
Ensembles of Classifiers 
and Clusterings
    



Reasons for using Ensembles

Statistical reasons: 

Combining the output of several classifiers may 
reduce the risk of an unfortunate selection of a 
poorly performing classifier



Reasons for using Ensembles

Large Volumes of Data:

Sometimes, the amount of data to be analyzed can 
be too large to be handled by a single classifier. 
Thus, we can: 

Partition the data into smaller subsets; 

Train different classifiers;

Combine their outputs using a combination rule



Reasons for using Ensembles

Too Little Data:

A reasonable sized set of training data is crucial 
to learn the underlying data distribution. When 
available data is scarce, we can:

Draw overlapping random subsets of the 
available data using resampling techniques

Train different classifiers, creating the 
ensemble



Reasons for using Ensembles

Divide and Conquer:

The given task may be too complex, or lie 
outside the space of functions that can be 
implemented by the chosen classifier method 
(e.g.: non-linear problem, and linear classifiers)

Appropriate combinations of simple (e.g., linear) 
classifiers can learn complex (e.g., non-linear) 
boundaries



Reasons for using Ensembles

Divide and Conquer:

The given task may be too complex, or lie 

outside the space of functions that can be 

implemented by the chosen classifier method 

(e.g.: non-linear problem, and linear classifiers)

Appropriate combinations of simple (e.g., linear) 

classifiers can learn complex (e.g., non-linear) 

boundaries

an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary. 

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers
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Training Data Examples
for Class 1

Observation/Measurement/Feature 1

Training Data 
Examples
for Class 2

Complex Decision
Boundary to Be Learned

OO

Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers. 
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Figure 2. Ensemble of classifiers spanning the decision
space. 



Reasons for using Ensembles

Data Fusion:

Several sets of data obtained from different 
sources, where the nature of features is different 
(e.g.: categorical and numerical features)

Data from each source can be used to train a 
different classifier, thus creating an ensemble



Components of an Ensemble

Two key components:

A method to generate the individual classifiers of 
the ensemble

A method for combining the outputs of these 
classifiers



Diversity: The Key Feature

The individual classifiers must be diverse, i.e., they 
make errors on different data

Intuition: if they make the same errors, such 
mistakes will be carried into the final prediction

Thus: the errors the classifiers make should be 
uncorrelated



Accuracy

The component classifiers need to be “reasonably 
accurate” to avoid poor classifiers to obtain the 
majority of votes. 

Intuition: If the components of the ensemble are 
poor classifiers, they make a lot of errors, and 
those errors are carried out to the final prediction.



Accuracy and Diversity

Requirements for accuracy and diversity have 
been quantified:

Under simple majority voting and independent 
error conditions, if all classifiers have the same 
probability of error of less than 50%, then the 
error of the ensemble decreases monotonically 
with an increasing number of classifiers.



How to achieve diversity

Use different training data sets to train individual 
classifiers

Such data sets are often obtained through 
resampling techniques (bootstrapping or 
bagging): training data subsets are drawn 
randomly, usually with replacement, from the 
entire training data



filtering of the noise. The overarching principal in ensem-
ble systems is therefore to make each classifier as unique
as possible, particularly with respect to misclassified
instances. Specifically, we need classifiers whose decision
boundaries are adequately different from those of others.
Such a set of classifiers is said to be diverse.

Classifier diversity can be achieved in several ways.
The most popular method is to use different training
datasets to train individual classifiers. Such datasets are
often obtained through resampling techniques, such as
bootstrapping or bagging, where training data subsets
are drawn randomly, usually with replacement, from the
entire training data. This is illustrated in Figure 3, where
random and overlapping training data subsets are select-
ed to train three classifiers, which then form three differ-
ent decision boundaries. These boundaries are combined
to obtain a more accurate classification.

To ensure that individual boundaries are adequately
different, despite using substantially similar training

data, unstable classifiers are used as base models, since
they can generate sufficiently different decision bound-
aries even for small perturbations in their training
parameters. If the training data subsets are drawn with-
out replacement, the procedure is also called jackknife
or k-fold data split: the entire dataset is split into k
blocks, and each classifier is trained only on k-1 of them.
A different subset of k blocks is selected for each classi-
fier as shown in Figure 4.

Another approach to achieve diversity is to use dif-
ferent training parameters for different classifiers. For
example, a series of multilayer perceptron (MLP) neural
networks can be trained by using different weight initial-
izations, number of layers/nodes, error goals, etc. Adjust-
ing such parameters allows one to control the instability
of the individual classifiers, and hence contribute to
their diversity. The ability to control the instability of
neural network and decision tree type classifiers make
them suitable candidates to be used in an ensemble
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Figure 3. Combining classifiers that are trained on different subsets of the training data.

How to achieve diversity

Use different training data sets to train individual 

classifiers

If the training data subsets are drawn without 

replacement, the procedure is also called 

jackknife or k-fold data split: the entire data set is 

split into k blocks, and each classifier is trained 

only on k-1 of them. A different subset of k blocks 

is selected for each classifier



How to achieve diversity

Use different training data sets to train individual 
classifiers

If the training data subsets are drawn without 
replacement, the procedure is also called 
jackknife or k-fold data split: the entire data set is 
split into k blocks, and each classifier is trained 
only on k-1 of them. A different subset of k blocks 
is selected for each classifier



setting. Alternatively, entirely different type of classifiers,
such MLPs, decision trees, nearest neighbor classifiers,
and support vector machines can also be combined for
added diversity. However, combining different models,
or even different architectures of the same model, is
used only for specific applications that warrant them.
Diversity is typically obtained through resampling of the
training data, as this procedure is theoretically more
tractable. Finally, diversity can also be achieved by using
different features. In fact, generating different classifiers
using random feature subsets is known as the random
subspace method [44], and it has found widespread use in
certain applications, which are discussed later in future
research areas.

2.3. Measures of Diversity
Several measures have been defined for quantitative
assessment of diversity. The simplest ones are pair-wise
measures, defined between two classifiers. For T classi-
fiers, we can calculate T(T -1)/2 pair-wise diversity meas-
ures, and an overall diversity of the ensemble can be
obtained by averaging these pair-wise measures. Given
two hypotheses hi and hj, we use the notations 

where a is the fraction of instances that are correctly clas-
sified by both classifiers, b is the fraction of instances
correctly classified by hi but incorrectly classified by hj,
and so on. Of course, a+b + c+d = !. Then, the following
pair-wise diversity measures can be defined:
Correlation Diversity is measured as the correlation
between two classifier outputs, defined as

ρi, j = ad − bc√
(a + b) (c + d) (a + c) (b + d)

, 0 ≤ ρ ≤ 1. (1)

Maximum diversity is obtained for ρ = 0, indicating that
the classifiers are uncorrelated.
Q-Statistic Defined as

Qi, j = (ad − bc)/(ad + bc) (2)

Q assumes positive values if the same instances are cor-
rectly classified by both classifiers; and negative values,
otherwise. Maximum diversity is, once again, obtained
for Q= 0.
Disagreement and Double Fault Measures The disagree-
ment is the probability that the two classifiers will dis-
agree, whereas the double fault measure is the
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Figure 4. k-fold data splitting for generating different, but overlapping, training datasets.

How to achieve diversity

When is bagging (bootstrapping) effective?

To ensure diverse classifiers, the base classifier 

should be unstable, that is, small changes in the 

training set should lead to large changes in the 

classifier output.



How to achieve diversity

When is bagging (bootstrapping) effective?

To ensure diverse classifiers, the base classifier 
should be unstable, that is, small changes in the 
training set should lead to large changes in the 
classifier output.



How to achieve diversity

When is bagging (bootstrapping) effective?

Large error reductions have been observed with 
decision trees and bagging. This is because 
decision trees are highly sensitive to small 
perturbations of the training data.



How to achieve diversity
When is bagging (bootstrapping) effective?

Bagging is not effective with nearest neighbor classifiers. Why? 
NN classifiers are highly stable with respect to variations of the 
training data

It has been shown that the probability that any given training 
point is included in a data set bootstrapped by bagging is 
approximately 63.2%. It follows that the nearest neighbor will 
be the same in 63.2% of the classifiers

Thus, the errors are highly correlated, and bagging becomes 
ineffective



How to achieve diversity

Use different training parameters for different 
classifiers

E.g., ensemble of neural networks trained with 
different weight initialization, or different number of 
layers/nodes

If the base classifier is unstable with respect to the 
tuning parameters, diverse classifiers can be 
generated



How to achieve diversity

Use different type of classifiers

E.g., an ensemble of neural networks, decision 
trees, nearest neighbor classifiers, and support 
vector machines



How to achieve diversity

Use different subsets of features to train the 
individual classifiers

E.g., random feature subsets (random subspace 
method)

This approach is effective with nearest neighbor 
(NN) methods, because NN techniques are highly 
sensitive to the chosen features



Boosting



Boosting

Similar to bagging, boosting also creates an 
ensemble of classifiers by resampling the data, 
which are then combined by majority voting

In boosting, though, the resampling strategy is 
geared to provide the most informative training 
data for each consecutive classifier 



Boosting (Adaboost.M1)
Freund and Schapire, 1996

Generates a set of classifiers, and combines them 
through weighted majority voting of the classes 
predicted by the individual classifiers

Classifiers are trained using instances drawn from an 
iteratively updated distribution of the training data

The distribution ensures that instances misclassified by 
the previous classifier are more likely to be included in 
the training data of the next classifier

Thus, consecutive classifiers’ training data are more 
geared towards increasingly hard-to-classify instances



AdaBoost generates a set of hypotheses, and combines
them through weighted majority voting of the classes pre-
dicted by the individual hypotheses. The hypotheses are
generated by training a weak classifier, using instances
drawn from an iteratively updated distribution of the
training data. This distribution update ensures that
instances misclassified by the previous classifier are more
likely to be included in the training data of the next classi-
fier. Hence, consecutive classifiers’ training data are
geared towards increasingly hard-to-classify instances.

The pseudocode of the algorithm is provided in Fig-
ure 8. Several interesting features of the algorithm are
worth noting. The algorithm maintains a weight distribu-
tion Dt(i) on training instances xi, i = 1, . . . , N , from
which training data subsets St are chosen for each con-
secutive classifier (hypothesis) ht . The distribution is ini-
tialized to be uniform, so that all instances have equal
likelihood to be selected into the first training dataset.
The training error ε t of classifier ht is also weighted by
this distribution, such that ε t is the sum of distribution
weights of the instances misclassified by ht (Equation 12).
As before, we require that this error be less than 1/2. A
normalized error is then obtained as βt, such that for
< 0 εt < 1/2, we have 0 < βt < 1. 

Equation 14  describes the distribution update rule:
the distribution weights of those instances that are cor-
rectly classified by the current hypothesis are reduced by
a factor of βt , whereas the weights of the misclassified
instances are unchanged. When the updated weights are
renormalized, so that Dt+1 is a proper distribution, the
weights of the misclassified instances are effectively
increased. Hence, iteration by iteration, AdaBoost focus-
es on increasingly difficult instances. Note that AdaBoost
raises the weights of instanced misclassified by ht so that
they add up to 1/2, and lowers the weights of correctly
classified instances, so that they too add up to 1/2. Since
the base model learning algorithm WeakLearn is required
to have an error less than 1/2, it is guaranteed to cor-
rectly classify at least one previously misclassified train-
ing example. Once a preset T number of classifiers are
generated, AdaBoost is ready for classifying unlabeled
test instances. Unlike bagging or boosting, AdaBoost uses
a rather undemocratic voting scheme, called the weighted
majority voting. The idea is an intuitive one: those classi-
fiers that have shown good performance during training
are rewarded with higher voting weights than the others.
Recall that a normalized error βt was calculated in Equa-
tion 13. The reciprocal of this quantity, 1/βt is therefore a
measure of performance, and can be used to weight the
classifiers. Furthermore, since βt is training error, it is
often close to zero and 1/βt can therefore be a very large
number. To avoid potential instability that can be caused
by asymptotically large numbers, the logarithm of 

1/βt is usually used as the voting weight of ht . At the end,
the class that receives the highest total vote from all clas-
sifiers is the ensemble decision. 

A conceptual block diagram of the algorithm is provid-
ed in Figure 9. The diagram should be interpreted with the
understanding that the algorithm is sequential: classifier
C K is created before classifier C K+1, which in turn requires
that βK and the current distribution DK be available.

Freund and Schapire also showed that the training
error of AdaBoost.M1 is bounded above:

E < 2T
T∏

t=1

√
εt (1 − εt) (16)
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Algorithm AdaBoost.M1
Input:
! Sequence of N examples S = [(xi, yi)], i = 1, · · · , N

with labels yi ∈ #, # = {ω1, . . . ,ωC };
! Weak learning algorithm WeakLearn;
! Integer T specifying number of iterations.

Initialize D1 (i) = 1
N ., i = 1, · · · , N (11)

Do for t = 1, 2, . . . , T :
1. Select a training data subset St , drawn from

the distribution Dt .
2. Train WeakLearn with St , receive hypothe-

sis ht .
3. Calculate the error of 

ht : εt =
∑

i:ht(xi)#=yi

Dt(i). (12)

If εt >1/2, abort.
4. Set βt = εt/(1 − εt). (13)

5. Update distribution 

Dt : Dt+1(i) = Dt(i)
Zt

×
{

βt if ht(xi) = yi
1, otherwise

(14)

where Zt =
∑

i Dt (i) is a normalization con-
stant chosen so that Dt+1 becomes a proper
distribution function.

Test -- Weighted Majority Voting: Given an unla-
beled instance x,

1. Obtain total vote received by each class

Vj =
∑

t:ht(x)=ωj

log 1
βt

, j= 1,. . . ,C . (15)

2. Choose the class that receives the highest
total vote as the final classification. 

Figure 8. The AdaBoost.M1 algorithm.



Boosting (property)

Freund and Schapire proved that, provided that    
is always             , the error rate of boosting on a 
given training data set, under the original uniform 
distribution, approaches zero exponentially fast as 
T increases.

�t < 0.5



Boosting (property)

Thus, a succession of weak classifiers can be 
boosted to a strong classifier that is at least as 
accurate as, and usually more accurate than, the 
best weak classifier on the training data.



Clustering Ensembles

Clustering ensembles leverage the diversity of the 
input clusterings to generate a consensus 
clustering that is superior to the component ones;

Clustering ensembles offer a solution to challenges 
inherent to clustering arising from its ill-posed nature;

The major challenge is to find a consensus 
clustering that achieves an improved clustering of 
the data



The Clustering Ensemble process

Goal: Aggregate a collection of base clusterings to 
produce a partition of the data that is more 
accurate that the component ones



Clustering Ensembles

A clustering ensemble technique is characterized by 
two components:

The mechanism to generate diverse clusterings

The consensus function to combine the input 
clusterings into a final clustering



Clustering Ensembles

Diverse component clusterings can be generated by:

Varying the number and/or location of initial centroids

Using different clustering algorithms

Sub-sampling features or data



Clustering Ensembles

A popular methodology to build a consensus function 
is to use the co-association matrix:

Two points have similarity 1 if they belong to the 
same cluster; similarity 0 otherwise

This defines a binary similarity matrix for each 
clustering

Lets consider an example...



Clustering Ensembles

Overall similarity matrix S: entry-wise average of the 
m individual matrices (m=4 above)

An element of S represents the fraction of clusterings 
in which two data are in the same cluster

S is used to re-cluster the data using a similarity-
based clustering algorithm, e.g., hierarchical 
clustering



Clustering Ensembles

A different popular mechanism for constructing a 
consensus maps the problem onto a graph-based 
partitioning setting:

From S, a similarity graph is induced: vertices 
correspond to data, and edge weights represent 
the similarity between the corresponding two 
vertices

A k-way partitioning of the vertices that minimizes 
the edge weight-cut is computed

The result gives the consensus clustering.


