Example:

Suppose we want to build a classifier that
recognizes WebPages of graduate students.

How can we find training data?

We can browse the web and collect a sample
of WebPages of graduate students of various
universities.

Now we have a collection of positive examples.

How about negative examples ?

The negative examples are... the rest of the web
that is not “a graduate student webpage”.

So: the negatives examples come from an
unknown number of different “negatives”
classes.

Thus: It is hopeless, and wrong, to trying to
characterize the distribution of the negatives;
they can belong to any class. (“Each negative
examples is negative in its own way.”)




We just cannot formulate this problem as a two
class classification problem.

It can be seen as a (I+x)-class learning problem:

There are an unknown number (x) of classes, but

the user is interested in one class, i.e. the user is
biased toward one class.

Similarly: in content-based image retrieval, and
document retrieval in general.

How do we approach this problem then?

It is reasonable to assume that positive examples

cluster in a certain way. (“All positive example are
alike.”)

Thus: We can attempt to capture the distribution
of the positive examples.

One-class SVMs offer a solution to the (1+x)-
class problem.
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Undesirable result reached by a two-class
SVM

i
Target Image Cluster
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Figure 1 Decision boundary of a two-class SVM: The
circles are the positive images. the crosses are the
negative ones, and the black dots are the unlabeled
images. The decision boundary (the dashed line) will
classify many non-target images as positive.




The Proposed Approach

Try to fit a tight hyper-sphere (in a transformed
space) to include most positive training examples.

Such hyper-sphere tries to capture the support
within which the positive examples are clustered,
in an effort to separate them from “the rest of
the world”.

The hyper-sphere will include most, but not
all, training data to avoid overfitting.

One class SVM

We consider training data

where /& Nis the number of observations. Let @be a
feature map X — F.




One class SVM
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One class SVM

We can solve this optimization with Lagrangian

multipliers:
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One class SVM

By substituting (1), (2), (3) in L, we obtain:

One class SVM
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Which we want to maximize with respect to the as




One class SVM

Thus: the dual objective function can be
written using a kernel function:
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The solution of this optimization
problem gives the optimal os values

One class SVM

, ajcp(x,-)) (d)(X)—Zajq)(Xj)J:




One class SVM

To use the one - class SVM to rank images :
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The closer the image is to the center of the
hyper-sphere, the higher is the score, and
more likely the image is to be a target
image.

Two nice toy examples




Linear One class SVM
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In practice we cannot assume that real data
are clustered in spherical shapes as in the
previous example. Real data (e.g. images) can
have multi-mode distributions.

The use of a kernel allows to handle the more
general case. We look for spherical shapes in
the transformed space.




Non-linear One class SVM

(h)

Real data

* Fully labeled image database;

* 5 classes with 100 images each;

- Classes: airplanes, cars, horses, eagles,
stained glasses;

* Each image is a vector of 37 dimensions:
statistical moments, edge-based structure
features, etc;
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Experiment with real data

For each class, 10 images are randomly
chosen as training examples;

The learned decision function is used to
rank all the 500 images in the database;

The hit rates in the top ranked 20 and 100
images are used as performance measures;

For each class, the experiment is repeated
100 times, and average error rates are
reported.

Experimental Results

I'able 1: Averaged Error rate for image retrieval
using  LOC-SVM  (One-class  SVM), W1
(Whitening Transform). and KOC-SVM (Kemnel
One-class SVM), all with 10 training samples.
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Conclusions

- Effective training was performed with a
small number of examples:;

« A Gaussian kernel was used: how does it
compare with using different kernels?

* The method requires the tuning of two
Ear'ame‘rers: the spread of the Gaussian
ernel, and the regularization term for

errors.
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