Dimensionality Reduction

« Many dimensions are often
interdependent (correlated);

We can:
» Reduce the dimensionality of problems;

» Transform interdependent coordinates
into significant and independent ones;

Principal Component Analysis




Principal Component Analysis -- PCA

(also called Karhunen-Loeve transformation)

« PCA transforms the original input space into
a lower dimensional space, by constructing
dimensions that are linear combinations of
the given features;

The objective is to consider independent
dimensions along which data have largest
variance (i.e., greatest variability);

Principal Component Analysis -- PCA

PCA involves a linear algebra procedure that
transforms a number of possibly correlated
variables into a smaller number of
uncorrelated variables called principal
components;

The first principal component accounts for as
much of the variability in the data as possible;

Each succeeding component (orthogonal to
the previous ones) accounts for as much of
the remaining variability as possible.




Principal Component Analysis -- PCA

» So: PCAfinds n linearly transformed
components so that they explain
the maximum amount of variance;

* We can define PCA in an intuitive way using a
recursive formulation:

Principal Component Analysis -- PCA

» Suppose data are first centered at the origin
(i.e., their mean is 0 );

» We define the direction of the first principal
component, say g, as follows

w, =arg ma>1<E[(wT x)’]

where is of the same dimensionality ] as
the data vector

* Thus:




Principal Component Analysis -- PCA

* Having determined the first k-7 principal
components, the k-th principal component is
determined as the principal component of the
data residual:

w, —argmaxE{ w'(x - ZWZWZ X))

=1

* The principal components are then given by:

T

Simple illustration of PCA

First principal component of a two-dimensional
data set.




Simple illustration of PCA

Second principal component of a two-
dimensional data set.

PCA — Geometric interpretation

Basically:

PCA rotates the data

(centered at the origin) in
such a way that the maximum
variability is visible (i.e.,
aligned with the axes.)




PCA - How to compute the principal components

Let w be the direction of the first principal component, with |w]| = 1

s, =w' x, is the projection of x, along w

PCA - How to c?mpute the principal components

N

Sample covariance matrix




PCA - How to compute the principal components

Thus : the variance of data along direction w can be written as
w' Zw

Our objectiveis to find w such that
w = argmax w' Zw

with the constraint w’w =1

By introducing one Lagrange multiplier A, we obtain

the following unconstrained optimization problem

w= argmjlx[wTZw - A(wrw - 1)]

Setting 9 Ogives: 23w —2hw =0
ow

Thatis: Sw = A Our prpblem is reduced to an
eigenvalue problem

PCA - How to compute the principal components

Thus : the variance of data along direction w can be written as
w' Zw

Our objectiveis to find w such that
w = argmax w' Zw

with the constraint w’w =1

By introducing one Lagrange multiplier A, we obtain

the following unconstrained optimization problem

W= argmjlx[wTEw - A(wTw - 1)]

Setting 9 Ogives: 23w —2hw =0
ow

The solution w is the eigenvector of =

Thatis: Zw = Aw
corresponding to the largest eigenvalue A




PCA -- Summary

« The computation of the [flis accomplished by solving
an eigenvalue problem for the sample covariance
matrix (assuming data have 0 mean):

The eigenvector associated with the largest
eigenvalue corresponds to the first principal
component; the eigenvector associated with the
second largest eigenvalue corresponds to the second
principal component; and so on...

Thus: The are the eigenvectors ofthat
correspond to the n largest eigenvalues of

PCA -- In practice

The basic goal of PCA is to reduce the
dimensionality of the data. Thus, one usually

chooses:
n<<g

But how do we select the number of
components n ?




Determining the number of components

Plot the eigenvalues — each eigenvalue is
related to the amount of variation explained by
the corresponding axis (eigenvector);

If the points on the graph tend to level out
(show an “elbow” shape), these eigenvalues
are usually close enough to zero that they can
be ignored.

In general: Limit the variance accounted for.

Critical information lies in low
dimensional subspaces

F

A typical eigenvalue spectrum and its division into
two orthogonal subspaces
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Determining the number of components

X, €N, =1 N

Wy, Wy, W, : g eigenvectors (principal component directions)

w,|=1 (thews areorthonormal vectors)

Representation of x; in eigenvector space :
T T T
Y= (wl xl.)w] + (w2 xl.)w2 4ot (wqx,.)wq
Suppose we retain the first k£ principal components :
k T T T
AR (wl xi)wl + (w2 xl.)w2 ot (wk xl.)wk
Then :

k T T
yi - yi = (wk+lxi)wk+l +oot (wq xi)wq

Determining the number of components

T T r T T
[(wk+1xi)wk+l troot (wq xi)wq] [(wk+lxi)wk+l oot (wq xi)wq] =
2 2
T T T T
wk+l(wk+lxi) Wi Tt w, (wq xi) w, =
(note w w ;=0 Vi= jsince w, and w; are orthogonal vectors)
T 2 r “ee T 2 T -
WiaXi] WeaWin t + wqxi wq wq -
2 2
T T
(Wl )+ () =
T T T T
(w,mx[)(x[ w,m) 4ot (wq x,.)(x[ wq) =

T T T T
wk+l(xl.x,. )Wk+1 +eotw, (xl.xl. )wq




Determining the number of components

N
%E(yi—y,«")T(yi -¥)= Mean square error
i=1
N
%;[w,{ﬂ (e o 4w (s o, ] =
w! ii(xxT)w oot w’ ii(xxT)w =
k+1 N L i k+1 q N L ivi q

T T
WeaZW,, +o+w, 2w,
Wehave: Zw,,, =AW, 2w, =AW

Thus :
T T
Wi ZW  +otw Ew, =
s +orw A w =
Wi Wi w, AW, =
Mg+t

Determining the number of components

=

LS =) ()= Ao,

1

The mean square error of the truncated
= |representation is equal to the sum of the
remaining eigenvalues.

In general: choose k so that 90-95% of the
variance of the data is captured.
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Cat and Dog faces: black & white 64 by 64 images
(dim=4096)




FERET face images; image size is 150 by 130
(dim=19,500)
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Advantages of PCA

Optimal linear dimensionality reduction
technique in the mean-square sense;

Reduce the curse-of-dimensionality;

Computational overhead of subsequent
processing stages is reduced,

Noise may be reduced;

A projection into a subspace of a very low
dimensionality, e.g. two dimensions, is useful
for visualizing the data.




