
Distance Metric Learning
Lecture 3

Why learn distance functions?

Nearest Neighbor

Image retrieval: given a query
image, return the K-nearest neighbors
on the image from the database

Euclidean distance on color
coherence vectors returns
both images as similar to
the query image

Different Metric Learning Methods

Supervised:

Labels

Constraints

Semi-supervised:

Constraints and unlabeled data

Unsupervised

Global vs. Local

Global distance metric learning: learns a
metric that applies equally over the entire
input space; e.g., a metric that satisfies all
pairwise constraints simultaneously.

Local distance metric learning: learns a
metric that depends on the location in input
space; e.g., a metric that satisfied only local
constraints.

Why a local metric?

Feature relevance changes from location to
location: compare a, b, and c.

*

*

*

a

b

c

Examples of
Supervised and Global

Distance Metric Learning
Algorithms

Relevance Component
Analysis

N. Shental, T. Hertz, D. Weinshall, and M. Pavel
ECCV 2002

RCA

Supervised (uses equivalence relations)

Global

Learns a Mahalanobis distance measure to
improve subsequent unsupervised learning
techniques

RCA: Basic Idea

Changes the feature space by assigning large
weights to “relevant dimensions” and low
weights to “irrelevant dimensions”

The “relevant dimensions” are estimated using
equivalence constraints

Equivalence Constraints and
Chunklets

A chunklet is defined as a subset of points
that are known to belong to the same
although unknown class

Chunklets are obtained from equivalence
relations by applying a transitive closure

Chunklets and RCA!"#$%&'()*&+(#,(&-.*)/0&"1&(

1#"2$'/*"$23(1%."40&$2

!"#$%&#'(#)'(*$#)$+(,-&""(,./&0$&+,'
1$%'+"$.+"(,.00'"2.+1(#.(-&03'(*$#)4$+(,./&0$&+,'(&0'(+.#(0'-'/&+#(
1$%'+"$.+"(,.00'"2.+1(#.("%&--(*$#)4$+(,./&0$&+,'(&0'(0'-'/&+#(

5)6+7-'#" 8.0%'1(9:(&22-:$+3(#0&+"$#$/'(,-."60'(

!;6$/&-'+,'(,.+"#0&$+#"

RCA: Objectives

RCA identifies and down-scales global unwanted
variability within the data

The RCA transformation is intended to reduce clutter,
so that in the new transformed space, the inherent
structure of the data can be more easily unrevealed

The method can be used as a preprocessing step for
the unsupervised clustering of data, or KNN
classification

Synthetic Gaussian Data [Bar-Hillel et.al. 05] !"#$%&$'()*+,--'+#).+$+

!"#$%&'$()**+$*",'*'-$-"."$/'.$01.&$2$3*"//'/4$
!,#$5"6'$-"."$)7*",'*'-8$3*"//'/9$/.:)3.):'$1/$*'//$';1-'7.4$
!3#$%&'$/'.$<($3&)7=*'./ .&".$":'$>:<;1-'-$.<$.&'$?@A$"*B<:1.&6
!-#$%&'$3'7.':'-$3&)7=*'./C$"7-$.&'1:$'6>1:13"*$3<;":1"73'4$
!'#$%&'$?@A$.:"7/(<:6".1<7$">>*1'-$.<$.&'$3&)7=*'./4$!3'7.':'-#
!(#$%&'$<:1B17"*$-"."$"(.':$">>*+17B$.&'$?@A$.:"7/(<:6".1<74

!DA?$EFGGHGC$'.$"*4$$IJJK#

RCA: The Algorithm

For each chunklet, subtract the chunklet’s mean from
all the points it contains

Compute sum of in-chunklet covariance matrices.
Assume a total of p points in k chunklets, where
chunklet j consists of and its mean is
RCA computes the following matrix:

{xji}
nj

i=1 m̂j

(a) (b) (c)

(d) (e) (f)

Figure 1. An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labeled data
set with 3 classes. (b) Same data unlabeled; clearly the classes’ structure is less evident. (c) The set of chunklets that are
provided to the RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to the chunklets. (f) The original
data after applying the RCA transformation.

from all of the points it contains (Fig. 1d).

2. Compute the covariance matrix of all the centered
data-points in chunklets (Fig. 1d). Assume a total
of p points in k chunklets, where chunklet j con-
sists of points {xji}nj

i=1 and its mean is m̂j . RCA
computes the following matrix:

Ĉ =
1
p

k∑

j=1

nj∑

i=1

(xji − m̂j)(xji − m̂j)t (1)

3. Compute the whitening transformation W =
Ĉ− 1

2 associated with this covariance matrix
(Fig. 1e), and apply it to the original data points:
xnew = Wx (Fig. 1f). Alternatively, use the in-
verse of Ĉ as a Mahalanobis distance.

In effect, the whitening transformation W assigns
lower weight to some directions in the original feature
space; those are the directions in which the data vari-
ability is mainly due to within class variability, and is
therefore “irrelevant” for the task of classification.

3. Information maximization under
chunklet constraints

In this section we suggest an information theoretic for-
mulation for the problem at hand. The problem is

formulated as a constrained search for a good repre-
sentation function . Although it is possible to state
the problem for general families of transformations,
we treat here only the linear case. In section 3.1 we
present and discuss the problem formulation. In 3.2
we show that RCA solves this problem when only lin-
ear invertible transformations are considered. In sec-
tion 3.3 we extend the family of functions considered
to include non-invertible linear transformations, which
leads to dimensionality reduction. We show that when
the data is Gaussian, the solution is given by Fisher’s
linear discriminant followed by RCA.

3.1. An information theoretic perspective

Following (Linsker, 1989), an information theoretic cri-
terion states that when an input X is transformed into
a new representation Y , we should seek to maximize
the mutual information I(X, Y) between X and Y un-
der suitable constraints. In the general deterministic
case a set X = {xl}n

l=1 of data points in RN is trans-
formed into the set Y = {f(xl)}n

l=1 of points in RM .
We wish to find a function f ∈ F that maximizes
I(X, Y), where F is the family of allowed transforma-
tion functions (the “hypotheses family”).

In our case we are also given a set of chunklets of
data points from X , {xji}k , nj

j=1,i=1, which the repre-

RCA: The Algorithm (continued)

Compute the transformation (whitening)
and apply it to the original data:

Or use the inverse of as a Mahalanobis distance

(a) (b) (c)

(d) (e) (f)

Figure 1. An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labeled data
set with 3 classes. (b) Same data unlabeled; clearly the classes’ structure is less evident. (c) The set of chunklets that are
provided to the RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to the chunklets. (f) The original
data after applying the RCA transformation.

from all of the points it contains (Fig. 1d).

2. Compute the covariance matrix of all the centered
data-points in chunklets (Fig. 1d). Assume a total
of p points in k chunklets, where chunklet j con-
sists of points {xji}nj

i=1 and its mean is m̂j . RCA
computes the following matrix:

Ĉ =
1
p

k∑

j=1

nj∑

i=1

(xji − m̂j)(xji − m̂j)t (1)

3. Compute the whitening transformation W =
Ĉ− 1

2 associated with this covariance matrix
(Fig. 1e), and apply it to the original data points:
xnew = Wx (Fig. 1f). Alternatively, use the in-
verse of Ĉ as a Mahalanobis distance.

In effect, the whitening transformation W assigns
lower weight to some directions in the original feature
space; those are the directions in which the data vari-
ability is mainly due to within class variability, and is
therefore “irrelevant” for the task of classification.

3. Information maximization under
chunklet constraints

In this section we suggest an information theoretic for-
mulation for the problem at hand. The problem is

formulated as a constrained search for a good repre-
sentation function . Although it is possible to state
the problem for general families of transformations,
we treat here only the linear case. In section 3.1 we
present and discuss the problem formulation. In 3.2
we show that RCA solves this problem when only lin-
ear invertible transformations are considered. In sec-
tion 3.3 we extend the family of functions considered
to include non-invertible linear transformations, which
leads to dimensionality reduction. We show that when
the data is Gaussian, the solution is given by Fisher’s
linear discriminant followed by RCA.

3.1. An information theoretic perspective

Following (Linsker, 1989), an information theoretic cri-
terion states that when an input X is transformed into
a new representation Y , we should seek to maximize
the mutual information I(X, Y) between X and Y un-
der suitable constraints. In the general deterministic
case a set X = {xl}n

l=1 of data points in RN is trans-
formed into the set Y = {f(xl)}n

l=1 of points in RM .
We wish to find a function f ∈ F that maximizes
I(X, Y), where F is the family of allowed transforma-
tion functions (the “hypotheses family”).

In our case we are also given a set of chunklets of
data points from X , {xji}k , nj

j=1,i=1, which the repre-

W = Ĉ−1/2

xnew = Wx

Ĉ

RCA

The whitening transformation W assigns
lower weight to the directions in which the
data variability is mainly due to within class
variability, and are therefore “irrelevant” for
the task of classification

RCA applied to face images!""#$%&'()*(+,-./

!"#$%&'()'*%)+',-.%"&%/0"%.123-(/.%145-6%5)&&-6-4/%*),7/)4,%("45)/)"4.8%
9"//"+$%/7-%.'+-%)+',-.%&6"+%/7-%/"#%6"0%'&/-6%'##*:)4,%;<=%'45%><=%'45%/7-4%
6-("4./61(/)4,%/7-%)+',-.%

><=%56'+'/)('**:%6-51(-.%/7-%-&&-(/%"&%5)&&-6-4/%*),7/)4,%("45)/)"4.?%
'45%/7-%6-("4./61(/-5%)+',-.%"&%-'(7%#-6."4%*""@%A-6:%.)+)*'6%/"%-'(7%
"/7-68%%%B9'6CD)**-*?%%-/%'*8%?%EFFGH

Neighbourhood
Components Analysis

Jacob Goldberger, Sam Roweis, Geoff Hinton,
Ruslan Salakhutdinov

NIPS 2005

NCA

Supervised (uses labels)

Global

Learns a Mahalanobis distance measure for
KNN classification

It can also be used for dimensionality
reduction

K-nearest neighbor algorithm
KNN is an extremely simple yet surprisingly
effective method for classification

KK--Nearest NeighborNearest NeighborKK Nearest NeighborNearest Neighbor

The The kk--nearest neighbor algorithmnearest neighbor algorithm is amongst the simplest of all machine is amongst the simplest of all machine

learning algorithms. An object is classified by a majority vote of its learning algorithms. An object is classified by a majority vote of its

neighbors, with the object being assigned to the class most common neighbors, with the object being assigned to the class most common

amongst its amongst its kk nearest neighbors.nearest neighbors.

X

Euclidean:

! "22),(yxyxd #$

Euclidean:

! " ! "yxyxyxd
T

%&%$ %1),(

Mahalanobis:

KNN: Advantages and Disadvantages

Advantages:

Simple
Nonlinear decision surfaces
Quality of prediction automatically improves as the
number of training data increases

Disadvantages:

Expensive: must store and search through the
entire training set to classify a single test point

Must define what we mean by “nearest”

NCA
Restrict to learn Mahalanobis distance metrics:

Q is a symmetric positive semi-definite matrix:

The method learns a linear transformation of the input space

d(x, y) = (x− y)T Q(x− y)

Q = AT A

d(x, y) = (Ax−Ay)T (Ax−Ay)

Neighborhood AnalysisNeighborhood AnalysisNeighborhood AnalysisNeighborhood Analysis

Restrict to find a Mahalanobis distance

d() ()TQ()d(x, y) = (x - y)TQ(x - y)

A symmetric positive semi-define matrices Q = ATA

d(x, y) = (Ax - Ay)T(Ax - Ay)(, y) (y) (y)

We learn a linear transformation of the input space such that in the We learn a linear transformation of the input space such that in the

t f d KNN f llt f d KNN f ll

A

transformed space, KNN performs well.transformed space, KNN performs well.

A

NCA

Neighbor selection: select as neighbors those
points with the same class label as the test
point

Learn a distance metric (matrix A) that
achieves this goal over the training data

NCA
Stochastic neighbor assignments: each point i selects
another point j as its neighbor with some
probability , and inherits the class label from the
point it selects

The probability is defined as a softmax over the
Euclidean distances in the trasformed space:

pij

the performance of nearest neighbour classification. Ideally, we would like to optimize
performance on future test data, but since we do not know the true data distribution we
instead attempt to optimize leave-one-out (LOO) performance on the training data.

In what follows, we restrict ourselves to learning Mahalanobis (quadratic) distance metrics,
which can always be represented by symmetric positive semi-definite matrices. We esti-
mate such metrics through their inverse square roots, by learning a linear transformation
of the input space such that in the transformed space, KNN performs well. If we denote
the transformation by a matrix A we are effectively learning a metric Q = A!A such that
d(x, y) = (x − y)!Q(x − y) = (Ax − Ay)!(Ax − Ay).

The actual leave-one-out classification error of KNN is quite a discontinuous function of the
transformation A, since an infinitesimal change in A may change the neighbour graph and
thus affect LOO classification performance by a finite amount. Instead, we adopt a more
well behaved measure of nearest neighbour performance, by introducing a differentiable
cost function based on stochastic (“soft”) neighbour assignments in the transformed space.
In particular, each point i selects another point j as its neighbour with some probability pij ,
and inherits its class label from the point it selects. We define the pij using a softmax over
Euclidean distances in the transformed space:

pij =
exp(−‖Axi − Axj‖2)

∑

k !=i exp(−‖Axi − Axk‖2)
, pii = 0 (1)

Under this stochastic selection rule, we can compute the probability pi that point i will be
correctly classified (denote the set of points in the same class as i by Ci = {j|ci = cj}):

pi =
∑

j∈Ci

pij (2)

The objective we maximize is the expected number of points correctly classified under this
scheme:

f(A) =
∑

i

∑

j∈Ci

pij =
∑

i

pi (3)

Differentiating f with respect to the transformation matrix A yields a gradient rule which
we can use for learning (denote xij = xi − xj):

∂f

∂A
= −2A

∑

i

∑

j∈Ci

pij(xijx
!

ij −
∑

k

pikxikx!

ik) (4)

Reordering the terms we obtain a more efficiently computed expression:

∂f

∂A
= 2A

∑

i

pi

∑

k

pikxikx!

ik −
∑

j∈Ci

pijxijx
!

ij

 (5)

Our algorithm – which we dub Neighbourhood Components Analysis (NCA)– is extremely
simple: maximize the above objective (3) using a gradient based optimizer such as delta-
bar-delta or conjugate gradients. Of course, since the cost function above is not convex,
some care must be taken to avoid local maxima during training. However, unlike many
other objective functions (where good optima are not necessarily deep but rather broad) it
has been our experience that the larger we can drive f during training the better our test
performance will be. In other words, we have never observed an “overtraining” effect.

Notice that by learning the overall scale of A as well as the relative directions of its rows
we are also effectively learning a real-valued estimate of the optimal number of neighbours
(K). This estimate appears as the effective perplexity of the distributions pij . If the learning

Neighborhood AnalysisNeighborhood AnalysisNeighborhood AnalysisNeighborhood Analysis

The probability for each point i to select point j as its neighbor and inherits its

class label, in the transformed

S ft E lid di t i t f d

! "
! "

##
$

ji

ij

AxAx
p

2

2

exp

Softmax over Euclidean distance in transformed space

X

Axj

! "% &
##

ik ji

ij

AxAx
p

2

exp

Axi

Bridge the discrete representation in

KNN to continuous

NCA
Under the stochastic neighbor assignment
rule, we can compute the probability that a
point i will be correctly classified:

We want to maximize the expected number
of points correctly classified:

pi =
∑

j∈Ci

pij Ci = {j|ci = cj}

f(A) =
∑

i

∑

j∈Ci

pij =
∑

i

pi

max
A

f(A)

NCA

Differentiating f with respect to the
transformation matrix A (): xij = xi − xj

the performance of nearest neighbour classification. Ideally, we would like to optimize
performance on future test data, but since we do not know the true data distribution we
instead attempt to optimize leave-one-out (LOO) performance on the training data.

In what follows, we restrict ourselves to learning Mahalanobis (quadratic) distance metrics,
which can always be represented by symmetric positive semi-definite matrices. We esti-
mate such metrics through their inverse square roots, by learning a linear transformation
of the input space such that in the transformed space, KNN performs well. If we denote
the transformation by a matrix A we are effectively learning a metric Q = A!A such that
d(x, y) = (x − y)!Q(x − y) = (Ax − Ay)!(Ax − Ay).

The actual leave-one-out classification error of KNN is quite a discontinuous function of the
transformation A, since an infinitesimal change in A may change the neighbour graph and
thus affect LOO classification performance by a finite amount. Instead, we adopt a more
well behaved measure of nearest neighbour performance, by introducing a differentiable
cost function based on stochastic (“soft”) neighbour assignments in the transformed space.
In particular, each point i selects another point j as its neighbour with some probability pij ,
and inherits its class label from the point it selects. We define the pij using a softmax over
Euclidean distances in the transformed space:

pij =
exp(−‖Axi − Axj‖2)

∑

k !=i exp(−‖Axi − Axk‖2)
, pii = 0 (1)

Under this stochastic selection rule, we can compute the probability pi that point i will be
correctly classified (denote the set of points in the same class as i by Ci = {j|ci = cj}):

pi =
∑

j∈Ci

pij (2)

The objective we maximize is the expected number of points correctly classified under this
scheme:

f(A) =
∑

i

∑

j∈Ci

pij =
∑

i

pi (3)

Differentiating f with respect to the transformation matrix A yields a gradient rule which
we can use for learning (denote xij = xi − xj):

∂f

∂A
= −2A

∑

i

∑

j∈Ci

pij(xijx
!

ij −
∑

k

pikxikx!

ik) (4)

Reordering the terms we obtain a more efficiently computed expression:

∂f

∂A
= 2A

∑

i

pi

∑

k

pikxikx!

ik −
∑

j∈Ci

pijxijx
!

ij

 (5)

Our algorithm – which we dub Neighbourhood Components Analysis (NCA)– is extremely
simple: maximize the above objective (3) using a gradient based optimizer such as delta-
bar-delta or conjugate gradients. Of course, since the cost function above is not convex,
some care must be taken to avoid local maxima during training. However, unlike many
other objective functions (where good optima are not necessarily deep but rather broad) it
has been our experience that the larger we can drive f during training the better our test
performance will be. In other words, we have never observed an “overtraining” effect.

Notice that by learning the overall scale of A as well as the relative directions of its rows
we are also effectively learning a real-valued estimate of the optimal number of neighbours
(K). This estimate appears as the effective perplexity of the distributions pij . If the learning

the performance of nearest neighbour classification. Ideally, we would like to optimize
performance on future test data, but since we do not know the true data distribution we
instead attempt to optimize leave-one-out (LOO) performance on the training data.

In what follows, we restrict ourselves to learning Mahalanobis (quadratic) distance metrics,
which can always be represented by symmetric positive semi-definite matrices. We esti-
mate such metrics through their inverse square roots, by learning a linear transformation
of the input space such that in the transformed space, KNN performs well. If we denote
the transformation by a matrix A we are effectively learning a metric Q = A!A such that
d(x, y) = (x − y)!Q(x − y) = (Ax − Ay)!(Ax − Ay).

The actual leave-one-out classification error of KNN is quite a discontinuous function of the
transformation A, since an infinitesimal change in A may change the neighbour graph and
thus affect LOO classification performance by a finite amount. Instead, we adopt a more
well behaved measure of nearest neighbour performance, by introducing a differentiable
cost function based on stochastic (“soft”) neighbour assignments in the transformed space.
In particular, each point i selects another point j as its neighbour with some probability pij ,
and inherits its class label from the point it selects. We define the pij using a softmax over
Euclidean distances in the transformed space:

pij =
exp(−‖Axi − Axj‖2)

∑

k !=i exp(−‖Axi − Axk‖2)
, pii = 0 (1)

Under this stochastic selection rule, we can compute the probability pi that point i will be
correctly classified (denote the set of points in the same class as i by Ci = {j|ci = cj}):

pi =
∑

j∈Ci

pij (2)

The objective we maximize is the expected number of points correctly classified under this
scheme:

f(A) =
∑

i

∑

j∈Ci

pij =
∑

i

pi (3)

Differentiating f with respect to the transformation matrix A yields a gradient rule which
we can use for learning (denote xij = xi − xj):

∂f

∂A
= −2A

∑

i

∑

j∈Ci

pij(xijx
!

ij −
∑

k

pikxikx!

ik) (4)

Reordering the terms we obtain a more efficiently computed expression:

∂f

∂A
= 2A

∑

i

pi

∑

k

pikxikx!

ik −
∑

j∈Ci

pijxijx
!

ij

 (5)

Our algorithm – which we dub Neighbourhood Components Analysis (NCA)– is extremely
simple: maximize the above objective (3) using a gradient based optimizer such as delta-
bar-delta or conjugate gradients. Of course, since the cost function above is not convex,
some care must be taken to avoid local maxima during training. However, unlike many
other objective functions (where good optima are not necessarily deep but rather broad) it
has been our experience that the larger we can drive f during training the better our test
performance will be. In other words, we have never observed an “overtraining” effect.

Notice that by learning the overall scale of A as well as the relative directions of its rows
we are also effectively learning a real-valued estimate of the optimal number of neighbours
(K). This estimate appears as the effective perplexity of the distributions pij . If the learning

NCA for Dimensionality Reduction

By restricting A to be a nonsquare matrix of
size , NCA can also perform linear
dimensionality reduction

The transformed input will lie in

The learning algorithm remains the same:
maximize the cost function f(A) using
gradient ascent over a nonquare A

d×D

Rd

NCA for Dimensionality Reduction
By using we can significantly reduce the
computational load of KNN:

Run NCA to find optimal A

Store only the projection of training data:

Given a test point

Compute its projection

Apply KNN on using the (and their labels)
and a simple Euclidean distance

d << D

yn = Axn

xtest

ytest = Axtest

ytest yn

Experimental Results

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

distance metric learning ! training

bal ion iris wine hous digit

NCA
diag!NCA
RCA
whitened
Euclidean

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

distance metric learning ! testing

bal ion iris wine hous digit

NCA
diag!NCA
RCA
whitened
Euclidean

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank 2 transformation ! training

bal ion iris wine hous digit

NCA
LDA+RCA
LDA
PCA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank 2 transformation ! testing

bal ion iris wine hous digit

NCA
LDA+RCA
LDA
PCA

Figure 1: KNN classification accuracy (left train, right test) on UCI datasets balance, iono-
sphere, iris, wine and housing and on the USPS handwritten digits. Results are averages
over 40 realizations of splitting each dataset into training (70%) and testing (30%) subsets
(for USPS 200 images for each of the 10 digit classes were used for training and 500 for
testing). Top panels show distance metric learning (square A) and bottom panels show
linear dimensionality reduction down to d = 2.

rank KNN setting. In summary, we have found that when labeled data is available, NCA
performs better both in terms of classification performance in the projected representation
and in terms of visualization of class separation as compared to the standard methods of
PCA and LDA.

5 Extensions to Continuous Labels and Semi-Supervised Learning

Although we have focused here on discrete classes, linear transformations and fully su-
pervised learning, many extensions of this basic idea are possible. Clearly, a nonlinear
transformation function A(·) could be learned using any architecture (such as a multilayer
perceptron) trainable by gradient methods. Furthermore, it is possible to extend the clas-
sification framework presented above to the case of a real valued (continuous) supervision
signal by defining the set of “correct matches” Ci for point i to be those points j having
similar (continuous) targets. This naturally leads to the idea of “soft matches”, in which
the objective function becomes a sum over all pairs, each weighted by their agreement ac-
cording to the targets. Learning under such an objective can still proceed even in settings
where the targets are not explicitly provided as long as information identifying close pairs

Results: Dimensionality Reduction

PCA LDA NCA

Figure 2: Dataset visualization results of PCA, LDA and NCA applied to (from top) the
“concentric rings”, “wine”, “faces” and “digits” datasets. The data are reduced from their
original dimensionalities (D=3,D=13,D=560,D=256 respectively) to the d=2 dimensions
show.

Text

concentric
rings
D=3

wine
D=13

NCALDAPCA

Results: Dimensionality Reduction

Text

faces
D=560

digits
D=256

NCALDAPCAPCA LDA NCA

Figure 2: Dataset visualization results of PCA, LDA and NCA applied to (from top) the
“concentric rings”, “wine”, “faces” and “digits” datasets. The data are reduced from their
original dimensionalities (D=3,D=13,D=560,D=256 respectively) to the d=2 dimensions
show.

Results: Dimensionality Reduction
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

distance metric learning ! training

bal ion iris wine hous digit

NCA
diag!NCA
RCA
whitened
Euclidean

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

distance metric learning ! testing

bal ion iris wine hous digit

NCA
diag!NCA
RCA
whitened
Euclidean

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank 2 transformation ! training

bal ion iris wine hous digit

NCA
LDA+RCA
LDA
PCA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank 2 transformation ! testing

bal ion iris wine hous digit

NCA
LDA+RCA
LDA
PCA

Figure 1: KNN classification accuracy (left train, right test) on UCI datasets balance, iono-
sphere, iris, wine and housing and on the USPS handwritten digits. Results are averages
over 40 realizations of splitting each dataset into training (70%) and testing (30%) subsets
(for USPS 200 images for each of the 10 digit classes were used for training and 500 for
testing). Top panels show distance metric learning (square A) and bottom panels show
linear dimensionality reduction down to d = 2.

rank KNN setting. In summary, we have found that when labeled data is available, NCA
performs better both in terms of classification performance in the projected representation
and in terms of visualization of class separation as compared to the standard methods of
PCA and LDA.

5 Extensions to Continuous Labels and Semi-Supervised Learning

Although we have focused here on discrete classes, linear transformations and fully su-
pervised learning, many extensions of this basic idea are possible. Clearly, a nonlinear
transformation function A(·) could be learned using any architecture (such as a multilayer
perceptron) trainable by gradient methods. Furthermore, it is possible to extend the clas-
sification framework presented above to the case of a real valued (continuous) supervision
signal by defining the set of “correct matches” Ci for point i to be those points j having
similar (continuous) targets. This naturally leads to the idea of “soft matches”, in which
the objective function becomes a sum over all pairs, each weighted by their agreement ac-
cording to the targets. Learning under such an objective can still proceed even in settings
where the targets are not explicitly provided as long as information identifying close pairs

Problems with
Global Methods

The satisfaction of some constraints may
conflict with the satisfaction of other
constraints

Multimodal data distributions

!"#$"%"&$'(%)&*+&%,-&*.'/'0"1&
2"%"(-%

341%'5*2"1&2"%"&2'(%.'64%'*0(&7.-8-0%&/1*6"1&2'(%"09-&5-%.'9(&+.*5&
('541%"0-*4(1:&("%'(+:'0/&9*0(%."'0%(&*0&;'%,'0<91"((&9*57"9%0-((&"02&
6-%;--0<91"((&(-7"."6'1'%:)&
==>"0/?&-%&"1?&@@@A?&BCCDE&E

!6#&$"%"&(9"1-2&6:&%,-&/1*6"1&5-%.'9&

341%'5*2"1&2"%"&2'(%.'64%'*0(&

Solution

Instead of attempting to satisfy all
constraints, satisfy only local constraints

Distance Metric Learning
for

Large Margin

Nearest Neighbor Classification
Kilian Weinberger, John Blitzer, and Lawrence Saul

NIPS 2006

LMNN

Supervised (uses labels)

Enforces local constraints

Final metric is still global

Learns a Mahalanobis distance measure for
KNN classification

KNN Classification

We only care about the k nearest neighbors

!"#$%&$'()#$*+,-.&)/0%''*1*2%(*.3

!"#$%&'#()*"#+,"#%")*"-+#.#%"/0,1$*-

LMNN: The Overall Idea
Learns a Mahalanobis distance metric that:

Enforces the k-nearest neighbors to belong to the
same class
Enforces examples from different classes to be
separated by a large margin

where in the second term [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is
some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly
labeled examples.

Large margin

!xi!xi

margin local neighborhood

!xi!xi

margin

BEFORE AFTER

Similarly labeled

Differently labeled

Differently labeled

target neighbor

Figure 1: Schematic illustration of one input’s
neighborhood !xi before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
ently labeled inputs lie outside this smaller ra-
dius, with a margin of at least one unit distance.
Arrows indicate the gradients on distances aris-
ing from the optimization of the cost function.

The second term in the cost function in-
corporates the idea of a margin. In par-
ticular, for each input !xi, the hinge loss
is incurred by differently labeled inputs
whose distances do not exceed, by one
absolute unit of distance, the distance
from input !xi to any of its target neigh-
bors. The cost function thereby favors
distance metrics in which differently la-
beled inputs maintain a large margin of
distance and do not threaten to “invade”
each other’s neighborhoods. The learn-
ing dynamics induced by this cost func-
tion are illustrated in Fig. 1 for an input
with k=3 target neighbors.

Parallels with SVMs
The competing terms in eq. (2) are anal-
ogous to those in the cost function for
SVMs [11]. In both cost functions, one
term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization
We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(!xi, !xj) = (!xi − !xj)!M(!xi − !xj), (3)
where the matrix M = L!L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L!L and the hinge loss can be “mimicked” by
introducing slack variables ξij for all pairs of differently labeled inputs (i.e., for all 〈i, j〉
such that yij = 0). The resulting SDP is given by:

Minimize
∑

ij ηij(!xi − !xj)!M(!xi − !xj) + c
∑

ij ηij(1− yil)ξijl subject to:
(1) (!xi − !xl)!M(!xi − !xl)− (!xi − !xj)!M(!xi − !xj) ≥ 1− ξijl

(2) ξijl ≥ 0
(3) M % 0.

The last constraint M % 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers

LMNN: The Approach

Formulated as an optimization problem

Solved using a semi-definite programming
method

LMNN: The Cost Function
!"#$%&'()$*"(

!"#$%&'()*+&'$",&-

.&,$/(0)1,02),1)3%/%4%&,5"# !"#$%&'(-)

LMNN: The Cost Function!"#$%&'()$*"(

!"#$%&'(%)$*+,#-.')/%0&)1)%/'"-'&*%''230%"#%-&'0%)$*+,#-4'
/%&%#5)0%/'+6'789:)/%"0'/)-&"09%4'&*"&'-*"#%'&*%'-"5%':"+%:

;*%0'<=>

=?

=@

=?

=@

LMNN: The Cost Function!"#$%&'()$*"(

!"

!#

!"

!#

$%&'()*%+,('-.%,/)+0'&1%+,2%03%%&,)&450+,'&/,0'-.%0,&%).627-+8,9&,
706%-,37-/+:,;'<)&.,+);)('-,&%).627-+,1(7+%

LMNN: The Cost Function
!"#$%&'()$*"(

LMNN: The Cost Function
!"#$%&'()$*"(

!"#$%&'()*$+&,$)+#-.)$&.%-/0"#*
1)$%*$.2(+3$)"$4$

where in the second term [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is
some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly
labeled examples.

Large margin

!xi!xi

margin local neighborhood

!xi!xi

margin

BEFORE AFTER

Similarly labeled

Differently labeled

Differently labeled

target neighbor

Figure 1: Schematic illustration of one input’s
neighborhood !xi before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
ently labeled inputs lie outside this smaller ra-
dius, with a margin of at least one unit distance.
Arrows indicate the gradients on distances aris-
ing from the optimization of the cost function.

The second term in the cost function in-
corporates the idea of a margin. In par-
ticular, for each input !xi, the hinge loss
is incurred by differently labeled inputs
whose distances do not exceed, by one
absolute unit of distance, the distance
from input !xi to any of its target neigh-
bors. The cost function thereby favors
distance metrics in which differently la-
beled inputs maintain a large margin of
distance and do not threaten to “invade”
each other’s neighborhoods. The learn-
ing dynamics induced by this cost func-
tion are illustrated in Fig. 1 for an input
with k=3 target neighbors.

Parallels with SVMs
The competing terms in eq. (2) are anal-
ogous to those in the cost function for
SVMs [11]. In both cost functions, one
term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization
We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(!xi, !xj) = (!xi − !xj)!M(!xi − !xj), (3)
where the matrix M = L!L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L!L and the hinge loss can be “mimicked” by
introducing slack variables ξij for all pairs of differently labeled inputs (i.e., for all 〈i, j〉
such that yij = 0). The resulting SDP is given by:

Minimize
∑

ij ηij(!xi − !xj)!M(!xi − !xj) + c
∑

ij ηij(1− yil)ξijl subject to:
(1) (!xi − !xl)!M(!xi − !xl)− (!xi − !xj)!M(!xi − !xj) ≥ 1− ξijl

(2) ξijl ≥ 0
(3) M % 0.

The last constraint M % 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers

LMNN: The Cost Function
!""#$%&'()$*+,-./&+0$/

!"#$%&'()*$+&,$)+#-.)$&.%-/0"#*
1)$%*$.2(+3$)"$4$

%&,%5+).*$%6$$$$$$+&,$$$$$$/+*$
+7.$3+0.38$9"$!"#$%&'()$+&,$&.%-/0"#$/+:%&-$
,%66.#.&)$3+0.3*;$$%)$%*$.2(+3$)"$4$$

where in the second term [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is
some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly
labeled examples.

Large margin

!xi!xi

margin local neighborhood

!xi!xi

margin

BEFORE AFTER

Similarly labeled

Differently labeled

Differently labeled

target neighbor

Figure 1: Schematic illustration of one input’s
neighborhood !xi before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
ently labeled inputs lie outside this smaller ra-
dius, with a margin of at least one unit distance.
Arrows indicate the gradients on distances aris-
ing from the optimization of the cost function.

The second term in the cost function in-
corporates the idea of a margin. In par-
ticular, for each input !xi, the hinge loss
is incurred by differently labeled inputs
whose distances do not exceed, by one
absolute unit of distance, the distance
from input !xi to any of its target neigh-
bors. The cost function thereby favors
distance metrics in which differently la-
beled inputs maintain a large margin of
distance and do not threaten to “invade”
each other’s neighborhoods. The learn-
ing dynamics induced by this cost func-
tion are illustrated in Fig. 1 for an input
with k=3 target neighbors.

Parallels with SVMs
The competing terms in eq. (2) are anal-
ogous to those in the cost function for
SVMs [11]. In both cost functions, one
term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization
We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(!xi, !xj) = (!xi − !xj)!M(!xi − !xj), (3)
where the matrix M = L!L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L!L and the hinge loss can be “mimicked” by
introducing slack variables ξij for all pairs of differently labeled inputs (i.e., for all 〈i, j〉
such that yij = 0). The resulting SDP is given by:

Minimize
∑

ij ηij(!xi − !xj)!M(!xi − !xj) + c
∑

ij ηij(1− yil)ξijl subject to:
(1) (!xi − !xl)!M(!xi − !xl)− (!xi − !xj)!M(!xi − !xj) ≥ 1− ξijl

(2) ξijl ≥ 0
(3) M % 0.

The last constraint M % 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers

LMNN: The Cost Function!""#$%&'()$*+,-./&+0$/

!"#$%&'()*($+((&)"&,-$#)%&.)$%/0($)&("01*2/#

32/)"&,-$#)%&.)$%/0($)&("01*2/#
4$)"#)(5-%6)$2)7)

"&."'%$(#)"8))))))%&.))))))1%#)
#%9()6%*(6:);2)32/)"&,-$)%&.)&("01*2/#)1%<"&0)
."88(/(&$)6%*(6#=))"$)"#)(5-%6)$2)7))

where in the second term [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is
some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly
labeled examples.

Large margin

!xi!xi

margin local neighborhood

!xi!xi

margin

BEFORE AFTER

Similarly labeled

Differently labeled

Differently labeled

target neighbor

Figure 1: Schematic illustration of one input’s
neighborhood !xi before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
ently labeled inputs lie outside this smaller ra-
dius, with a margin of at least one unit distance.
Arrows indicate the gradients on distances aris-
ing from the optimization of the cost function.

The second term in the cost function in-
corporates the idea of a margin. In par-
ticular, for each input !xi, the hinge loss
is incurred by differently labeled inputs
whose distances do not exceed, by one
absolute unit of distance, the distance
from input !xi to any of its target neigh-
bors. The cost function thereby favors
distance metrics in which differently la-
beled inputs maintain a large margin of
distance and do not threaten to “invade”
each other’s neighborhoods. The learn-
ing dynamics induced by this cost func-
tion are illustrated in Fig. 1 for an input
with k=3 target neighbors.

Parallels with SVMs
The competing terms in eq. (2) are anal-
ogous to those in the cost function for
SVMs [11]. In both cost functions, one
term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization
We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(!xi, !xj) = (!xi − !xj)!M(!xi − !xj), (3)
where the matrix M = L!L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L!L and the hinge loss can be “mimicked” by
introducing slack variables ξij for all pairs of differently labeled inputs (i.e., for all 〈i, j〉
such that yij = 0). The resulting SDP is given by:

Minimize
∑

ij ηij(!xi − !xj)!M(!xi − !xj) + c
∑

ij ηij(1− yil)ξijl subject to:
(1) (!xi − !xl)!M(!xi − !xl)− (!xi − !xj)!M(!xi − !xj) ≥ 1− ξijl

(2) ξijl ≥ 0
(3) M % 0.

The last constraint M % 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers

LMNN: The Cost Function!""#$%&'()$*+,-./&+0$/

!"#$%&'()*($+((&)"&,-$#)%&.)$%/0($)&("01*2/#

!"#$%&'()*($+((&)"&,-$)%&.)&("01*2/#)
+"$1)."33(/(&$)4%*(4#

52/)"&,-$#)%&.)$%/0($)&("01*2/#
6$)"#)(7-%4)$2)8)

"&."'%$(#)"3))))))%&.))))))1%#)
#%9()4%*(4:);2)52/)"&,-$)%&.)&("01*2/#)1%<"&0)
."33(/(&$)4%*(4#=))"$)"#)(7-%4)$2)8))

where in the second term [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is
some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly
labeled examples.

Large margin

!xi!xi

margin local neighborhood

!xi!xi

margin

BEFORE AFTER

Similarly labeled

Differently labeled

Differently labeled

target neighbor

Figure 1: Schematic illustration of one input’s
neighborhood !xi before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
ently labeled inputs lie outside this smaller ra-
dius, with a margin of at least one unit distance.
Arrows indicate the gradients on distances aris-
ing from the optimization of the cost function.

The second term in the cost function in-
corporates the idea of a margin. In par-
ticular, for each input !xi, the hinge loss
is incurred by differently labeled inputs
whose distances do not exceed, by one
absolute unit of distance, the distance
from input !xi to any of its target neigh-
bors. The cost function thereby favors
distance metrics in which differently la-
beled inputs maintain a large margin of
distance and do not threaten to “invade”
each other’s neighborhoods. The learn-
ing dynamics induced by this cost func-
tion are illustrated in Fig. 1 for an input
with k=3 target neighbors.

Parallels with SVMs
The competing terms in eq. (2) are anal-
ogous to those in the cost function for
SVMs [11]. In both cost functions, one
term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization
We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(!xi, !xj) = (!xi − !xj)!M(!xi − !xj), (3)
where the matrix M = L!L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L!L and the hinge loss can be “mimicked” by
introducing slack variables ξij for all pairs of differently labeled inputs (i.e., for all 〈i, j〉
such that yij = 0). The resulting SDP is given by:

Minimize
∑

ij ηij(!xi − !xj)!M(!xi − !xj) + c
∑

ij ηij(1− yil)ξijl subject to:
(1) (!xi − !xl)!M(!xi − !xl)− (!xi − !xj)!M(!xi − !xj) ≥ 1− ξijl

(2) ξijl ≥ 0
(3) M % 0.

The last constraint M % 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers

LMNN: The Cost Function!"#$%&'()$*"(

!"##$%$&'()*(+,$($-*&$"./,0%1*("$*02'1"-$*'/$*
13+(($%*%+-"21*4"'/*+*3+%."&*0#*+'*($+1'*0&$*2&"'*
-"1'+&5$

where in the second term [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is
some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly
labeled examples.

Large margin

!xi!xi

margin local neighborhood

!xi!xi

margin

BEFORE AFTER

Similarly labeled

Differently labeled

Differently labeled

target neighbor

Figure 1: Schematic illustration of one input’s
neighborhood !xi before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
ently labeled inputs lie outside this smaller ra-
dius, with a margin of at least one unit distance.
Arrows indicate the gradients on distances aris-
ing from the optimization of the cost function.

The second term in the cost function in-
corporates the idea of a margin. In par-
ticular, for each input !xi, the hinge loss
is incurred by differently labeled inputs
whose distances do not exceed, by one
absolute unit of distance, the distance
from input !xi to any of its target neigh-
bors. The cost function thereby favors
distance metrics in which differently la-
beled inputs maintain a large margin of
distance and do not threaten to “invade”
each other’s neighborhoods. The learn-
ing dynamics induced by this cost func-
tion are illustrated in Fig. 1 for an input
with k=3 target neighbors.

Parallels with SVMs
The competing terms in eq. (2) are anal-
ogous to those in the cost function for
SVMs [11]. In both cost functions, one
term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization
We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(!xi, !xj) = (!xi − !xj)!M(!xi − !xj), (3)
where the matrix M = L!L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L!L and the hinge loss can be “mimicked” by
introducing slack variables ξij for all pairs of differently labeled inputs (i.e., for all 〈i, j〉
such that yij = 0). The resulting SDP is given by:

Minimize
∑

ij ηij(!xi − !xj)!M(!xi − !xj) + c
∑

ij ηij(1− yil)ξijl subject to:
(1) (!xi − !xl)!M(!xi − !xl)− (!xi − !xj)!M(!xi − !xj) ≥ 1− ξijl

(2) ξijl ≥ 0
(3) M % 0.

The last constraint M % 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers

Test on the AT&T face recognition database

Among 3 nearest neighbors

before but not after training:

Test Image:

Among 3 nearest neighbors

after but not before training:

Figure 3: Images from the AT&T face recognition data base. Top row: an image correctly
recognized by kNN classification (k = 3) with Mahalanobis distances, but not with Eu-
clidean distances. Middle row: correct match among the k=3 nearest neighbors according
to Mahalanobis distance, but not Euclidean distance. Bottom row: incorrect match among
the k=3 nearest neighbors according to Euclidean distance, but not Mahalanobis distance.

Spoken letter recognition
The Isolet data set from UCI Machine Learning Repository has 6238 examples and 26
classes corresponding to letters of the alphabet. We reduced the input dimensionality (orig-
inally at 617) by projecting the data onto its leading 172 principal components—enough
to account for 95% of its total variance. On this data set, Dietterich and Bakiri report test
error rates of 4.2% using nonlinear backpropagation networks with 26 output units (one per
class) and 3.3% using nonlinear backpropagation networks with a 30-bit error correcting
code [5]. LMNN with energy-based classification obtains a test error rate of 3.7%.

Text categorization
The 20-newsgroups data set consists of posted articles from 20 newsgroups, with roughly
1000 articles per newsgroup. We used the 18828-version of the data set5 which has cross-
postings removed and some headers stripped out. We tokenized the newsgroups using the
rainbow package [10]. Each article was initially represented by the weighted word-counts
of the 20,000 most common words. We then reduced the dimensionality by projecting the
data onto its leading 200 principal components. The results in Fig. 2 were obtained by av-
eraging over 10 runs with 70/30 splits for training and test data. Our best result for LMMN
on this data set at 13.0% test error rate improved significantly on kNN classification using
Euclidean distances. LMNN also performed comparably to our best multiclass SVM [4],
which obtained a 12.4% test error rate using a linear kernel and 20000 dimensional inputs.

Handwritten digit recognition
The MNIST data set of handwritten digits6 has been extensively benchmarked [9]. We
deskewed the original 28×28 grayscale images, then reduced their dimensionality by re-
taining only the first 164 principal components (enough to capture 95% of the data’s overall
variance). Energy-based LMNN classification yielded a test error rate at 1.3%, cutting the
baseline kNN error rate by over one-third. Other comparable benchmarks [9] (not exploit-
ing additional prior knowledge) include multilayer neural nets at 1.6% and SVMs at 1.2%.
Fig. 4 shows some digits whose nearest neighbor changed as a result of learning, from a
mismatch using Euclidean distance to a match using Mahanalobis distance.

4 Related Work

Many researchers have attempted to learn distance metrics from labeled examples. We
briefly review some recent methods, pointing out similarities and differences with our work.

5Available at http://people.csail.mit.edu/jrennie/20Newsgroups/
6Available at http://yann.lecun.com/exdb/mnist/

Top row: an image correctly classified by KNN classification (k=3) with
Mahalanobis distance, but not with Euclidean distance

Middle row: correct match among the k=3 nearest neighbors according to the
Mahalanobis distance, but not Euclidean distance

Bottom row: incorrect match among the k=3 nearest neighbors according to the
Euclidean distance, but not Mahalanobis distance

Test on MNIST handwritten digit database

Test Image:

Nearest neighbor

before training:

Nearest neighbor

after training:

Figure 4: Top row: Examples of MNIST images whose nearest neighbor changes dur-
ing training. Middle row: nearest neighbor after training, using the Mahalanobis distance
metric. Bottom row: nearest neighbor before training, using the Euclidean distance metric.

Xing et al [17] used semidefinite programming to learn a Mahalanobis distance metric
for clustering. Their algorithm aims to minimize the sum of squared distances between
similarly labeled inputs, while maintaining a lower bound on the sum of distances between
differently labeled inputs. Our work has a similar basis in semidefinite programming, but
differs in its focus on local neighborhoods for kNN classification.

Shalev-Shwartz et al [12] proposed an online learning algorithm for learning a Mahalanobis
distance metric. The metric is trained with the goal that all similarly labeled inputs have
small pairwise distances (bounded from above), while all differently labeled inputs have
large pairwise distances (bounded from below). A margin is defined by the difference of
these thresholds and induced by a hinge loss function. Our work has a similar basis in its
appeal to margins and hinge loss functions, but again differs in its focus on local neigh-
borhoods for kNN classification. In particular, we do not seek to minimize the distance
between all similarly labeled inputs, only those that are specified as neighbors.

Goldberger et al [7] proposed neighborhood component analysis (NCA), a distance metric
learning algorithm especially designed to improve kNN classification. The algorithm min-
imizes the probability of error under stochastic neighborhood assignments using gradient
descent. Our work shares essentially the same goals as NCA, but differs in its construction
of a convex objective function.

Chopra et al [2] recently proposed a framework for similarity metric learning in which
the metrics are parameterized by pairs of identical convolutional neural nets. Their cost
function penalizes large distances between similarly labeled inputs and small distances
between differently labeled inputs, with penalties that incorporate the idea of a margin.
Our work is based on a similar cost function, but our metric is parameterized by a linear
transformation instead of a convolutional neural net. In this way, we obtain an instance of
semidefinite programming.

Relevant component analysis (RCA) constructs a Mahalanobis distance metric from a
weighted sum of in-class covariance matrices [13]. It is similar to PCA and linear discrim-
inant analysis (but different from our approach) in its reliance on second-order statistics.

Hastie and Tibshirani [?] and Domeniconi et al [6] consider schemes for locally adaptive
distance metrics that vary throughout the input space. The latter work appeals to the goal
of margin maximization but otherwise differs substantially from our approach. In partic-
ular, Domeniconi et al [6] suggest to use the decision boundaries of SVMs to induce a
locally adaptive distance metric for kNN classification. By contrast, our approach (though
similarly named) does not involve the training of SVMs.

5 Discussion

In this paper, we have shown how to learn Mahalanobis distance metrics for kNN clas-
sification by semidefinite programming. Our framework makes no assumptions about the
structure or distribution of the data and scales naturally to large number of classes. Ongoing

Top row: examples of MNIST images whose nearest neighbor changes during
training

Middle row: nearest neighbor after training, using the Mahalanobis distance
metric

Bottom row: nearest neighbor before training, using the Euclidean distance
metric

