
214 � A First Course in Machine Learning

6.2.3 Kernelised K-means

We can extend K-means using the kernel substitution trick that we introduced in
Chapter 5. At an abstract level, the idea is the same: rather than making the algo-
rithm more complex, we will transform the data into a space in which our simple
algorithm works. We shall highlight this approach using the data shown in Fig-
ure 6.4(a).

We have seen that rather than actually performing the transformation of the
data, kernel methods use kernel functions to directly compute inner (dot) products
in the transformed space. As such, any algorithm where the data objects, x1, . . . ,xN ,
only appear as inner products (xT

i xj etc) can be given the kernel treatment, making
it more powerful without any significant additional cost. Key to the operation of
K-means is the computation of the distance between the nth object and the kth
mean:

dnk = (xn − µk)
T(xn − µk),

where the mean, µk is calculated according to Equation 6.1. Substituting this into
the expression for dnk gives:

dnk =

�
xn − 1

Nk

N�

m=1

zmkxm

�T �
xn − 1

Nk

N�

r=1

zrkxr

�
,

where Nk =
�N

n=1 znk, the number of objects assigned to cluster k.
Multiplying out this expression results in the data (xn) only appearing in product

terms:

dnk = xT
nxn − 2

Nk

N�

m=1

zmkx
T
nxm +

1
N

2
k

N�

m=1

N�

r=1

zmkzrkx
T
mxr.

All that remains is to replace the inner products with kernel functions to give a
kernelised distance:

dnk = K(xn,xn)−
2
Nk

N�

m=1

zmkK(xn,xm) +
1
N

2
k

N�

m=1

N�

r=1

zmkzrkK(xm,xr).

(6.3)

This distance is purely a function of the data and the current assignments, the cluster
means do not appear. In fact, it is not, in general, possible to actually compute the
cluster means in the transformed space. The original expression for the mean of
cluster k is:

µk =

�N
n=1 znkxn�N
n=1 znk

,

and the kernelised version is:

µk =

�N
n=1 znkφ(xn)�N

n=1 znk

.

Within this expression, data objects appear on their own and not as inner prod-
ucts. In Chapter 5 we discussed how, for most kernel functions, we cannot compute



Clustering � 215

the transformation (xn → φ(xn)), only compute inner products in the transformed
space (φ(xn)

T
φ(xm)). If we are unable to compute the transformation, we cannot

compute µk.

Equation 6.3 suggests the following procedure for kernelised K-means:

1. Randomly initialise znk for each n (see below).

2. Compute dn1, . . . , dnK for each object using Equation 6.3.

3. Assign each object to the cluster with the lowest dnk.

4. If assignments have changed, return to step 2, otherwise stop.

In standardK-means, we initialised the algorithm by randomly setting the means
µ1, . . . ,µK . In kernel K-means we do not have access to the means and we there-
fore initialise the algorithm via the object-cluster assignments, znk. We could do this
completely randomly – for each n set one znk to 1 and all of the others (znl, l �= k) to
zero but, given that we know K-means to be sensitive to initial conditions, it might
be better to be more careful. Alternatively, we could run standard K-means and use
the values of znk at convergence. This has the advantage that we can be sure that
objects within the same cluster will be reasonably close to one another (something
that we cannot guarantee if we set them randomly). A second alternative would be
to assign N −K + 1 objects to cluster 1 and the remaining K − 1 objects to their
own individual clusters. The performance of each iteration scheme will depend on
the particular characteristics of the data being clustered.

Figure 6.5 shows the result of applying the kernel K-means algorithm to the
data shown in Figure 6.4(a) (Matlab script: kernelkmeans.m). In this case, we have
initialised by assigning all but one object to the ‘circle’ cluster and the remaining
object to the ‘square’ cluster. A Gaussian kernel was used with γ = 1 (see Equa-
tion 5.19). Figure 6.5(a) shows the assignments one iteration after initialisation. As
the algorithm progresses through 5, 10 and 30 iterations (Figures 6.5(b),6.5(c) and
6.5(d) respectively) the smaller cluster grows to take up the central circle. At con-
vergence (Figure 6.5(d)), we can see that the algorithm has captured the interesting
structure in the data.

Not only does kernel K-means allow us to find clusters that do not conform to
our original idea of similarity, it also opens the door to performing analysis on other
data types. We can cluster any type of data for which a kernel function exists and it
is hard to find a data type for which there does not. Obvious examples are kernels
for text (each object is a document) and kernels for graphs or networks. The latter
is used widely in computational biology.

6.2.4 Summary

In the previous sections we introduced the K-means algorithm and showed how it
could be kernelised. One of the great advantages of K-means is its simplicity – it is
very easy to use and poses no great computational challenge. However, its simplicity
is also a drawback: assuming that a cluster can be represented by a single point
will often be too crude. In addition, there is no objective way to determine the



216 � A First Course in Machine Learning

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

(a) Kernel K-means after one iteration.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

(b) After 5 iterations.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

(c) After 10 iterations.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

(d) At convergence (30 iterations).

FIGURE 6.5 Result of applying kernelised K-means to the data shown
in Figure 6.4(a).

number of clusters if our aim is just to cluster (remember that we mentioned how
the number of clusters could be chosen as the one that gave best performance in
some later task like classification). To overcome some of these drawbacks, we will
now describe clustering with statistical mixture models. These models share some
similarities with K-means but offer far richer representations of the data.

6.3 MIXTURE MODELS

In Figure 6.4(b) we showed a dataset for which the original K-means failed. The two
clusters were stretched in such a way that some objects that should have belonged
to one were in fact closer to the centre of the other. The problem our K-means algo-
rithm had here was that its definition of a cluster was too crude. The characteristics
of these stretched clusters cannot be represented by a single point and the squared
distance. We need to be able to incorporate a notion of shape. Statistical mixture
represent each cluster as a probability density. This generalisation leads to a power-
ful approach as we can model clusters with a wide variety of shapes in almost any
type of data.


