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Dimensionality Reduction 

•  Many dimensions are often 
interdependent (correlated); 

We can: 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates 
into significant and independent ones; 

Principal Component Analysis 
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Principal Component Analysis -- PCA 
(also called Karhunen-Loeve transformation) 

•  PCA transforms the original input space into 
a lower dimensional space, by constructing 
dimensions that are linear combinations of 
the given features; 

•  The objective is to consider independent 
dimensions along which data have largest 
variance (i.e., greatest variability);   

Principal Component Analysis -- PCA 

•  PCA involves a linear algebra procedure that 
transforms a number of possibly correlated 
variables into a smaller number of 
uncorrelated variables called principal 
components; 

•  The first principal component accounts for as 
much of the variability in the data as possible; 

•  Each succeeding  component (orthogonal to 
the previous ones) accounts for as much of 
the remaining variability as possible.   
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Principal Component Analysis -- PCA 

•  So: PCA finds n linearly transformed  
components                       so that they explain 
the maximum amount of variance; 

         

•  We can define PCA in an intuitive way using a 
recursive formulation: 

nsss ,,, 21 !

Principal Component Analysis -- PCA 

•  Suppose data are first centered at the origin 
(i.e., their mean is 0 ); 

•  We define the direction of the first principal 
component, say     , as follows 

   where       is of the same dimensionality     as 
the data vector  

•  Thus: the first principal component is the 
projection on the direction along which the 
variance of the projection is maximized.         
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Principal Component Analysis -- PCA 

•  Having determined the first k-1 principal 
components, the k-th principal component is 
determined as the principal component of the 
data residual: 

     

•  The principal components are then given by:         
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Simple illustration of PCA 

First principal component of a two-dimensional 
data set. 
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Simple illustration of PCA 

Second principal component of a two-
dimensional data set. 

PCA – Geometric interpretation 

 

Basically: 

 PCA rotates the data 
(centered at the origin) in 

such a way that the maximum 
variability is visible (i.e., 
aligned with the axes.) 
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PCA – How to compute the principal components 
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PCA – How to compute the principal components 
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PCA – How to compute the principal components 
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By introducing one Lagrange multiplier ",  we obtain
the following unconstrained optimization problem
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PCA – How to compute the principal components 
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PCA -- Summary 

•  The computation of the       is accomplished by solving 
an eigenvalue problem for the sample covariance 
matrix (assuming data have 0 mean): 

•  The eigenvector associated with the largest 
eigenvalue corresponds to the first principal 
component; the eigenvector associated with the 
second largest eigenvalue corresponds to the second 
principal component; and so on… 

•  Thus: The        are the eigenvectors of      that 
correspond to the n largest eigenvalues of          
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PCA -- In practice 

•  The basic goal of PCA is to reduce the 
dimensionality of the data. Thus, one usually 
chooses:  

•  But how do we select the number of 
components n ? 
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Determining the number of components 

•  Plot the eigenvalues – each eigenvalue is 
related to the amount of variation explained by 
the corresponding axis (eigenvector);  

•  If the points on the graph tend to level out 
(show an “elbow” shape), these eigenvalues 
are usually close enough to zero that they can 
be ignored. 

•  In general: Limit the variance accounted for. 

            

Critical information lies in low 
dimensional subspaces 

! F 
! S 

! A typical eigenvalue spectrum and its division into  
two orthogonal subspaces 
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Determining the number of components 
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Representation of xi in eigenvector space :  

yi = w1
T xi( )w1 + w2
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T xi( )wq
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Suppose we retain the first k principal components :  
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Determining the number of components 
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Determining the number of components 
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Mean square error 

Determining the number of components 
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The mean square error of the truncated 
representation is equal to the sum of the 
remaining eigenvalues. 

In general: choose k so that 90-95% of the 
variance of the data is captured. 
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Cat and Dog faces: black & white  64 by 64 images 
(dim=4096)  
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!  original 

!  1 ~ 5 

!  101~105 

!  191~195 

FERET face images; image size is 150 by 130 
(dim=19,500) 
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Advantages of PCA 

•  Optimal linear dimensionality reduction 
technique in the mean-square sense; 

•  Reduce the curse-of-dimensionality; 

•  Computational overhead of subsequent 
processing stages is reduced; 

•  Noise may be reduced; 

•  A projection into a subspace of a very low 
dimensionality, e.g. two dimensions, is useful 
for visualizing the data. 

            


