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Abstract. A number of manifold learning algorithms have been recently
proposed, including locally linear embedding (LLE). These algorithms
not only merely reduce data dimensionality, but also attempt to discover
a true low dimensional structure of the data. The common feature of the
most of these algorithms is that they operate in a batch or offline mode.
Hence, when new data arrive, one needs to rerun these algorithms with
the old data augmented by the new data. A solution for this problem is
to make a certain algorithm online or incremental so that sequentially
coming data will not cause time consuming recalculations. In this paper,
we propose an incremental version of LLE and experimentally demon-
strate its advantages in terms of topology preservation. Also, compared
to the original (batch) LLE, the incremental LLE needs to solve a much
smaller optimization problem.

1 Introduction

Dimensionality reduction serves to eliminate irrelevant information while pre-
serving the important one. In many cases dimensionality reduction is able to
lessen the curse of dimensionality, raise the accuracy rate when there is not
enough data (compared to data dimensionality), and improve performance and
clustering quality of feature sets. Such improvements are possible since the data
lie on or close to a low dimensional manifold, which is embedded in a high dimen-
sional space. Consider, for example, a set of grayscale facial images of resolution
m × n taken under different views with fixed illuminating conditions. Each of
the images can be represented with brightness pixel values as a point in IRmn

space. However, the intrinsic dimensionality of the manifold formed by these
facial images is equal to the degree of freedom of the camera. Therefore, it is
much smaller than the image size.

To obtain a relevant low dimensional representation of high dimensional data,
several manifold learning algorithms [1, 2, 3, 4, 5] have been recently proposed.
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Manifold learning is a perfect tool for data mining that discovers structure of
large high dimensional datasets and, hence, provides better understanding of the
data. Nevertheless, most of the manifold learning algorithms operate in a batch
mode, hence they are unsuitable for sequentially coming data. In other words,
when new data arrive, one needs to rerun the entire algorithm with the original
data augmented by the new samples.

Recently, an incremental version of one of the manifold learning algorithms
called isometric feature mapping (Isomap) [5] has been proposed in [6], where
the authors suggested that it can be extended to the online versions of other
manifold learning algorithms. Unfortunately, LLE does not belong to this group
of algorithms. First of all, as remarked in [7], it is much more challenging to
make LLE incremental than other manifold learning algorithms. Secondly, LLE
aims at bottom eigenvectors and eigenvalues rather than at top ones. It is well
known that ill-conditioning of eigenvalues and eigenvectors frequently occurs in
the former case and it is impossible in the latter case. Ill-conditioning means
that eigenvalues or/and eigenvectors are susceptible to small changes of a ma-
trix for which they are computed. As a result, problems one faces with when
making LLE incremental are more formidable than those for other manifold
learning algorithms searching for the top eigenvalues/eigenvectors. This leads to
the necessity of inventing another generalization method for LLE. In this paper
we propose such a method, called incremental LLE, which is based on the in-
trinsic properties of LLE. Additionally, we compare the incremental LLE with
two previously proposed non-parametric generalization procedures for LLE [8, 9].
Promising and encouraging results are demonstrated in the experimental part.

The paper is organized as follows. A brief description of the LLE algorithm is
given in Section 2. Section 3 presents all incremental versions of LLE, including
the new one. They are compared on several datasets and the obtained results
are discussed in Section 4. Section 5 concludes the paper.

2 Locally Lineal Embedding Algorithms

As input, LLE requires N D dimensional points (one point per pattern) as-
sembled in a matrix X: X = {x1, x2, ..., xN}, xi ∈ IRD, i = 1, ..., N . As out-
put, it produces N d dimensional points (d << D) assembled in a matrix Y:
Y = {y1, y2, ..., yN}, yi ∈ IRd, i = 1, ..., N . The ith column of X corresponds to
the ith column of Y.

The LLE algorithm consists of three steps [4]:

1. For each xi ∈ IRD, i = 1, ..., N find its K nearest neighbors: x1
i , x

2
i , ..., x

K
i

by using the Euclidean distance as a similarity measure. A technique for
selecting the optimal parameter K for LLE was proposed in [10].

2. Compute weights that best reconstruct each xi from its K nearest neighbors,
x1

i , x
2
i , ..., x

K
i , by minimizing the following cost function:

ε(W) =
N∑

i=1

‖ xi −
N∑

j=1

wijxj ‖2 , (1)
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subject to constraints: wij = 0, if xj �∈ {x1
i , x

2
i , ..., x

K
i }, and

∑N
j=1 wij = 1.

The first (sparseness) constraint assures that each point xi is reconstructed
only from its neighbors, while the second condition enforces translation in-
variance of xi and its neighbors. Moreover, as follows from Eq. 1, the con-
strained weights are invariant to rotation and rescaling, but not to local
affine transformations, such as shears.

3. Set d - the number of dimensions in the embedding space (see [11] for au-
tomatic computing of d). Fix the reconstruction weights wij and compute
low-dimensional embeddings by minimizing the embedding cost function:

δ(Y) =
N∑

i=1

‖ yi −
N∑

j=1

wijyj ‖2, (2)

subject to 1
N

∑N
i=1 yiy

T
i = I (normalized unit covariance) and

∑N
i=1 yi = 0

(translation-invariant embedding), which provide a unique solution.
Finding a low dimensional embedding under these constraints is equivalent to
computing the bottom d + 1 eigenvectors associated with the d + 1 smallest
eigenvalues of a sparse and symmetric matrix M = (I − W)T (I − W).
The first eigenvector (composed of 1’s) whose eigenvalue is close to zero is
excluded. The remaining d eigenvectors yield the final embedding Y.

3 Incremental LLE

LLE operates in a batch or offline mode, that is, it obtains a low-dimensional
representation for a certain number of high-dimensional data points to which
the algorithm is applied. When new data points arrive, one needs to completely
rerun the original LLE for the previously seen dataset augmented by the new
data points. In other words, the original LLE lacks generalization to new data.
This makes the algorithm to be less attractive especially for large datasets of
high dimensionality in a dynamic environment, where a complete rerun of LLE
becomes prohibitively expensive.

In [12], an attempt was made to adapt LLE to a situation when the data come
incrementally point-by-point. Two simple techniques were proposed, in which the
adaptation to a new point can be done either by updating the weight matrix W
or the cost matrix M, respectively. In both these cases, an expensive eigenvector
calculation is required for each query. There are two ways to lower the complexity
of the LLE generalization: 1) to derive and use a transformation between the
original and projected data, and 2) to solve an incremental eigenvalue problem.
In this section, we describe two known generalization algorithms belonging to
the former case, and propose the incremental version of LLE that uses the latter
approach.

Suppose we are given already processed data X = {x1, x2, ..., xN}, corre-
sponding projected points Y = {y1, y2, ..., yN}, and a new point xN+1 ∈ IRD,
which is sampled from the same data manifold as X. We are asked to find a new
embedding point yN+1 ∈ IRd corresponding to the point xN+1.
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3.1 Linear Generalization

In order to obtain the new embedded coordinates, the LLE intuition is used, i.e.
any nonlinear manifold can be considered as locally linear. This linearity is used
to build a linear relation between high and low dimensional points belonging
to a particular neighborhood of the data. There are two possibilities of linear
generalization [8, 9]:

1. Let us put the K nearest neighbors of xN+1 and the corresponding embed-
ded points into the matrices: XN+1 = {x1

N+1, x
2
N+1, ..., x

K
N+1} and YN+1 =

{y1
N+1, y

2
N+1, ..., y

K
N+1}. By taking into consideration the assumption that

the manifold is locally linear, the following equation is approximately true:
YN+1 = ZXN+1, where Z is an unknown linear transformation matrix of size
d × D, which can be straightforwardly determined as Z = YN+1(XN+1)−1.
Because XN+1 is the neighborhood of xN+1 and LLE preserves local struc-
tures, i.e. points close in the original space remain close in the embedded
space, the new projection can be found as yN+1 = ZxN+1. Here we multiply
the new input by the found transformation matrix, since the underlying man-
ifold must be well sampled and, hence, the neighboring points give sufficient
information about the new point [8].

2. To find yN+1, first, the K nearest neighbors of xN+1 are detected among
points in the high dimensional space: xi ∈ X, i = 1, ..., N . Then, the linear
weights, wN+1, that best reconstruct xN+1 from its neighbors, are computed
by using Eq. 1 with the sum-to-one constraint:

∑
j=1 wN+1j = 1. Finally,

the new output yN+1 is found: yN+1 =
∑

j=1 wN+1jyj , where the sum is
over the yi’s corresponding to the K nearest neighbors of xN+1 [9].

3.2 Incremental LLE

In order to construct embedding LLE searches for the smallest eigenvalues and
corresponding eigenvectors of the Hermitian matrix of size N × N . Hence, one
has to deal with ill-conditioned eigenproblem [13]. Ill-conditioning means that
eigenvalues and/or eigenvectors of a particular matrix are very sensitive to small
perturbations of the matrix. For example, changing of the matrix in norm by
at most ε can change any eigenvalue by at most ε, i.e. computing λi = 10−5 to
within plus or minus ε = 10−4 means that no leading digits of the computed λi

may be correct.
Eigenvectors and eigenspaces they span are ill-conditioned if small change of

the matrix, e.g. changing

A0 =

⎛

⎝
2 0 0
0 1 ε
0 ε 1

⎞

⎠ to A1 =

⎛

⎝
2 0 0
0 1 0
0 0 1 + ε

⎞

⎠

rotates the two eigenvectors corresponding to the two eigenvalues near one by
π/4, no matter how small ε is. Thus they are very sensitive to small changes.
Note, that if the eigenvalues are ill-conditioned, then the corresponding eigen-
vectors are also ill-conditioned; the opposite is not always true.
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Fig. 1. 2D spaces formed by two bottom eigenvectors of a) the initial matrix, and
b) the modified matrix. The difference between norms of these matrices is equal to
−2.36 · 10−33

Fig. 1 demonstrates the consequence of ill-conditioning. First, we find two
bottom eigenvectors of a particular matrix. These eigenvectors form 2D space in
Fig. 1 (a). Then we change the elements of the matrix by adding or subtracting
very small values. Finally, we compute two bottom eigenvectors of the modified
matrix, which are shown in Fig. 1 (b). One can see that these plots dramatically
differ from each other, while the difference between norms of the initial and
modified matrices is equal to −2.36 · 10−33.

When a new data point arrives, the main goal of the incremental LLE is to
compute the new cost matrix Mnew to be exactly the same as if it would be
computed by LLE applied to the old data augmented by the new data point.
This can be done by applying the following operations: first, distances between
points, which either belong to the K nearest neighbors of the new point or
contain the new point as one of their K nearest neighbors, are recalculated.
Then the weights for the points whose distances have been changed are updated
by solving Eq. 1 and the new matrix Mnew of size (N +1)×(N +1) is calculated
by using these weights.

The classical eigenproblem is defined as the solution of the equation MyT
i =

λiy
T
i or in matrix form MYT = diag{λ1, λ2, ..., λd}YT . Since typical eigenvec-

tors are orthogonal, we can rewrite the eigenproblem: YMYT = diag{λ1, λ2, ...,
λd}. Without loss of generality, we assume that the eigenvalues of the new cost
matrix, Mnew are the same as for the cost matrix computed for N points. This
can be done since the eigenvalues, we are dealing with, are very close to zero, usu-
ally they are of order 10−p, where p is large enough (practically about 10). There-
fore we can write YnewMnewYT

new = diag{λ1, λ2, ..., λd}, where {λi}, i = 1, ..., d
are the smallest eigenvalues of the cost matrix computed for N points. The new
coordinates are obtained by solving d × d minimization problem:

min
Ynew

(YnewMnewYT
new − diag{λ1, λ2, ..., λd}). (3)
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The LLE constraints imposed on the embedding coordinates should be kept.
Thus, the N×N problem of the third LLE step was reduced to the d×d problem,
where d << N . Since d is usually very small, say 10 or so, the minimization is
not time consuming and can be done for every arriving point.

4 Experiments

In the experiments we applied the three LLE generalization algorithms described
in the previous section to the datasets represented in Table 1. The Olga’s and
Oleg’s faces datasets were taken by a Sony DFW-X700 digital camera under fixed
illumination conditions. Each sequence consists of images showing one person
slowly rotating the head from left to right, while trying to fix a chin at the
same level in order to obtain one degree of freedom: angle of rotation. In spite of
the fact that initial conditions for capturing these datasets were the same, the
Oleg’s faces data is uniformly distributed, while Olga’s faces data is not. This
is due to the velocity of head rotation: Olga rotated her head from the left to
frontal view slower that from frontal view to the right; therefore, there are more
frames for the former case than for the latter one. Hence, we consider Olga’s
faces dataset to be non-uniform. The description of other datasets can be found
from the corresponding references.

Table 1. Datasets used in the experiments

Data N points Dimensionality Features

Swissroll [9] 2000 3 Coordinates
S-curve [9] 2000 3 Coordinates
Wine [14] 178 13 Chemical measurements
Fray faces [15] 1965 560 Grayscale pixels values
MNIST digits(3&8) [16] 1984 784 Grayscale pixels values
Coil-20 [17] 1440 4096 Grayscale pixels values
Oleg’s faces 1130 6300 Grayscale pixels values
Olga’s faces 1200 6300 Grayscale pixels values

All datasets were divided into training (70%) and test (30%) sets. The train-
ing sets were projected by LLE to two dimensional spaces and the test sets were
mapped to the corresponding space by the generalization algorithms described
in Section 3.

The first experiment is done with the swissroll dataset (Fig. 2 (a)). At the
beginning, we project the initial data containing 1,400 points by the conventional
LLE algorithm (K = 15), and then we add the test data points in a random
order. In Fig. 2 (b, c, d) results of generalizing ten new data points are shown.
As one can see the projections of the new points are visually almost the same
for all methods.



Incremental Locally Linear Embedding Algorithm 527

−10 −5 0 5 10 15
0

10
20

30
−15

−10

−5

0

5

10

15

X
1

X
2

X
3

a)

−1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Y
1

Y
2

b)

−1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Y
1

Y
2

c)

−1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Y
1

Y
2

d)

Fig. 2. LLE generalization on the swissroll dataset. (a) The original 3D data points
sampled from the corresponding data manifold. The circles (◦) depict the target coor-
dinates, i.e. those, which are obtained by applying the conventional LLE to the pooled
dataset, including both old and new data points. The dots (·) show the estimated co-
ordinates for b) linear generalization 1; c) linear generalization 2; d) incremental LLE.
The filled squares (�) correspond to the projections of the new points

That is why, in order to quantitatively compare the generalization methods,
we calculate two characteristics, namely, Spearman’s rho and procrustes mea-
sure. The Spearman’s rho estimates the correlation of rank order data, i.e. how
well the corresponding low dimensional projection preserves the order of the
pairwise distances between the high dimensional data points converted to ranks.
The best value of Spearman’s rho is equal to one. In its turn, the procrustes
measure determines how well a linear transformation (translation, reflection, or-
thogonal rotation, and scaling) of the points in the projected space conforms to
the points in the corresponding high dimensional space. The smaller the value of
procrustes measure, the better fitting is obtained. Both Spearman’s rho and pro-
crustes measure are commonly used for estimating topology preservation when
doing dimensionality reduction.

In another experiment, 119 wine data training points are projected by the
conventional LLE (K = 15) and the other 51 test points are added during
17 iterations (n = 3 points per time) by three generalization methods: linear
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Fig. 3. Spearman’s rho (a) and procrustes measure (b) for the wine dataset

generalization 1 (LG1), linear generalization 2 (LG2), and incremental LLE
(ILLE). In Fig.3 plots show the Spearman’s rho and procrustes measure es-
timated after each iteration. One can see that the incremental LLE performs
better than other generalization procedures when the number of new samples
increases. But this is not always the case. In order to make the final conclu-
sion, we estimate the Spearman’s rho and procrustes measure after each iter-
ation for all datasets and count the number of iterations for which a particu-
lar method outperforms others in terms of the Spearman’s rho and procrustes
measure. The number of iterations, number of points per iteration, and the
results for all datasets are listed in Table 2. The largest resulting values are
underlined.

By looking at Table 2, a number of interesting observations can be done.
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Table 2. Spearman’s rho (ρSp) and procrustes measure (Procr) for the datasets

Data
N of iter-
ations

N of points
per iteration

LG1 LG2 ILLE

S-curve 60 10 ρSp 47 12 1
Procr 43 16 1

Wine 17 3 ρSp 0 8 9
Procr 0 10 7

Fray faces 28 21 ρSp 1 8 19
Procr 0 14 14

MNIST digits(3&8) 22 27 ρSp 0 0 22
Procr 0 22 0

Coil-20 27 16 ρSp 0 27 0
Procr 1 5 21

Oleg’s faces 33 10 ρSp 2 31 0
Procr 16 17 0

Olga’s faces 36 10 ρSp 0 6 30
Procr 14 5 17

– When manifold is well and evenly sampled, and the relationships between
original and embedded datasets are close to be locally linear as in case of
S-curve and Oleg’s faces, LG1 and especially LG2 are sufficient for successful
generalization of test points, and this fact is confirmed by both Spearman’s
rho and procrustes measure.

– However, if the data manifold is non-uniformly sampled and the relationships
are locally nonlinear as in case of Olga’s and Fray’s faces, ILLE emerges as
a clear winner, since it does not rely on linear relationships. This is again
supported by both Spearman’s rho and procrustes measure.

5 Conclusion

LLE belongs to the class of manifold learning algorithms, which reduce di-
mensionality by learning structure of data manifolds. The deficiency of LLE
is that if new inputs arrive, one needs to rerun the algorithm for the pool of
the old and new data. The main difficulty of making LLE incremental is that
it obtains embeddings by searching for the smallest eigenvectors, which are ill-
conditioned. In this paper we proposed a new method for LLE generalization,
called incremental LLE, and compared it with linear generalization methods.
The results demonstrate that ILLE is a powerful generalization method for data
whose distribution is not uniform and the local linearity constraints do not hold.
In contrast, the linear generalization methods deal perfectly with well-sampled
manifolds of artificially generated data but may have problems with real-world
datasets.

One of the directions of the future work is to compare the classification per-
formance of the linear generalization algorithms and ILLE on different datasets.
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