, the GVSM is too naïve it its use
of the co-occurrence information.

  Latent semantic kernels provide a more subtle use
of this information to create refined semantics.

  Conceptually, latent semantic indexing (LSI) follows
the same approach as GVSM: it extracts semantic
information from the co-occurrences of terms.

 The technique used to extract the information is
different though: LSI makes use of SVD.

 We’ll see that this technique amounts to a special
choice of the matrix P.

Latent semantic kernels

  Recall that the SVD of the term-by-document
matrix is:

  is a diagonal matrix, the columns of U are the
eigenvectors of

  LSI projects the documents into the space spanned
by the first k columns of U, and uses these new k-
dimensional vectors for subsequent processing:

 where is the matrix containing the first k
columns of U.

€

D'

€

D' =U ΣV '

€

D'D

€

d→φ d()Uk

€

Uk

3/15/10

21

Latent semantic kernels

  Recall that the eigenvectors define the subspace
that minimizes the sum of the squared differences
between the points and their projections;

 So, the eigenvectors define the subspace with
minimal sum of squared residuals;

 Hence: the eigenvectors for a set of documents can
be viewed as concepts described by linear
combinations of terms, chosen in such a way that
the documents are described as well as possible
using only k such concepts.

Latent semantic kernels

 Note that terms that co-occur frequently will tend
to align in the same eigenvectors, since SVD merges
highly correlated dimensions in order to define a
small number of new dimensions that can
reconstruct the whole feature vector.

 Hence: SVD exploits co-occurrence information to
maximize the amount of information extracted by a
given number of dimensions.

3/15/10

22

Latent semantic kernels

 The resulting latent semantic kernel is:

 which shows that

  introduces a dimensionality reduction
through the restriction to k eigenvectors;

 As k increases, we return to the treatment of all
terms being semantically distinct. Hence, the value
of k controls the amount of semantic smoothing that is
introduced into the representation.

€

˜ k d1,d2() = φ d1()UkUk
' φ d2()'

€

P =Uk

€

P =Uk

