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Clustering with Constraints: 
Incorporating Prior Knowledge 

into  Clustering 

Adapted from a  Tutorial of  Sugato Basu and Ian Davidson (SDM 2005) 
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A Motivating Example 

•  Given a set of instances S 
•  Find the “best” set partition  

  S = {S1 ∪ S2 ∪… Sk} 
•  Multitude of algorithms that define “best” differently 

–  K-Means 
–  Mixture Models 
–  Hierarchical clustering 

•  Aim is to find the underlying structure/patterns/groups in 
the data. 
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Clustering Example  
(Number of Clusters=2) 

Height 

Weight 
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Horizontal Clusters 
Height 

Weight 
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Vertical Clusters 
Height 

Weight 
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K-Means Clustering 

•  Standard iterative partitional clustering algorithm 

•  Finds k representative centroids in the dataset 
–  Locally minimizes the sum of distance (e.g., squared Euclidean 

distance) between the data points and their corresponding cluster 
centroids 

€ 

D(si,Cl i)si ∈S
∑
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K-Means Algorithm 

1.  Randomly assign each instance to a cluster 
2.  Calculate the centroids for each cluster 
3.  For each instance 

•  Calculate the distance to each cluster center 
•  Assign the instance to the closest cluster 

4.  Goto 2 until distortion is small 



5 

© Basu and Davidson 2005 9 Clustering with Constraints 

K Means Example (k=2) 
Initialize Means 

x 

x 

Height 

Weight 
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K Means Example 
Assign Points to Clusters 

x 

x 

Height 

Weight 
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K Means Example 
Re-estimate Means 

x 

x 

Height 

Weight 
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K Means Example 
Re-assign Points to Clusters 

x 

x 

Height 

Weight 
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K Means Example 
Re-estimate Means 
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x 
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K Means Example 
Re-assign Points to Clusters 
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x 
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K Means Example 
Re-estimate Means and Converge 

x 

x 

Height 

Weight 
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K Means Example 
Convergence 

x 

x 

Height 

Weight 
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A Few Issues With K-Means 
•  Sensitivity to initial centroids 

–  The algorithm is typically restarted many times from random 
starting centroids 

–  Intelligently setting initial centroids [Bradley & Fayyad 2000] 

•  Convergence time of algorithm can be slow 
–  Use KD-Trees to accelerate algorithms [Pelleg and Moore 1999] 

•  Which distance function should I use?  
–  L1, L2, Mahalanobis etc. 

•  Constraints can help address these problems and more … 
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Automatic Lane Finding from GPS traces 
[Wagstaff et al. ’01] 

Lane-level navigation 
(e.g., advance 
notification for 
taking exits) 

Lane-keeping 
suggestions (e.g., lane 

departure warning) 

•  Constraints inferred from trace-contiguity (ML) & max-separation (CL) 
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Mining GPS Traces (Schroedl et’ al) 
•  Instances are represented by the x, y location on the road. We also know when a car 

changes lane, but not what lane to. 
•  True clusters are very elongated and horizontally aligned with the lane central lines 
•  Regular k-means performs poorly on this problem instead finding spherical clusters.  
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Unconstrained K-Means Can Provide 
Not Useful Clusters 

Only  
significant 

clusters 
shown 
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Semi-supervised Learning 

Clustering with Constraints 
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Basic Instance Level Constraints 
•  Historically, instance level constraints motivated by the 

availability of labeled data 
–  i.e., Much unlabeled data and a little labeled data available 

generally as constraints, e.g., in web page clustering 

•  This knowledge can be encapsulated using instance level 
constraints [Wagstaff et al. ’01] 
–  Must-Link Constraints 

•  A pair of points si
 and sj

 (i ≠ j) must be assigned to the same cluster. 
–  Cannot-Link Constraints 

•  A pair of points si
 and sj

 (i ≠ j) can not be assigned to the same cluster.  
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Properties of Instance Level Constraints 

•  Transitivity of Must-link Constraints 
–  ML(a,b) and ML(b,c) → ML(a,c) 
–  Let X and Y be sets of ML constraints 
–  ML(X) and ML(Y), a∈X, a∈Y, → ML(X ∪ Y) 

•  The Entailment of Cannot link Constraints  
–  ML(a,b), ML(c,d) and CL(a,c) → CL(a,d),CL(b,c),CL(b,d) 
–  Let CC1 … CCr be the groups of must-linked instances (i.e.. The 

connected components) 
–  CL(a ∈ CCi, b ∈ CCj) → CL(x,y), ∀x ∈ CCi, ∀ y ∈ CCj 
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Uses of Constraints: The Big Picture 

•  Clustering with constraints:  
  Partition unlabeled data into groups called clusters   
  + use constraints to aid and bias clustering 

•  Goal:  
  Examples in same cluster similar, separate clusters 

 different + constraints are maximally respected 
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Enforcing Constraints 

•  Clustering objective modified to enforce constraints 
–  Strict enforcement: find “best” feasible clustering respecting all 

constraints 
–  Partial enforcement: find “best” clustering maximally respecting 

constraints 

•  Uses standard distance functions for clustering 

[Demiriz et al.’99, Wagstaff et al.’01, Segal et al.’03, Davidson et al.’05, 
Lange et al.’05] 
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Example: Enforcing Constraints 

Cannot-link 

Must-link 

Height 

Weight 
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Example: Enforcing Constraints  
 Clustering respecting all constraints 

Cannot-link 

Must-link 

Height 

Weight 
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Learning Distance Function 

•  Constraints  used to learn clustering distance function 
–  ML(a,b) → a and b and surrounding points should be “close” 
–  CL(a,b) → a and b and surrounding points should be “far apart” 

•  Standard clustering algorithm applied with learned 
distance function 

[Klein et al.’02, Cohn et al.’03, Xing et al.’03, Bar Hillel et al.’03, 
Bilenko et al.’03, Kamvar et al.’03, Hertz et al.’04, De Bie et al.’04] 
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Example: Learning Distance Function 

Cannot-link 

Must-link 

Height 

Weight 
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Example: Learning Distance Function 
Space Transformed by Learned Function 

Cannot-link 

Must-link 

Height 

Weight 
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Example: Learning Distance Function 
Clustering with Trained Function 

Cannot-link 

Must-link 

Height 

Weight 
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Why Learn Distance functions?


Euclidean distance on 
Color Coherence 

Vectors returns both 
images as similar to 

query image 

Nearest 
Neighbor  

Image retrieval  

 Given a query image 
return the K-nearest 

neighbors of the 
image from the 

database. 
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Enforce Constraints + Learn Distance 

•  Integrated framework [Basu et al.’04] 
–  Respect constraints during cluster assignment 
–  Modify distance function during parameter re-estimation 

•  Advantage of integration 
–  Distance function can change the space to decrease constraint 

violations made by cluster assignment 
–  Uses both constraints and unlabeled data for learning distance 

function 
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Real-world examples 
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Gene Clustering Using Micro-array Data 

Gene 
expressions 

Gene clusters 

Red => low 
expression w.r.t 

baseline 

Genes 

Experiments 

Green => high 
expression w.r.t 

baseline 

•  Constraints from gene interaction information in DIP 
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Content Management: Document Clustering 

Documents 

Directory 
structure 

constraints 

Clustering 
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Automatic Lane Finding from GPS traces 
[Wagstaff et al. ’01] 

Lane-level navigation 
(e.g., advance 
notification for 
taking exits) 

Lane-keeping 
suggestions (e.g., lane 

departure warning) 

•  Constraints inferred from trace-contiguity (ML) & max-separation (CL) 
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Benefits of Constraints 

•  Find clusters where standard distance functions could not 

•  Find solutions with given properties 

•  Improve convergence time of algorithms 
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DistBoost 

Euclid 

DistBoost 

Euclid 

DistBoost 

Euclid 

Learning Distance Functions 
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The Effects of Constraints on Clustering 
Solutions 

•  Constraints divide the set of all plausible solutions into two 
sets: feasible and infeasible: S = SF∪ SI 

•  Constraints effectively reduce the search space to SF
 

•  SF all have a common property 
•  So its not unexpected that we find solutions with a desired 

property and find them quickly. 

© Basu and Davidson 2005 42 Clustering with Constraints 

Effects of Constraints on Convergence 
Time 
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•  Algorithms for constrained clustering 
•  Enforcing constraints      
•  Hierarchical       
•  Learning distances     
•  Initializing and pre-processing     
•  Graph-based       
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Enforcing Constraints 

•  Constraints are strong background information that should 
be satisfied. 

•  Two options 
–  Satisfy all constraints if possible 
–  Satisfy as many constraints as possible 
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COP-k-Means – Nearest-”Feasible”- 
Centroid Idea 
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Example: COP-K-Means - 1 

Cannot-link 

Must-link 

Height 

Weight 
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Example: COP-K-Means – 2 
ML points Averaged 

Cannot-link 

Must-link 

Height 

Weight 

x 

x 
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Example: COP-K-Means – 3 
Nearest-Feasible-Assignment 

Cannot-link 

Must-link 

Height 

Weight 

x 

x 
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Trying To Minimize VQE and Satisfy As 
Many Constraints As Possible 

•  Can’t rely on expecting that I can satisfy all constraints at 
each iteration. 

•  Change aim of K-Means from: 
–  Find a solution satisfying all the constraints and minimizing VQE  

TO 
–  Find a solution satisfying most of the constraints (penalized if a 

constraint is violated) and minimizing VQE 
•  Two tricks 

–  Need to express penalty term in same units as VQE/distortion 
–  Need to re-derive K-Means (as a gradient descent algorithm). 
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•  Algorithms for constrained clustering 
•  Enforcing constraints      
•  Hierarchical       
•  Learning distances      
•  Initializing and pre-processing     
•  Graph-based       
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Distance Learning as Convex 
Optimization [Xing et al. ’02] 

€ 

min
A

|| si −
(si ,s j )∈ML
∑ s j ||A

2 = min
A

(si − s j )
T A(si − s j )

(si ,s j )∈ML
∑

s.t. || si −
(si ,s j )∈CL
∑ s j ||A≥1, A is positive - definite

•  Learns a parameterized Mahalanobis distance 
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Learning Mahalanobis distance 

•    Mahalanobis distance = Euclidean distance parameterized by matrix A: 

e.g. Let 2 points be xT = (2,3), yT = (4,5) 

DI(x,y)  ∝ (2-4, 3-5)I(2-4, 3-5) T 

  ∝ (2-4, 3-5)(I1,1(2-4), I2,2(3-5)) T 

       ∝ 1.(2-4)2+ 1.(3-5)2  

DA(x,y)    ∝ (2-4, 3-5)A(2-4, 3-5) T 

   ∝ A1,1(2-4)2+ A2,2(3-5)2 

Typically A is the covariance matrix, but we can also learn it given constraints 
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Example: Learning Distance Function 

Cannot-link 

Must-link 

Height 

Weight 
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Example: Learning Distance Function 
Space Transformed by Learned Function 

Cannot-link 

Must-link 

Height 

Weight 
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Example: Learning Distance Function 

Cannot-link 

Must-link 

Height 

Weight 

ML(a,b), a = (1,1), b= (1,2) 

CL(e,f),  e= (1,2), f= (2,1) 

A = 
1 0 

0 ε 
D(a,b) = ε  

D(e,f) = 1+ ε  
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The Diagonal A Case 

Use Newton Raphson Technique 
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•  Algorithms for constrained clustering 
•  Enforcing constraints      
•  Hierarchical       
•  Learning distances      
•  Initializing and pre-processing     
•  Graph-based       
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Finding Informative Constraints  
given a quota of Queries 

•  Active learning for constraint acquisition [Basu et al.’04]:  
–  In interactive setting, constraints obtained by queries to a user 
–  Need to get informative constraints to get better clustering 

•  Two-phase active learning algorithm: 

–  Explore: Use farthest-first traversal [Hochbaum et al.’85] to explore 
the data and find K pairwise-disjoint neighborhoods (cluster skeleton) 
rapidly 

–  Consolidate: Consolidate basic cluster skeleton by getting more points 
from each cluster, within max (K-1) queries for any point 
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Algorithm: Explore 

•  Pick a point s at random, add it to neighborhood N1 , λ = 1 

•  While queries are allowed and (λ < k) 
–  Pick point s farthest from existing λ neighborhoods 

–  If by querying s is cannot-linked to all existing neighborhoods, 
then  set λ = λ+1, start new neighborhood Nλ with s 

–   Else, add s to neighborhood with which it is must-linked 
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Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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. 

. 
Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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. 

. 
Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Explore Phase 
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Algorithm: Consolidate 

•  Estimate centroids of each of the λ neighborhoods 
•  While queries are allowed 

–  Randomly pick a point s not in the existing neighborhoods 
–  Query s with each neighborhood (in sorted order of decreasing 

distance from s to centroids) until must-link is found 
–  Add s to that neighborhood to which it is must-linked 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Consolidate Phase 

. 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Consolidate Phase 

. 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Consolidate Phase 

. . 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Consolidate Phase 

. . 
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. 

. 

. 

Height 

Weight 

Active Constraint Acquisition for Clustering 
Consolidate Phase 

. . 
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•  Algorithms for constrained clustering 
•  Enforcing constraints      
•  Hierarchical       
•  Learning distances      
•  Initializing and pre-processing    
•  Graph-based       
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Graph-based Clustering 

•  Data input as graph:  

 real valued edges 
between pairs of 
points denotes 
similarity 
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Constrained Graph-based Clustering 
•  Clustering criterion: 

 minimize normalized 
cut 

•  Possible solution: 
 Spectral Clustering 

      [Kamvar et al. ’03] 

•  Constrained graph 
clustering:  

 minimize cut in input 
graph while maximally 
respecting constraints 
in  auxilliary constraint 
graph 
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Kernel-based Clustering 

•  2-circles data not linearly 
separable 

•  transform to high-D 
using kernel 

•  Cluster data using kernel 
K-Means 
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Constrained Kernel-based Clustering 

•  Use the data and the 
specified constraints to 
create appropriate 
kernel 
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Today we talked about … 
•  Introduction       
•  Uses of constraints     
•  Real-world examples      
•  Benefits of constraints      
•  Algorithms for constrained clustering 

•  Enforcing constraints      
•  Hierarchical       
•  Learning distances      
•  Initializing and pre-processing     
•  Graph-based       
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