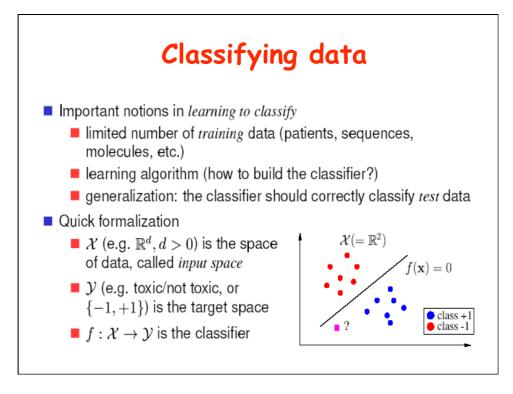
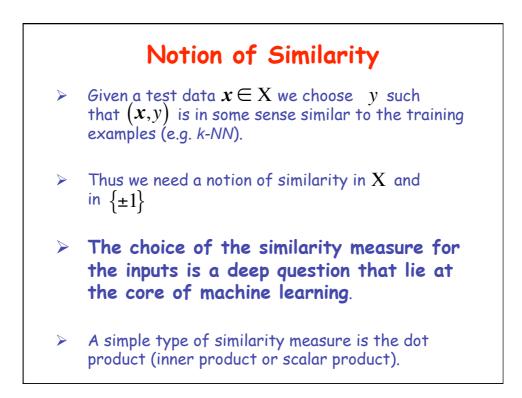
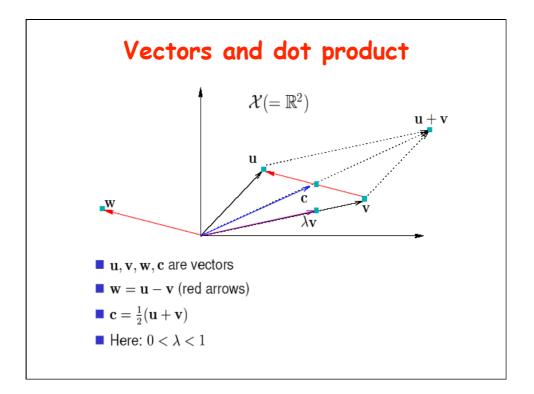
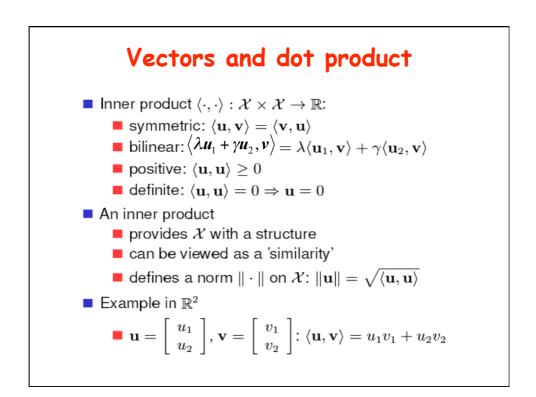
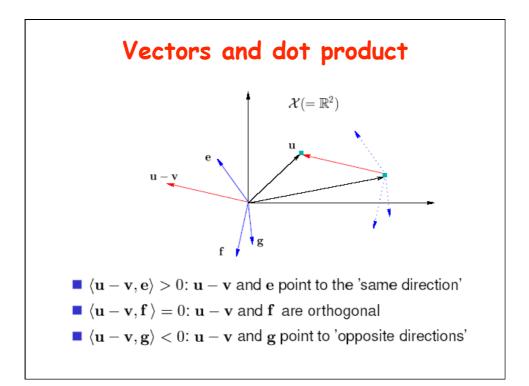
Introduction to Kernel Methods

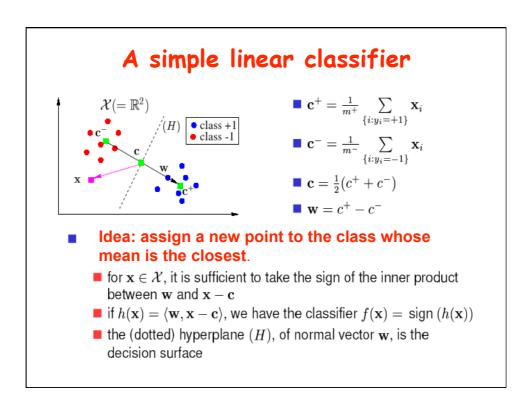


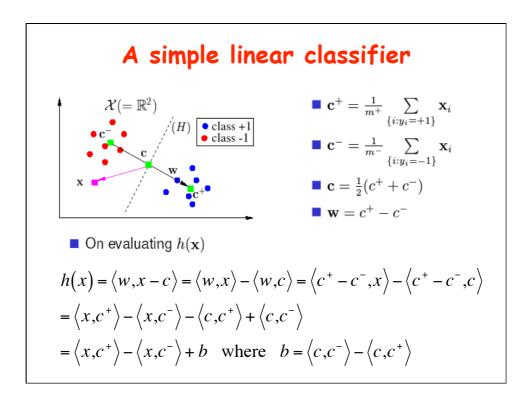












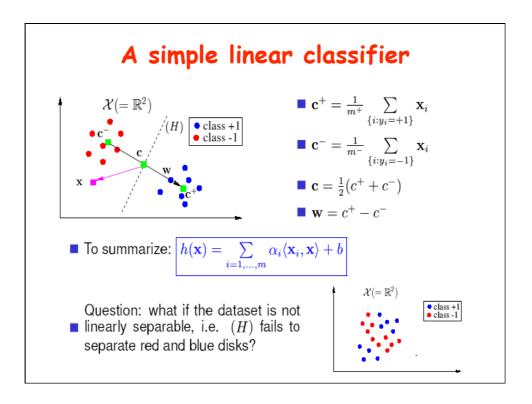
A simple linear classifier

$$h(x) = \langle x, c^+ \rangle - \langle x, c^- \rangle + b$$

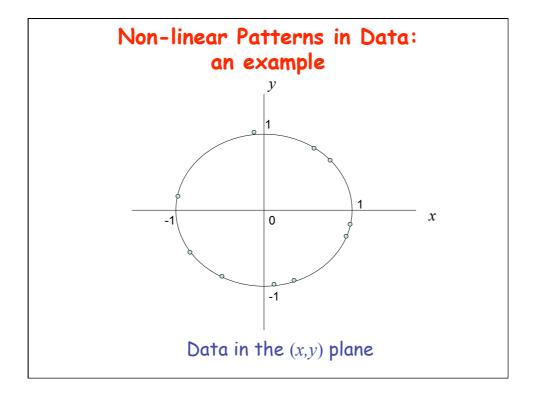
$$= \langle x, \frac{1}{m^+} \sum_{i:y_i=1}^m x_i \rangle - \langle x, \frac{1}{m^-} \sum_{i:y_i=-1}^m x_i \rangle + b$$

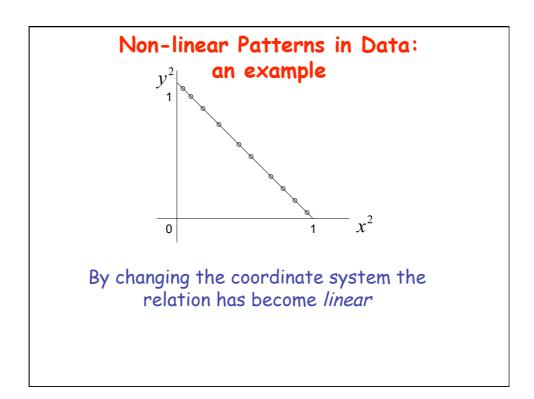
$$= \frac{1}{m^+} \sum_{i:y_i=1}^m \langle x, x_i \rangle - \frac{1}{m^-} \sum_{i:y_i=-1}^m \langle x, x_i \rangle + b$$

$$= \sum_{i=1}^m \alpha_i \langle x, x_i \rangle + b$$
where $\alpha_i = \frac{1}{m^+} \forall i: y_i = 1$ and $\alpha_i = \frac{1}{m^-} \forall i: y_i = -1$

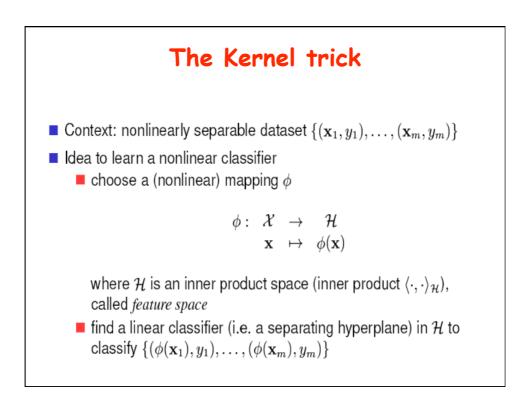


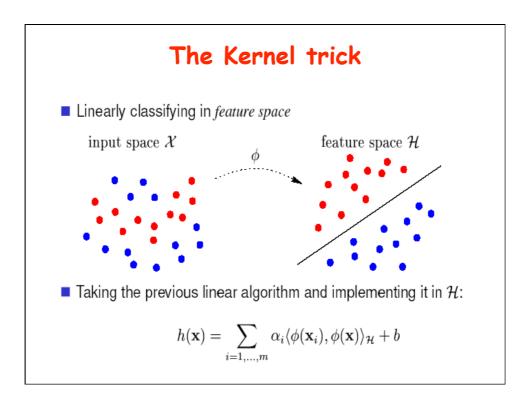
an e×ample				
X	У	x^2	y^2	xy
0.8415	0.5403	0.7081	0.2919	0.4546
0.9093	-0.4161	0.8268	0.1732	-0.3784
0.1411	-0.99	0.0199	0.9801	-0.1397
-0.7568	-0.6536	0.5728	0.4272	0.4947
0.9589	0.2837	0.9195	0.0805	-0.272
-0.2794	0.9602	0.0781	0.9219	-0.2683
0.657	0.7539	0.4316	0.5684	0.4953
0.9894	-0.1455	0.9788	0.0212	-0.144
0.4121	-0.9111	0.1698	0.8302	-0.3755
-0.544	-0.8391	0.296	0.704	0.4565

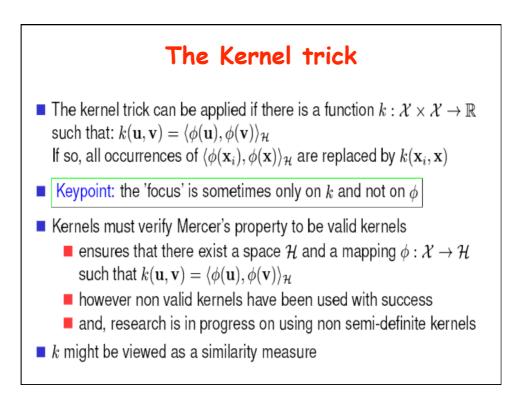


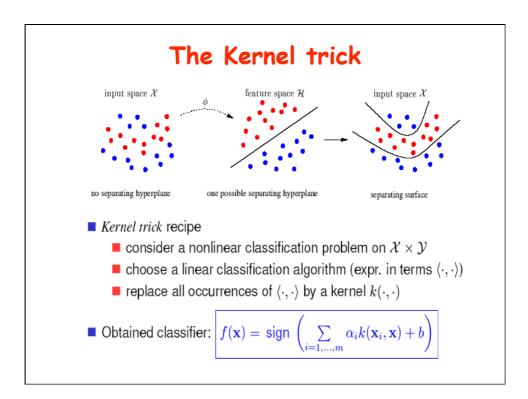


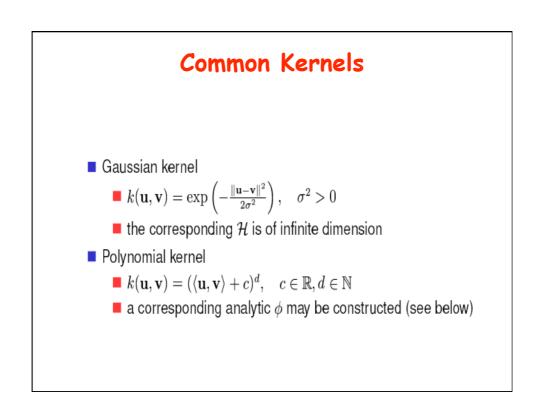
Non-linear Patterns in Data: an example Using the initial coordinates, the pattern was expressed as a quadratic form: f(x) = x² + y² - 1 = 0 ∀ x In the coordinate system using monomials, it appeared as a linear function. The possibility of transforming the representation of a pattern by changing the coordinate system in which the data are described is a recurrent theme in kernel methods.



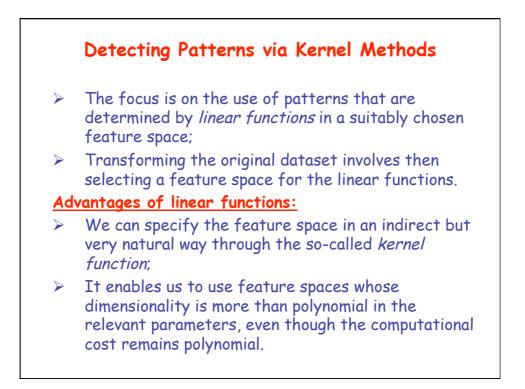


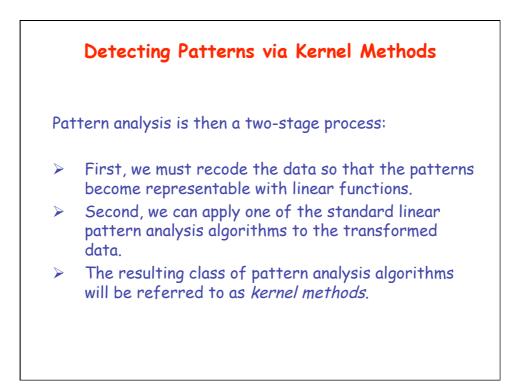


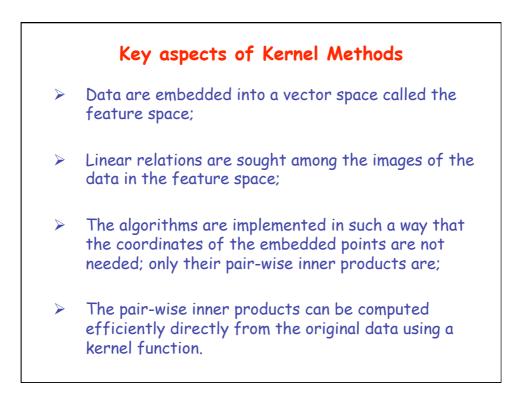


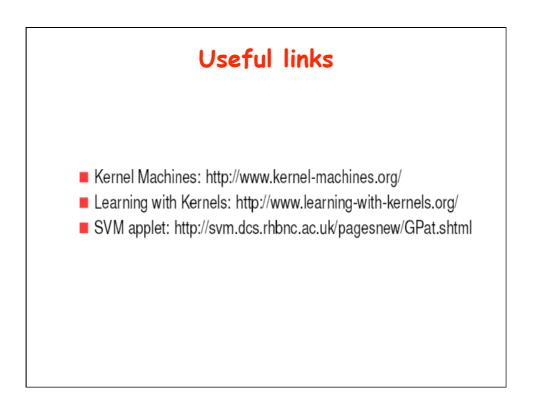


Common Kernels • Let $k = \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{R}^2}^2$ (polynomial kernel with c = 0 and d = 2) defined on $\mathbb{R}^2 \times \mathbb{R}^2$ • Consider the mapping: $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ $\mathbf{x} = [x_1, x_2]^\top \rightarrow \phi(\mathbf{x}) = [x_1^2, \sqrt{2}x_1x_2, x_2^2]^\top$ • We have, for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$: $\langle \phi(\mathbf{u}), \phi(\mathbf{v}) \rangle_{\mathbb{R}^3} = \langle [u_1^2, \sqrt{2}u_1u_2, u_2^2]^\top, [v_1^2, \sqrt{2}v_1v_2, v_2^2]^\top \rangle$ $= (u_1v_1 + u_2v_2)^2$ $= \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{R}^2}^2$ $= k(\mathbf{u}, \mathbf{v})$









References J. Shawe-Taylor and N. Cristianini, *Kernel Methods for Pattern Analysis*. Pattern analysis (Chapter 1). B. Scholkopf and A. Smola, *Learning with Kernels*. A Tutorial Introduction (Chapter 1). MIT University Press.