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Clustering 

Supervised vs. Unsupervised Learning 

•  So far we have assumed that the training 
samples used to design the classifier were 
labeled by their class membership 
(supervised learning)  

•  We assume now that all one has is a 
collection of samples without being told 
their categories (unsupervised learning) 
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Clustering 
•  Goal: Grouping a collection of objects (data 

points) into subsets or “clusters”, such 
that those within each cluster are more 
closely related to one other than objects 
assigned to different clusters. 

•  Fundamental to all clustering techniques is 
the choice of distance or dissimilarity 
measure between two objects. 
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Dissimilarities based on Features 
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Categorical Features 

•  E.g.: color, shape, etc. 
•  No natural ordering between variables 

exist; 
•  The degree-of-difference between pairs 

of values must be defined; 
•  If a variable assumes M distinct values: 
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Clustering 

•  Discovering patterns (e.g., groups) in data 
without any guidance (labels) sounds like an 
“unpromising” problem.  

•  The question of whether or not it is 
possible in principle to learn anything from 
unlabeled data depends upon  the 
assumptions one is willing to accept. 

 

Clustering 

•  Mixture modeling: makes the assumption 
that data are samples of a population 
described by a probability density function 

•  Combinatorial algorithms: work directly on 
the observed data with no reference to an 
underlying probability model. 
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Clustering Algorithms:  
Mixture Modeling 

•  Data is a sample from a population described by 
a probability density function;  

•  The density function is modeled as a mixture of 
component density functions (e.g., mixture of 
Gaussians). Each component density describes 
one of the clusters; 

•  The parameters of the model (e.g., means and 
covariance matrices for mixture of Gaussians) 
are estimated as to best fit the data (maximum 
likelihood estimation). 

 

Clustering Algorithms:  
Mixture Modeling 

•  Suppose that we knew, somehow, that the given 
sample data come from a single normal 
distribution 

•  Then: the most we could learn from the data 
would be contained in the sample mean and in the 
sample covariance matrix 

•  These statistics constitute a compact 
description of the data. 

 



4/17/16 

6 

Clustering Algorithms:  
Mixture Modeling 

 

 
What happens if our knowledge 
is inaccurate, and the data are 

not actually normally 
distributed? 

  

Example 

 

 

All four data sets have identical mean and 
covariance matrix 
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Example 

 

 

Clearly second-order statistics are not capable to 
revealing all of the structure in an arbitrary set of 

data  

Clustering Algorithms:  
Mixture Modeling 

•  If we assume that the samples come from a 
mixture of c normal distributions, we can 
approximate a greater variety of situations; 

•  If the number of component densities is 
sufficiently high, we can approximate virtually 
any density function as a mixture model. 

•  However… 
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Clustering Algorithms:  
Mixture Modeling 

•  The problem of estimating the parameters of a 
mixture density is not trivial; 

•  When we have little prior knowledge about the 
nature of the data, the assumption of specific 
parametric forms may lead to poor or 
meaningless results. 

•  There is a risk of imposing structure on the data 
instead of finding the structure. 

 

Combinatorial Algorithms 

 
•  These algorithms work directly on the observed 

data, without regard to a probability model 
describing the data. 

•  Commonly used in data mining, since often no 
prior knowledge about the process that 
generated the data is available. 
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Combinatorial Algorithms 
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Combinatorial Algorithms 
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Since the goal is to assign close points to the same cluster,
a natural loss function would be :
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Combinatorial Algorithms 
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The number of distinct partitions is :
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Combinatorial Algorithms 
 
•  Initialization: a partition is specified. 

•  Iterative step: the cluster assignments are 
changed in such a way that the value of the loss 
function is improved from its previous value. 

•  Stop criterion: when no improvement can be 
reached, the algorithm terminates. 

 

Iterative greedy descent. 
Convergence is guaranteed, but to local 

optima. 
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K-means 

 
•  One of the most popular iterative 

descent clustering methods. 

•  Features: quantitative type. 

•  Dissimilarity measure: Euclidean distance. 

 

K-means 
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The "within cluster point scatter" becomes :
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K-means 

 
 

 

 

 

 The objective is:
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 We can solve this problem by noticing :
for any set of data S
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K-means: The Algorithm 

 
 

 

 

 

1. Given a cluster assignment C,  the total within cluster scatter

x i !mk
2
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#  is minimized with respect to the m1,!,mK{ }
k=1

K

#

giving the means of the currently assigned clusters;

2. Given a current set of means m1,!,mK{ },
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by assigning each point to the closest current cluster mean;

change.not  do sassignment  theuntil iterated are 2 and 1 Steps 3.
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K-means Example (K=2) 
Initialize Means 
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K-means Example 
Assign Points to Clusters 
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K-means Example 
Re-estimate Means 
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K-means Example 
Re-assign Points to Clusters 
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K-means Example 
Re-estimate Means 
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K-means Example 
Re-assign Points to Clusters 
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K-means Example 
Re-estimate Means and Converge 
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K-means Example 
Convergence 
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K-means: Properties and Limitations 

 
 

 

 

 

• The algorithm converges to a local minimum 

• The solution depends on the initial partition 

• One should start the algorithm with many 
different random choices for the initial 
means, and choose the solution having smallest 
value of the objective function 

K-means: Properties and Limitations 

 
 

 

 

 

• The algorithm is sensitive to outliers 
• A variation of K-means improves upon robustness 
(K-medoids): 

• Centers for each cluster are restricted to be 
one of the points assigned to the cluster; 

• The center (medoid) is set to be the point that 
minimizes the total distance to other points in 
the cluster; 

• K-medoids is more computationally intensive 
than K-means. 
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K-means: Properties and Limitations 

 
 

 

 

 

• The algorithm requires the number of clusters K;  

• Often K is unknown, and must be estimated from 
the data: 

    

! 

We can test K " 1,2,!,Kmax{ }
Compute W1,W2,!,Wmax{ }

    

! 

In general :   W1 >W2 >! >Wmax

  

! 

K" =  actual number of clusters in the data,
when K < K",  we can expect WK >>WK +1

when K > K",  further splits provide smaller decrease of W

  

! 

Set ˆ K " by identifying  an "elbow shape" in the plot of Wk

Gap Statistics: 
Estimating the number of clusters in a 

data set via the gap statistic 
Tibshirani, Walther, & Hastie, 2001 

 
 

 

 

 

  

! 

Plot   logWK

  

! 

Plot the  curve  logWK  obtained  from data uniformely distributed

  

! 

Estimate ˆ K " to be the point where the gap between the two
curves is largest
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An Application of K-means:  
Image segmentation 

•  Goal of segmentation: partition an image into regions 
with homogeneous visual appearance (which could 
correspond to objects or parts of objects) 

•  Image representation: each pixel is represented as a 
three dimensional point in RGB space, where 
–  R = intensity of red 
–  G = intensity of green 
–  B = intensity of blue 

An Application of K-means:  
Image segmentation 

pixel 

(R,G,B) 
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An Application of K-means:  
Image segmentation 

Mean (R,G,B) 

An Application of K-means:  
Image segmentation 
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An Application of K-means:  
(Lossy) Data compression 

•  Original image has N pixels 
•  Each pixel à (R,G,B) values 
•  Each value is stored with 8 bits of precision 
•  Transmitting the whole image costs 24N bits 
Compression achieved by K-means: 
•  Identify each pixel with the corresponding centroid 
•  We have K such centroids à we need           bits per pixel 
•  For each centroid we need 24 bits 
•  Transmitting the whole image costs 24K + N log2K bits 
Original image = 240x180=43,200 pixels à 43,200x24=1,036,800 bits 
Compressed images:  
K=2: 43,248 bits            K=3: 86,472           K=10: 173,040 bits 

  

! 

log2 K
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FIGURE 6.3 logD (whereD is defined in Equation 6.2) asK increases for
the data shown in Figure 6.1. Each boxplot is the result of 50 random
initialisations of the K-means algorithm.

the scaling of the axes) that objects at the top of the right hand cluster are closer to
the mean of the left hand cluster (the means are shown in this plot as large symbols).

In the next section, we will cluster the data in Figure 6.4(a) by kernelising the
K-means algorithm. For the data in Figure 6.4(b) we will turn, from Section 6.3 on
wards to an alternative clustering method: mixture models.
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FIGURE 6.4 Two datasets in which K-means fails to capture the clear
cluster structure.

Where K-means fails  
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(a) Kernel K-means after one iteration.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

(b) After 5 iterations.
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(c) After 10 iterations.
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(d) At convergence (30 iterations).

FIGURE 6.5 Result of applying kernelised K-means to the data shown
in Figure 6.4(a).

number of clusters if our aim is just to cluster (remember that we mentioned how
the number of clusters could be chosen as the one that gave best performance in
some later task like classification). To overcome some of these drawbacks, we will
now describe clustering with statistical mixture models. These models share some
similarities with K-means but offer far richer representations of the data.

6.3 MIXTURE MODELS

In Figure 6.4(b) we showed a dataset for which the original K-means failed. The two
clusters were stretched in such a way that some objects that should have belonged
to one were in fact closer to the centre of the other. The problem our K-means algo-
rithm had here was that its definition of a cluster was too crude. The characteristics
of these stretched clusters cannot be represented by a single point and the squared
distance. We need to be able to incorporate a notion of shape. Statistical mixture
represent each cluster as a probability density. This generalisation leads to a power-
ful approach as we can model clusters with a wide variety of shapes in almost any
type of data.

Kernel K-means  


