Introduction to Kernel
Methods

Classifying data

B Important notions in learning to classify

B limited number of training data (patients, sequences,
molecules, etc.)

® learning algorithm (how to build the classifier?)
W generalization: the classifier should correctly classify rest data
® Quick formalization
B X (e.g. RY,d > 0) is the space X(=R?)
of data, called input space

® Y (e.g. toxic/not toxic, or
{—1,+1}) is the target space

® class +1
#® class -1

B f:X — Yisthe classifier

3/15/16

Notion of Similarity

Given a test data x € X we choose y such
that (x,y) is in some sense similar to the training
examples (e.g. k-NN).

Thus we need a notion of similarity in X and

in {:1}

The choice of the similarity measure for
the inputs is a deep question that lie at
the core of machine learning.

A simple type of similarity measure is the dot
product (inner product or scalar product).

Vectors and dot product

]

X(=R?)
u+tv
T
u e
—
% ‘ v
T — AV

B u,v,w,c are vectors

B w =u— v (red arrows)
Mc=3(u+tv)

B Here: 0< A< 1

3/15/16

Vectors and dot product

B |nner product (-,-) : X x X = R:
® symmetric: (u,v) = (v, u)
m bilinear: <M1 +]/uz,v> = Auy, v) + y{uz,v)
® positive: (u,u) >0
m definite: (u,u) =0=u=0
® An inner product
m provides X with a structure
® can be viewed as a ‘similarity’

® defines anorm || - || on X: [|u]| = /(u,u)

m Example in R?

U1 U1
mu= , V= s{u, v) = w1y + uxvs
U2 U2

Vectors and dot product

u

B (u—v,e) > 0:u—vand e point to the 'same direction’

B (u—v,f)=0:u—-vandf are orthogonal

B (u-—v,g) < 0:u—vand g point to ‘'opposite directions’

3/15/16

A simple linear classifier

X(=R? mct=2L Y x
cc{ass+l {iyi=+1}
@ class -1 _ 1
Hc =— Z X;
" {i:y.-:—l}
. Bmc=1(ct+¢)
Bw=c"—c

m Idea: assign a new point to the class whose
mean is the closest.
m for x € X, itis sufficient to take the sign of the inner product
between w and x — ¢
W if h(x) = (W, x — c), we have the classifier f(x) = sign (h(x))
m the (dotted) hyperplane (H), of normal vector w, is the
decision surface

A simple linear classifier

Ic+=# Z X;

+

class +1 {iyi=+1}

@ class -1 Ec — # Z x;
{iry;=-1}

.. | C=%(C++C_)

Bw=c"—c

()= {re)~ {ec) + o)

= <x,c+> - <x,c‘> +b where b= <c,c‘> - <c,c+>

3/15/16

A simple linear classifier

where «, =L+Vi:yi =1 and ¢, =L_Vi:yl. =-1

m m

A simple linear classifier

class +1
@ class -1 1

B To summarize: [h(x) = > a;(x;,x)+b

Y(=R)

Question: what if the dataset is not -
m linearly separable, i.e. (H) fails to teet)
separate red and blue disks? ALK

3/15/16

Non-linear Patterns in Data:

an example
X y x’ y* Xy

0.8415 0.5403 0.7081 0.2919 0.4546
0.9093 -0.4161 0.8268 0.1732 -0.3784
0.1411 -0.99 0.0199 0.9801 -0.1397
-0.7568 -0.6536 0.5728 0.4272 0.4947
-0.9589 0.2837 0.9195 0.0805 -0.272
-0.2794 0.9602 0.0781 0.9219 -0.2683

0.657 0.7539 0.4316 0.5684 0.4953
0.9894 -0.1455 0.9788 0.0212 -0.144
0.4121 -0.9111 0.1698 0.8302 -0.3755
-0.544 -0.8391 0.296 0.704 0.4565

Non-linear Patterns in Data:
an example

y

Data in the (x,y) plane

3/15/16

Non-linear Patterns in Data:
an example

[\

2
0 1 X

By changing the coordinate system the
relation has become /inear

Non-linear Patterns in Data:
an example

Using the initial coordinates, the pattern was
expressed as a guadratic form:

f(x)=x2+y2—1=0 Vx

In the coordinate system using monomials, it
appeared as a /inear function.

The possibility of transforming the representation
of a pattern by changing the coordinate system in
which the data are described is a recurrent theme
in kernel methods.

3/15/16

The Kernel trick

m Context: nonlinearly separable dataset {(x1,11),- -, (Xm;¥m)}

B |dea to learn a nonlinear classifier
® choose a (nonlinear) mapping ¢

o: X = H
x = ¢(x)

where H is an inner product space (inner product (-, -)3),

called feature space
®m find a linear classifier (i.e. a separating hyperplane) in H to

classify {(¢(x1),y1), -, (6(Xm), Ym) }

The Kernel trick

B Linearly classifying in feature space

, feature space H
0] ¢

input space X
¢ 00 ®

3/15/16

The Kernel trick

B The kernel trick can be applied if there is a function k : ¥ x ¥ - R
such that: k(u,v) = (¢(u), d(v))x
If so, all occurrences of ((x;), §(x))y are replaced by k(x;, x)

m Keypoint: the focus’ is sometimes only on k and not on ¢

m Kernels must verify Mercer's property to be valid kernels
B ensures that there exist a space H and a mapping ¢ : X — H
such that k(u, v) = (¢(u), d(v))
® however non valid kernels have been used with success
B and, research is in progress on using non semi-definite kernels

B & might be viewed as a similarity measure

The Kernel trick

input space X feature space H input space &

no separating hyperplane one possible separating hyperplane separating surface

W Kernel trick recipe
® consider a nonlinear classification problem on X' x Y
B choose a linear classification algorithm (expr. in terms (-,))
m replace all occurrences of (-, -) by a kernel (-, -)

B Obtained classifier: | f(x) = sign () a,;k(x,-,x)+b)

i=1,...,m

3/15/16

Common Kernels

B Gaussian kernel
- - Ju-—v|? 2
B k(u,v) =exp , 02>0

202
B the corresponding H is of infinite dimension
B Polynomial kernel
B k(u,v) = ((u,v)+¢)¢, ceRdeN
B a corresponding analytic ¢ may be constructed (see below)

Common Kernels

B Let k = (u,v)3. (polynomial kernel with ¢ = 0 and d = 2) defined
on R? x R?
m Consider the mapping:

o : R? — R3
X = [21)1,:L‘2]T — d)(x) - [.’L‘%, \/§.’121.’L‘2,11§]T
® We have, for u,v € R?:
<¢,’(u): ¢(V)>IR'3 = ([U% \/éulu2aug]-r’ ['Uf, \/5'”1'02’ v;]T>
= (u1v1 + ugv2)?

= (u, V)i

= k(u,v)

3/15/16

10

>

Detecting Patterns via Kernel Methods

The focus is on the use of patterns that are
determined by /inear functions in a suitably chosen
feature space;

Transforming the original dataset involves then
selecting a feature space for the linear functions.

Advantages of linear functions:

>

We can specify the feature space in an indirect but
very natural way through the so-called kernel
function;

It enables us to use feature spaces whose
dimensionality is more than polynomial in the
relevant parameters, even though the computational
cost remains polynomial.

Detecting Patterns via Kernel Methods

Pattern analysis is then a two-stage process:

>

>

First, we must recode the data so that the patterns
become representable with linear functions.
Second, we can apply one of the standard linear
pattern analysis algorithms to the transformed
data.

The resulting class of pattern analysis algorithms
will be referred to as kernel methods.

3/15/16

1

Key aspects of Kernel Methods

Data are embedded into a vector space called the
feature space;

Linear relations are sought among the images of the
data in the feature space;

The algorithms are implemented in such a way that
the coordinates of the embedded points are not
needed; only their pair-wise inner products are;

The pair-wise inner products can be computed
efficiently directly from the original data using a
kernel function.

Useful link

m Kernel Machines: http:/www.kernel-machines.org/

3/15/16

12

3/15/16

References

» J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Analysis. Pattern analysis (Chapter 1).

» B. Scholkopf and A. Smola, Learning with Kernels. A
Tutorial Introduction (Chapter 1). MIT University Press.

13

