Clustering with Constraints:
Incorporating Prior Knowledge
into Clustering

Adapted from a Tutorial of Sugato Basu and lan Davidson (SDM 2005)

/ Clustering \

* The given data consists of input vectors without
any corresponding target values

* The goal is to discover groups of similar examples
within the data
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A Motivating Example

Given a set of instances S
Find the “best” set partition
S={5,US,U.. S}
Multitude of algorithms that define “best” differently
— K-Means
— Mixture Models
— Hierarchical clustering

=

Aim is to find the underlying structure/patterns/groups in

the data.
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/ Clustering Example \
(Number of Clusters=2)
Height

Weight
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Height

Horizontal Clusters

\J
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/ Vertical Clusters \
Height

o

Weight
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K-Means Clustering

» Standard iterative partitional clustering algorithm

 Finds £ representative centroids in the dataset

— Locally minimizes the sum of distance (e.g., squared Euclidean
distance) between the data points and their corresponding cluster

centroids
2, s P0:C)
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K-Means Algorithm

1. Randomly assign each instance to a cluster
2. Calculate the centroids for each cluster
3.  For each instance

. Calculate the distance to each cluster center
*  Assign the instance to the closest cluster

4. Goto 2 until distortion is small
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K Means Example (k=2)

Initialize Means
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K Means Example

Assign Points to Clusters

Weight

Height
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K Means Example
Re-estimate Means
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Height Re-assign Points to Clusters

K Means Example
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K Means Example
Re-estimate Means

Height
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K Means Example
Heigh Re-assign Points to Clusters
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K Means Example
Re-estimate Means and Converge
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K Means Example
Heeh Convergence
Weight
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A Few Issues With K-Means

 Sensitivity to initial centroids

— The algorithm is typically restarted many times from random
starting centroids

— Intelligently setting initial centroids [Bradley & Fayyad 2000]

+ Convergence time of algorithm can be slow
— Use KD-Trees to accelerate algorithms [Pelleg and Moore 1999]

* Which distance function should I use?
— L1, L2, Mahalanobis etc.

» Constraints can help address these problems and more ...
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Automatic Lane Finding from GPS traces
[Wagstaff et al. ’01]

Lane-level navigation
(e.g., advance |
notification for

taking exits)

Lane-keeping
suggestions (e.g., lane
departure warning)

* Constraints inferred from trace-contiguity (ML) & max-separation (CL)
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/ Mining GPS Traces (Schroedl et’ al) \

» Instances are represented by the x, y location on the road. We also know when a car
changes lane, but not what lane to.

» True clusters are very elongated and horizontally aligned with the lane central lines
* Regular k-means performs poorly on this problem instead finding spherical clusters.

8

n 0 na 150 200 260 aon a8

Figure 9. k-means output for data set 6, k = 4, with nearest clusters marked with different symbols.
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Unconstrained K-Means Can Provide
Not Useful Clusters

Only
significant
clusters
shown
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/Semi—supervised Learning \

* Unlabeled data may be easily available, while labeled ones may be
expensive to obtain because they require human effort

* Semi-supervised learning is a recent learning paradigm: it exploits unlabeled
examples, in addition to labeled ones, to improve the generalization ability
of the resulting classifier
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Semi-supervised Learning

Original decision boundary ~ When only labeled data is With unlabeled data
Given. along with labeled data

With lots of unlabeled data the decision boundary becomes apparent.
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Basic Instance Level Constraints

Historically, instance level constraints motivated by the
availability of labeled data

— 1.e., Much unlabeled data and a little labeled data available
generally as constraints, e.g., in web page clustering

This knowledge can be encapsulated using instance level
constraints [Wagstaff et al. 01]
— Must-Link Constraints

* A pair of points 5;and s; (i = /) must be assigned to the same cluster.
— Cannot-Link Constraints

© Basu and Davidson 2005

Clustering with Constraints

* A pair of points s;and s; (i = /) can not be assigned to the same cluster.

Properties of Instance Level Constraints

o Transitivity of Must-link Constraints
— ML(a,b) and ML(b,c) — ML(a,c)
— Let X and Y be sets of ML constraints
— ML(X) and ML(Y), aEX, aEY, — ML(X UY)

» The Entailment of Cannot link Constraints
— ML(a,b), ML(c,d) and CL(a,c) — CL(a,d),CL(b,c),CL(b,d)

— Let CC, ... CC,be the groups of must-linked instances (i.e.. The
connected components)

~ CL(a ECC, b ECC) — CL(x,y), Vx ECC, Yy ECC,

© Basu and Davidson 2005 Clustering with Constraints
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Uses of Constraints: The Big Picture

* Clustering with constraints:
Partition unlabeled data into groups called clusters
+ use constraints to aid and bias clustering

* QGoal:

Examples in same cluster similar, separate clusters
different + constraints are maximally respected

© Basu and Davidson 2005 Clustering with Constraints

Enforcing Constraints

 Clustering objective modified to enforce constraints

— Strict enforcement: find “best” feasible clustering respecting all
constraints

— Partial enforcement: find “best” clustering maximally respecting
constraints

» Uses standard distance functions for clustering

[Demiriz et al.’99, Wagstaff et al.’01, Segal et al.’03, Davidson et al.’05,
Lange et al.”05]
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Example: Enforcing Constraints

Height
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/ Example: Enforcing Constraints

Height Clustering respecting all constraints

<

V.

Cannot-link

\J

Must-link
Weight
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Learning Distance Function

» Constraints used to learn clustering distance function
— ML(a,b) — a and b and surrounding points should be “close”
— CL(a,b) — a and b and surrounding points should be “far apart”

» Standard clustering algorithm applied with learned
distance function

[Klein et al.’02, Cohn et al.”03, Xing et al.’03, Bar Hillel et al.’03,
Bilenko et al.”’03, Kamvar et al.’03, Hertz et al.”’04, De Bie et al.”04]
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Example: Learning Distance Function
Height
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/ Example: Learning Distance Function\

Height

Space Transformed by Learned Function
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/ Example: Learning Distance Functionx

Height

Clustering with Trained Function

V.

Cannot-link

\J

Must-link
Weight
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Nearest
Neighbor

Image retrieval

Given a query image
return the K-nearest
neighbors of the
image from the
database.

Euclidean distance on
Color Coherence
Vectors returns both
images as similar to
query image
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Enforce Constraints + Learn Distance

* Integrated framework [Basu et al.’04]
— Respect constraints during cluster assignment
— Modify distance function during parameter re-estimation

» Advantage of integration

— Distance function can change the space to decrease constraint
violations made by cluster assignment

— Uses both constraints and unlabeled data for learning distance
function
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Real-world examples

© Basu and Davidson 2005 Clustering with Constraints
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Gene Clustering Using Micro-array Data

Genes

Gene

expressions

Red => low
expression w.r.t
baseline

Green => high

expression w.r.t
baseline

Gene clusters

* Constraints from gene interaction information in DIP

© Basu and Davidson 2005 Clustering with Constraints
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Content Management: Document Clustering

Clustering

Documents
H
llllj ] = ll”J] Directory
=X = structure
constraints
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Automatic Lane Finding from GPS traces
[Wagstaff et al. ’01]

Lane-level navigation
(e.g., advance |
notification for

taking exits)

Lane-keeping
suggestions (e.g., lane
departure warning)

* Constraints inferred from trace-contiguity (ML) & max-separation (CL)
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Benefits of Constraints

* Find clusters where standard distance functions could not
 Find solutions with given properties

» Improve convergence time of algorithms
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Learning Distance Functions

— TRl
DistBoost M v o“ ﬁ @

Fuclid M - - - ,
-

DistBoost
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The Effects of Constraints on Clustering
Solutions

» Constraints divide the set of all plausible solutions into two
sets: feasible and infeasible: S = S U §;

+ Constraints effectively reduce the search space to S
* S; all have a common property

* So its not unexpected that we find solutions with a desired
property and find them quickly.
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Effects of Constraints on Convergence
Time

PIMA - Mean Number of Iterations Until Convergence

Breast Cancer - Mean Number of Iterations Until
Against Number of Clusters

Convergence Against Number of Clusters
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 Algorithms for constrained clustering
» Enforcing constraints
* Hierarchical
+ Learning distances
* Initializing and pre-processing
* Graph-based
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Enforcing Constraints
» Constraints are strong background information that should
be satisfied.
» Two options
— Satisfy all constraints if possible
— Satisfy as many constraints as possible
© Basu and Davidson 2005 Clustering with Constraints 44
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COP-k-Means — Nearest-"Feasible”-
Centroid Idea

Input: S,: unlabeled data, S;: labeled data, k: the number of clusters to find, ¢: number of
constraints to generate.

Output: A set partition of S =S, U S into k clusters so that all the constraints in C = MLUCL
are satisfied.

1. ML=0,CL=10
2. loop g times do

(a) Randomly choose two distinct points z and y from S;.
(b) if(Label(z) = Label(y)) ML = ML U{z,y} else CL =CLU{z,y}

3. Compute the transitive closure from ML to obtain the connected components CCy,...,CC,.
4. For each ¢, 1 < ¢ < r, replace data points in CC; with the average of the points in CC;.

5. Randomly generate cluster centroids Cy, ..., Ck.

6. loop until convergence do

(a) for i=1 to |S| do
(a.1) Assign s; to closest feasible cluster.
(b) Recalculate Cy,...,Cy.
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Example: COP-K-Means - 1

Height
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Example: COP-K-Means — 2 \
ML points Averaged

Height
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/ Example: COP-K-Means — 3 N

Nearest-Feasible-Assignment
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Trying To Minimize VQE and Satisfy As

Many Constraints As Possible

» Can’t rely on expecting that I can satisfy all constraints at

each iteration.
» Change aim of K-Means from:

— Find a solution satisfying all the constraints and minimizing VQE

TO

— Find a solution satisfying most of the constraints (penalized if a
constraint is violated) and minimizing VQE

» Two tricks
— Need to express penalty term in same units as VQE/distortion
— Need to re-derive K-Means (as a gradient descent algorithm).
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* Algorithms for constrained clustering
 Enforcing constraints
* Hierarchical
» Learning distances
* Initializing and pre-processing
» Graph-based
© Basu and Davidson 2005 Clustering with Constraints 50
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Distance Learning as Convex
Optimization [xingetal. *02]

* Learns a parameterized Mahalanobis distance

. 2 . _ T _
min Ellsl.—sj IIA—rrEn E(Si s;) A(s; =)

(s; .S YEML (s; S YEML

st. Dlis;=s, ll,=1, Ais positive - definite
(s; .S YECL
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Learning Mahalanobis distance

* Mahalanobis distance = Euclidean distance parameterized by matrix A:
2 T
[ x=yl[=(x-y) A(x-y)

e.g. Let 2 points be xT = (2,3), yT = (4,5)
D(xy) o« (2-4,3-5)1(2-4,3-5)T
« (2-4,3-5)(1; ,(2-4), 1, ,(3-5) T
x 1.(2-4)2+ 1.(3-5)?
D,(x.y) o (2-4, 3-5)A(2-4, 3-5)T
o Ay (2-4)2+ A, 5(3-5)

Typically 4 is the covariance matrix, but we can also learn it given constraints

© Basu and Davidson 2005 Clustering with Constraints 52
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Example: Learning Distance Function

Height

inadfans Cannotlink

Must-link
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/ Example: Learning Distance Function\

Space Transformed by Learned Function
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Example: Learning Distance Function

Height
* C., ML(a,b), a = (1,1), b= (1,2)
e p .0 CL(e.f), e=(1,2), f=(2,1)
" 10
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The Diagonal 4 Case

g(A) = g(All geese

’Ann) =

> ||x.~—mj||i—log( > ||xf—mj||,«)

(zi,2;)ES

(2i,2;)€ED

Use Newton Raphson Technique
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 Algorithms for constrained clustering
+ Enforcing constraints
* Hierarchical
+ Learning distances
* Initializing and pre-processing
* Graph-based

© Basu and Davidson 2005 Clustering with Constraints

Finding Informative Constraints
given a quota of Queries

* Active learning for constraint acquisition [Basu et al.’04]:
— In interactive setting, constraints obtained by queries to a user

— Need to get informative constraints to get better clustering

* Two-phase active learning algorithm:

— Explore: Use farthest-first traversal [Hochbaum et al.’85] to explore
the data and find K pairwise-disjoint neighborhoods (cluster skeleton)

rapidly

— Consolidate: Consolidate basic cluster skeleton by getting more points

from each cluster, within max (K-1) queries for any point

© Basu and Davidson 2005 Clustering with Constraints

58

29



Algorithm: Explore

* Pick a point s at random, add it to neighborhood N,, A =1
* While queries are allowed and (A < k)

— Pick point s farthest from existing A neighborhoods

— If by querying s is cannot-linked to all existing neighborhoods,
then set A =A+1, start new neighborhood N, with s

— Else, add s to neighborhood with which it is must-linked

© Basu and Davidson 2005 Clustering with Constraints 59

Active Constraint Acquisition for Clustering

Explore Phase
Height
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Kotive Constraint Acquisition for Clusteri@

Explore Phase
Height
. L] L] L ] L] :
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Kotive Constraint Acquisition for Clusterib
Explore Phase
Height
. . « °* ° e O
. L] L] L] L] :
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Kotive Constraint Acquisition for Clusteri@

Explore Phase
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Kotive Constraint Acquisition for Clusterib

Height

Explore Phase

Weight
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Kctive Constraint Acquisition for Clusteri@

Explore Phase
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Kctive Constraint Acquisition for Clusterib

Explore Phase
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Algorithm: Consolidate

» Estimate centroids of each of the A neighborhoods
* While queries are allowed

— Randomly pick a point s not in the existing neighborhoods

— Query s with each neighborhood (in sorted order of decreasing

distance from s to centroids) until must-link is found
— Add s to that neighborhood to which it is must-linked

© Basu and Davidson 2005 Clustering with Constraints

Active Constraint Acquisition for Clustering

Consolidate Phase
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@ive Constraint Acquisition for Clustering\
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@ive Constraint Acquisition for Clusterin}

Height

Consolidate Phase

. . . ..
. o
“
° o*
. N
*
“
. .
* I v
R
.
o o .
. 0
lllllllll * L]
. el FLLTTT
.
Weight
© Basu and Davidson 2005 Clustering with Constraints 70

35



@ive Constraint Acquisition for Clustering\

Consolidate Phase

Height
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@ive Constraint Acquisition for Clustering\

Consolidate Phase

Height
g
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 Algorithms for constrained clustering

 Enforcing constraints

* Hierarchical

* Learning distances

* Initializing and pre-processing

» Graph-based

© Basu and Davidson 2005
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Graph-based Clustering

» Data input as graph:
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Constrained Graph-based Clustering

*  Clustering criterion:

minimize normalized
cut

respecting constraints
in auxilliary constraint
graph
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Constrained Kernel-based Clustering

kernel

Use the data and the
specified constraints to
create appropriate

0.8

0.4r

0.8
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Today we talked about ...

* Introduction

» Uses of constraints

* Real-world examples

» Benefits of constraints

» Algorithms for constrained clustering

Enforcing constraints
Hierarchical

Learning distances

Initializing and pre-processing
Graph-based
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