Clustering

Supervised vs. Unsupervised Learning

+ So far we have assumed that the training
samples used to design the classifier were
labeled by their class membership

(supervised learning)

+ We assume now that all one has is a
collection of samples without being told
their categories (unsupervised learning)
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Clustering

* Goal: Grouping a collection of objects (data
points) into subsets or “clusters”, such
that those within each cluster are more
closely related to one other than objects
assigned to different clusters.

* Fundamental to all clustering techniques is
the choice of distance or dissimilarity
measure between two objects.

What is Similarity?

The quality or state of being similar; likeness;
resemblance; as, a similarity of features.

Webster's Dictionary

Similarity is hard to define, but...
“We know it when we see it”

The real meaning of similarity is
philosophical question. We will
ake a more pragmatic approach.

Slide by E. Keogh




Dissimilarities based on Features

X; =(xil’xi2"" i )T SR, i=lN

*ig

(xi = x4) Squared Euclidean distance

S ’ Weighted squared Euclidean
D.(xix;) = gwk S dis‘rlgnce !

Categorical Features

E.g.: color, shape, etc.

No natural ordering between variables
exist;

The degree-of-difference between pairs
of values must be defined:;

If a variable assumes M distinct values:

M x M symmetric matrix with elements:

mrx =m mrr = 0’ mr.v = 0

sro

Common choice: m, =1 Vr=s
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Clustering

- Discovering patterns (e.g., groups) in data
without any guidance (labels) sounds like an

“unpromising” problem.

* The question of whether or not it is
possible in principle to learn anything from
unlabeled data depends upon the
assumptions one is willing to accept.

Clustering

* Mixture modeling: makes the assumption
that data are samples of a population
described by a probability density function

- Combinatorial algorithms: work directly on
the observed data with no reference to an
underlying probability model.
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Clustering Algorithms:
Mixture Modeling

Data is a sample from a population described by
a probability density function;

The density function is modeled as a mixture of
component density functions (e.g., mixture of
Gaussians). Each component density describes
one of the clusters;

The parameters of the model (e.g., means and
covariance matrices for mixture of Gaussians)
are estimated as to best fit the data (maximum
likelihood estimation).

Clustering Algorithms:
Mixture Modeling

Suppose that we knew, somehow, that the given
sample data come from a single normal
distribution

Then: the most we could learn from the data
would be contained in the sample mean and in the
sample covariance matrix

These statistics constitute a compact
description of the data.
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Clustering Algorithms:
Mixture Modeling

What happens if our knowledge
is inaccurate, and the data are
not actually normally
distributed?

Example

All four data sets have identical mean and
covariance matrix
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Example

Clearly second-order statistics are not capable to
revealing all of the structure in an arbitrary set of
data

Clustering Algorithms:
Mixture Modeling

If we assume that the samples come from a
mixture of ¢ normal distributions, we can
approximate a greater variety of situations;

If the number of component densities is
sufficiently high, we can approximate virtually
any density function as a mixture model.

However...




Clustering Algorithms:
Mixture Modeling

The problem of estimating the parameters of a
mixture density is not trivial;

When we have little prior knowledge about the
nature of the data, the assumption of specific
parametric forms may lead to poor or
meaningless results.

There is a risk of imposing structure on the data
instead of finding the structure.

Combinatorial Algorithms

These algorithms work directly on the observed
data, without regard to a probability model
describing the data.

Commonly used in data mining, since often no
prior knowledge about the process that
generated the data is available.
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Combinatorial Algorithms
x, €RY, i=1-,N
Prespecified number of clusters K, kE{l,---,K}
Each data point x; is assigned to one, and only one cluster

Goal: Find a partition of the data into K clusters that
achieves a required objective, defined in terms of a dissimilarity

function D(x,, xk)

Usually, the assignment of data to clusters is done so as
to minimize a "loss" function that measures the degree to which

the clustering goal is not met

Combinatorial Algorithms

Since the goal is to assign close points to the same cluster,
a natural loss function would be :

W(C)=;§ Y Y D(x.x)  Within cluster scatter

k=1i€C, jEC,

Then, clustering becomes straightforward in principle :
Minimize W over all possible assignments of the N

data points to K clusters
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Combinatorial Algorithms

Unfortunately, such optimization by complete enumeration

is feasible only for very small data sets.

The number of distinct partitions is:

S(N.K) =]i!k:(_1)""'(f)w

For example:

5(10,4)=34,105  5(19,4)=10"

Weneed to limit the search space, and find in general
a good suboptimal solution

Combinatorial Algorithms

Initialization: a partition is specified.

Iterative step: the cluster assignments are
changed in such a way that the value of the loss
function is improved from its previous value.

Stop criterion: when no improvement can be

reached, the algorithm terminates.

Iterative greedy descent.

Convergence is guaranteed, but to local

optima.
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K-means

One of the most popular iterative
descent clustering methods.

Features: quantitative type.

Dissimilarity measure: Euclidean distance.

K-means

The "within cluster point scatter" becomes :

Mo-133 3

k=1i€C, jEC,

2
x - x|

W(C) can be rewritten as:
K
w(C)=> > |x-£[
k=1 iEC;
(obtained by rewriting (x; - .x;) = (¥, - %) - (x; - £))
where

Pl

X, E X, is the mean vector of cluster C,
&

4/17/16

11



K-means

The objective is:
< 2
miny 3 |-
k=1 iEC,
We can solve this problem by noticing:

for any set of data S

X, = argminEHxi - mH2
"o ies

0 ;= m

(this is obtained by setting ’6567 =0)
m

So we can solve the enlarged optimization problem:

. X 2
min y > |4, -

k=1 iE€C,

K-means: The Algorithm

1. Given a cluster assignment C, the total within cluster scatter

K
E E ||xl - mk”2 is minimized with respect to the {ml,- : -,mK}
k=1 iEC,

giving the means of the currently assigned clusters;

2. Given a current set of means {m,,---,m, },

K

2 . e e .
E E | — 2| is minimized with respect to C
k=l iEC,

by assigning each point to the closest current cluster mean;

3. Steps 1 and 2 are iterated until the assignments do not change.
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K-means Example (K=2)
Initialize Means

K-means Example
Assign Points to Clusters
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K-means Example
Re-estimate Means

K-means Example
Re-assign Points to Clusters
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K-means Example
Re-estimate Means

Height

K-means Example
Re-assign Points to Clusters

4/17/16

15



K-means Example
Re-estimate Means and Converge

Height

Weight

K-means Example
Convergence

Height

Weight
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K-means: Properties and Limitations

*The algorithm converges to a local minimum

*The solution depends on the initial partition

*One should start the algorithm with many
different random choices for the initial
means, and choose the solution having smallest
value of the objective function

K-means: Properties and Limitations

*The algorithm is sensitive to outliers

*A variation of K-means improves upon robustness
(K-medoids):

-Centers for each cluster are restricted to be
one of the points assigned to the cluster;

*The center (medoid) is set to be the point that
minimizes the total distance to other points in
the cluster;

-K-medoids is more computationally intensive
than K-means.
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K-means: Properties and Limitations
*The algorithm requires the number of clusters K;

Often K is unknown, and must be estimated from
the data:

We can test K € {1,2,---,K, . }

Compute {W, W, W, }

In general: W, >W,>--->W,__

K = actual number of clusters in the data,

when K < K*, we can expect W, >> W,

when K > K", further splits provide smaller decrease of W

Set K* by identifying an "elbow shape" in the plot of ¥,

Gap Statistics:
Estimating the number of clusters in a

data set via the gap statistic
Tibshirani, Walther, & Hastie, 2001

Plot logh,
Plot the curve logh, obtained from data uniformely distributed

Estimate K* to be the point where the gap between the two

curves is largest
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An Application of K-means:
Image segmentation

+ Goal of segmentation: partition an image into regions
with homogeneous visual appearance (which could
correspond to objects or parts of objects)

* Image representation: each pixel is represented as a
three dimensional point in RGB space, where
— R = intensity of red
— G = intensity of green
— B = intensity of blue

An Application of K-means:
Image segmentation

Original image
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An Application of K-means:
Image segmentation

Original image

Mean (R,G,B)

An Application of K-means:
Image segmentation
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An Application of K-means:
(Lossy) Data compression

» Original image has N pixels

» Each pixel 2 (R,G,B) values

« Each value is stored with 8 bits of precision

* Transmitting the whole image costs 24N bits
Compression achieved by K-means:

* |dentify each pixel with the corresponding centroid

* We have K such centroids > we need log,K bits per pixel
» For each centroid we need 24 bits

+ Transmitting the whole image costs 24K + N log2K bits

Original image = 240x180=43,200 pixels = 43,200x24=1,036,800 bits

Compressed images:
K=2: 43,248 bits

K=3: 86,472 K=10: 173,040 bits

Where K-means fails
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Kernel K-means
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(a) Kernel K-means after one iteration.
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(c) After 10 iterations.

(b) After 5 iterations.
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(d) At convergence (30 iterations).

4/17/16

22



