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Example:  
Suppose we want to build a classifier that 
recognizes WebPages of graduate students. 

How can we find training data? 

We can browse the web and collect a sample 
of WebPages of graduate students of various 
universities. 

Now we have a collection of positive examples. 

How about negative examples ? 

The negative examples are… the rest of the web 
that is not “a graduate student webpage”.   

So: the negatives examples come from an 
unknown number of different “negatives” 
classes. 

Thus: It is hopeless, and wrong, to trying to 
characterize the distribution of the negatives; 
they can belong to any class.  (“Each negative 
examples is negative in its own way.”) 
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We just cannot formulate this problem as a two 
class classification problem. 

It can be seen as a (1+x)-class learning problem: 
There are an unknown number (x) of classes, but 
the user is interested in one class, i.e. the user is 
biased toward one class. 

Similarly: in content-based image retrieval, and 
document retrieval  in general. 

How do we approach this problem then? 

It is reasonable to assume that positive examples 
cluster in a certain way. (“All positive example are 
alike.”) 

Thus: We can attempt to capture the distribution 
of the positive examples. 

One-class SVMs offer a solution to the  (1+x)-
class problem. 
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Undesirable result reached by a two-class 
SVM 
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The Proposed Approach 

Try to fit a tight hyper-sphere (in a transformed 
space) to include most positive training examples.  

Such hyper-sphere tries to capture the support 
within which the positive examples are clustered, 
in an effort to separate them from “the rest of 
the world”.  

The hyper-sphere will include most, but not 
all, training data to avoid overfitting. 

One class SVM 
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One class SVM 
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By substituting (1), (2), (3) in L, we obtain: 
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Which we want to maximize with respect to the sα
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One class SVM 

Thus: the dual objective function can be 
written using a kernel function: 

The solution of this optimization 
problem gives the optimal      values sα

max 

One class SVM 
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One class SVM 
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The closer the image is to the center of the 
hyper-sphere, the higher is the score, and 
more likely the image is to be a target 
image. 

Two nice toy examples 
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Linear One class SVM 

 

 

The optimal ’s can be got after solving this dual 
problem by the QP optimization methods. We can rank all 
the images in the database by the following decision 
function: 
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The images with higher scores are more likely to be 
the target images.  

2.2 Linear Case: LOC-SVM (One-Class SVM) 

First we try the linear case. For linear case, the 
algorithm just tries to fit a hyper-sphere to cover the 
training points with outlier detection. A synthetic training 
data set is generated to illustrate our algorithm. The 
training sample is randomly generated according to x = 
N( , ), where  = (5, 0)T,  = I.  One can see that in 
Figure 2(b), the learning machine catches the distribution 
without over-fitting. The decision function evaluates the 
largest value at [5.0, 0.15] which is very close to the true 
center. It tries to put a circle in the 2D dimension to 
include most positive samples while leave some out as 
outlier. The parameter  can be tuned to control the 
amount of outliers. 
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(a)    (b) 

Figure 2: (a) shows the training points we 
generated. The dots are the samples that have 
positive evaluation from the decision function 
after training. The crosses are the samples that 
are detected as outliers and have negative 
evaluation from the decision function. (b) is the 
decision value for all the points in the 2D feature 
space. It takes the largest value at [5.0, 0.15] 

But in feature space, we cannot assume that the target 
images are clustered in spherical shape—images can have 
complicated non-linear distributions. However by using 
kernel-based form of this algorithm, non-linear 
distribution can be dealt with in the same framework.  

2.3 Non-linear Case Using Kernel (KOC-SVM) 

In this section, we discuss the use of reproducing 
kernel to deal with non-linear, multi-mode distributions 
using KOC-SVM (Kernel One-class SVM). A good 
choice is the Gaussian kernel in the following form: 

22 2/),( #YXeYXK !!=  

To test KOC-SVM’s ability to capture non-linearity 
such as a multi-mode distribution, training data are jointly 
sampled from three Gaussian modes. We also generate 
some sparse outliers from a uniform distribution over the 
feature space. After training, the decision function in the 
feature space is shown in Figure 3 (b). It is apparent that 
KOC-SVM captures the multimode fairly well. It is 
important to note that this learning machine has the 
capability of removing outliers in an intelligent way, 
unlike the way a non-parametric Parzen window density 
estimator works. 
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Figure 3: (a) shows all the training set we 
generated from three Gaussians. The dots are 
the samples which have positive evaluation 
from the decision function. The crosses are the 
samples which are detected as outliers and get 
negative decision function values. (b) decision 
values for all the points in the 2D feature 
space. White means high value while black 
means low value. 

In practice we cannot assume that real data 
are clustered in spherical shapes as in the 
previous example. Real data (e.g. images) can 
have multi-mode distributions.  

The use of a kernel allows to handle the more 
general case. We look for spherical shapes in 
the transformed space. 
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Non-linear One class SVM 

Real data 
•  Fully labeled image database; 
•  5 classes with 100 images each; 
•  Classes: airplanes, cars, horses, eagles, 

stained glasses; 
•  Each image is a vector of 37 dimensions: 

statistical moments, edge-based structure 
features, etc;  
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Experiment with real data 
•  For each class, 10 images are randomly 

chosen as training examples;  

•  The learned decision function is used to 
rank all the 500 images in the database; 

•  The hit rates in the top ranked 20 and 100 
images are used as performance measures; 

•  For each class, the experiment is repeated 
100 times, and average error rates are 
reported. 

Experimental Results 
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Conclusions 
•  Effective training was performed with a 

small number of examples; 
•  A Gaussian kernel was used: how does it 

compare with using different kernels? 
•  The method requires the tuning of two 

parameters: the spread of the Gaussian 
kernel, and the regularization term for 
errors. 


