

INITIALIZEGRID $(Train, GridParam)$ comment: distribute the instances over the nodes in grid	
$currentMin \leftarrow 100$ $Pr \leftarrow GridParam.pr$ commont: Probability of replacement	
for $i \leftarrow 0$ to GridParam.iter do	
$marginData \leftarrow Train$ comment: marginData initialized to all training data	
Comment: Train all nodes	
TESTANDWEIGHNODES(<i>GridParam</i>); comment: Test using neighborhood and assign weight	
$\begin{array}{l} PrunedData \leftarrow \{\}\\ \text{for } j \leftarrow 0 \text{ to } GridParam.nodes\\ \text{do} \end{array}$	
$\begin{cases} NeighborData \leftarrow CollectNeighborData(j);\\ NodeData \leftarrow NodeData + NeighborData \end{cases}$	
$\begin{cases} PreplaceData \leftarrow ROULETTEWHEELSEL(NodeData, PreplaceData) \\ PrunedData \leftarrow UNIQUE(PrunedData, ReplaceData) \\ comment: Unique keeps 1 copy of instances in set \end{cases}$)
$error \leftarrow \text{TestClassifier}(PrunedData, Validation)$ comment: Use Validation set to track model learning	
$ \begin{array}{c} \text{if } error < currentMin \\ (currentMin \leftarrow error \\ \end{array} \right. \\ \left. \begin{array}{c} currentMin \\ \end{array} \right. \\ \left. \begin{array}{c} currentMin \\ currentMin \\ \end{array} \right. \\ \left. \begin{array}{c} currentMin \\ currentMin \\ \end{array} \right. \\ \left. \begin{array}{c} currentMin \\ currentMin \\ \end{array} \right. \\ \left. \begin{array}{c} currentMin \\ currentMin \\ currentMin \\ \end{array} \right. \\ \left. \begin{array}{c} currentMin \\ $	
then $\begin{cases} bestClassifier \leftarrow SAVECLASSIFIER(PrunedDeta \\ marginData \leftarrow PrunedData \\ comment: marginData set reduced \end{cases}$	ıta)
• return (bestClassifier, marginData)	٠

Mean shift and GMMs

• Fixed-point iterative method solution:

$$\mathbf{x}^{(t+1)} = \mathbf{f}(\mathbf{x}^{(t)})$$
$$\mathbf{x} = \mathbf{f}(\mathbf{x}) = \left(\sum_{m=1}^{M} p(m|\mathbf{x}) \Sigma_m^{-1}\right)^{-1} \sum_{m=1}^{M} p(m|\mathbf{x}) \Sigma_m^{-1} \mu_m$$

15

Positive Samples + Negative Samples ×

Generatio

10 15 20 25 30 35 40 45 50

Goal: Does PSBML provide a general framework for meta-learning? Is PSBML effective as a parallel algorithm?

Meta-learning – Experiment 3

Datasets					
	Adult	W8A	ICJNN1	\mathbf{Cod}	Cover
# Train	32560	49749	49990	331617	581012
# Test	16279	14951	91701	59535	58102
# Features	123	300	22	8	54
•					٠

AUC Results					
	Adult	W8A	ICJNN1	\mathbf{Cod}	Cover
NB	90.1	94.30	81.60	87.20	84.90
PSBML	90.69	96.10	81.79	91.79	87.01
C4.5	89.88	87.80	94.60	95.90	99.50
PSBML	89.78	84.80	97.30	97.24	97.44
Linear SVM	54.60	80.20	64.60	88.80	72.20
PSBML	60.01	80.70	64.80	95.10	79.10

Synaneac	data: Re	sults			
	Checket	rboard	Sine	Wave	
\mathbf{thm}	Speed	Acc	Speed	Acc	
SVM (Linear)	44.20	50.23	33.20	68.80	
SVM (RBF)	33.20	57.11	105.56	70.11	
inear	133.20	50.08	203.12	68.60	
T (10 iterations)	4.20	54.49	4.20	54.89	
I -PÈRF (Lincar)	1.10	-51.01	2.01	61.90	
1 (RBF)	1.80	50.0310	ок 1.20	49.03	
VM	136.20	98.20_{Mi}^{50}	0 K 23 23	70.80	
BF, 0.1% data)		- 4.89 Mi	llion		
ıq					
BoostM1	38.21	51.25	30.71	74.25	
lleAdalBoost	17.90	51.22	13.90	78.30	
threads,10 iterati	ons)	···*	****		
L				1	
ML(C4.5)	123.10	99.49	193.10	99.56	
lleAdalBoost threads,10 iteration L	17:90 ons)	51.22	13.90	78.30	
L				1	
ML (C4.5)	123.10	99.49	193.10	99.56	
L ML (C4.5)	123.10	99.49	193.10	99.56	
ML (C4.5)	123.10	99.49	193.10	99.56	
(0.10)	120.10	50.10	200.20	1	
	ithm SVM (Linear) SVM (RBF) inear T (10 iterations) I-PERF (Linear) I (RBF) VM BF, 0.1% data) mg BoostM1 mg BoostM1 mg BoostM1 mg L threads,10 iterati L ML (C4.5)	Checker ithm Speed SVM (Linear) 44.20 SVM (RBF) 33.20 inear 133.20 DT (10 iterations) 4.20 LPERF (Linear) 1.10 M (RBF) 1.80 VM (SPF) 1.80 MBF, 0.1% data) 136.20 Boost M1 38.21 IleAdalBoost 1799 threads,10 iterations) L ML (C4.5) 123.10	$\begin{array}{c c} Checkerboard\\ \hline {Speed} & Acc\\ \hline \\ \hline \\ SVM (Linear) & 44.20 & 50.23\\ \hline \\ SVM (RBF) & 33.20 & 57.11\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Scalability – Experiment 4

Real	data:	Results
i toui	autu.	rtoounto

Algorithm Train	ing Time (secs)	MisClass
SVM		
LibLinear	80.20	25447.3
LibSVM (RBF, 1% data)	90.20	25517.8
LibSVM (RBF, 10% data)) 1495.20	25366.1
SGDT (10 iterations)	211.10	121301
SVM-PERF (Linear)	2.90	25877.1
BVM (RBF)	3.20	25451.3
Boosting		
AdaBoostM1	13296.42	190103.3
ParallelAdaBoost	202.30	26170.2
(9 threads, 10 iterations)	3)	
PSBML		
PSBML(C4.5)	2913.10	21089.8

Impact of No	oise –	Experiment 5
$impact = \frac{1}{N} \sum_{i}^{l}$	$\sum_{i=1}^{N} (auc_n^i)$	$c_{p-noise} - auc_{noise}^i)$
<u>10% noise</u>		1
AdaBoostM1/DS:	4.41	
AdaBoostM1/NB:	3.32	
PSBML/NB:	1.71	
<u>20% noise</u>		
AdaBoostM1/DS:	5.02	
AdaBoostM1/NB:	4.62	
PSBML/NB:	2.02	
		_
•		•

