
11/20/13

1

Parallel	
 Spa)al	

Boos)ng	

Carlotta Domeniconi
Dept. of Computer Science

George Mason University

Joint work with
Uday Kamath and Kenneth De Jong

Outline	

•  The problem and motivation
•  Proposed solution: Parallel Boosting Algorithm (PSBML)

–  The overall idea
–  The algorithm
–  Theoretical analysis of PSBML
–  Empirical analysis

•  Meta learning
•  Scalability
•  Robustness to noise

11/20/13

2

The	
 Problem	

Current	
 scenario	
 in	
 ML	
 Algorithms:	

o  Need	
 en;re	
 training	
 data	
 in	
 memory	
 for	
 modeling	

o  Training	
 ;me	
 and	
 memory	
 requirements	

•  E.g.	
 SVMs:	
 	
 O(n3)	
 ;me	
 -­‐	
 	
 O(n2)	
 space	

	

Current	
 solu;ons:	

o  Sampling	
 data	

o  Algorithm-­‐specific	
 customiza;on	
 for	
 paralleliza;on	

Parallel	
 Boos;ng	
 Algorithm	

•  Main	
 ingredients:	

o Meta-­‐Learning:	
 can	
 use	
 any	
 classifier	

o Paralleliza;on	
 using	
 a	
 grid	
 structure	
 and	

neighborhoods	

o Ensemble	
 and	
 Boos;ng	
 methodologies	
 	

11/20/13

3

Conveying the Idea…	

The	
 Overall	
 Idea	

•  Classifiers:	
 C1,	
 C2,	
 …,	
 C9	
 	
 	

•  Training	
 Data:	
 D1,	
 D2,	
 …,	
 D9	

C2	

D2	

C5	

D5	

C4	

D4	

C6	

D6	

C8	

D8	

C7	

D7	

C1	

D1	

C3	

D3	

C9	

D9	

Posi;ve	

Nega;ve	

Training	

N	

Easy	
 	
 Hard	

Testing	

N	

Testing	

N	

Testing	

N	

Testing	

N	

Testing	

N	

New
Training	

N	

Old	

Distribu;on	

New	
 Distribu;on	

11/20/13

4

Algorithm	
 Details	

•  Parallelism:

Neighborhood structures

Algorithm	
 Details	

•  Ensemble assessment of confidence:

csi = minn∈Nicni

csnormi = csi−csmin
csmax−csmin

wi = 1− csnormi

Confidence of instance i

Weight of instance i

11/20/13

5

Algorithm	
 Details	

•  Boosting-like behavior:

–  Weighted Sampling using

–  The weights define a distribution over the data

–  The smaller the confidence credited to an
instance, the larger the probability to be
selected

wi = 1− csnormi

11/20/13

6

Theore;cal	
 Analysis	

•  We	
 use	
 Gaussian	
 Mixtures	
 (GMMs)	
 and	
 mean-­‐
shiX	
 to	
 model	
 the	
 behavior	
 of	
 PSBML	

•  We	
 show:	
 PSBML	
 converges	
 to	
 a	
 data	
 distribu;on	

whose	
 modes	
 are	
 centered	
 around	
 the	
 margin,	
 i.e.	

around	
 the	
 hardest	
 points	
 to	
 classify

Theore;cal	
 Analysis	

11/20/13

7

Theore;cal	
 Analysis	
 -­‐	
 Tools	

Gaussian	
 Mixture	
 Model	

p(x) =
M�

m=1
p(m)p(x|m) ∀x ∈ RD

x|m ∼ ND(µm,Σm)

Theore;cal	
 Analysis	
 -­‐	
 Tools	

Mean-Shift Algorithm

•  Finds modes in a set of data samples, manifesting
an underlying distribution

•  Non-Parametric Model

•  Distribution changes along the gradient

11/20/13

8

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Mean	
 ShiX	

vector	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Mean	
 ShiX	

vector	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

11/20/13

9

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Mean	
 ShiX	

vector	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Mean	
 ShiX	

vector	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

11/20/13

10

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Mean	
 ShiX	

vector	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Mean	
 ShiX	

vector	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

11/20/13

11

Distribu;on	
 of	
 iden;cal	
 billiard	
 balls	

Region	
 of	

interest	

Center	
 of	

mass	

Objec)ve	
 :	
 Find	
 the	
 densest	
 region	

Mean	
 ShiX-­‐Intui;ve	
 Descrip;on	

Adap)ve	

Gradient	
 	

Ascent	

• 	
 Automa;c	
 convergence	
 speed	
 –	
 the	
 mean	
 shiX	
 	
 	

	
 	
 vector	
 size	
 depends	
 on	
 the	
 gradient	
 itself	

	

• 	
 Near	
 maxima,	
 the	
 steps	
 are	
 small	
 and	
 refined	

• 	
 Convergence	
 is	
 guaranteed	
 for	
 infinitesimal	
 	
 	

	
 	
 steps	
 only	
 è	
 infinitely	
 convergent,	
 	

	
 	
 (therefore	
 set	
 a	
 lower	
 bound)	

• 	
 For	
 Uniform	
 Kernel,	
 convergence	
 is	
 achieved	
 in	

	
 	
 a	
 finite	
 number	
 of	
 steps	

• 	
 Normal	
 Kernel,	
 exhibits	
 a	
 smooth	
 trajectory,	
 but	
 	

	
 	
 is	
 slower	
 than	
 Uniform	
 Kernel	
 	

Mean	
 ShiX	
 Proper;es	

11/20/13

12

Mean	
 ShiX	
 Proper;es	

Mean	
 shiX	
 and	
 GMMs	

o  Fixed-­‐point	
 itera;ve	
 method	
 solu;on:	

	

x(t+1) = f(x(t))

x = f(x) = (
M�

m=1
p(m|x)Σ−1

m)−1
M�

m=1
p(m|x)Σ−1

m µm

Theore;cal	
 Analysis	

•  We	
 model	
 the	
 sample	
 data	
 assigned	
 to	
 a	
 node	
 and	
 to	
 its	

neighbors	
 using	
 a	
 GMM	

•  We	
 need	
 to	
 model	
 the	
 weighted	
 sampling	
 process	
 within	
 a	

GMM	

p�(x|m) = w(x) ∗ p(x|m)

w(x) = (2π)−D/2|Σs|−1/2e−1/2(x−s)TΣ−1
s (x−s)

11/20/13

13

Theore;cal	
 Analysis	

•  Our	
 fixed-­‐point	
 solu;on:	

x = (
M�

m=1
p(m|x)Σs

−1 +
M�

m=1
p(m|x)Σm

−1)
−1

×

(
M�

m=1
p(m|x)Σs

−1s+
M�

m=1
p(m|x)Σm

−1µm)

x = f(x) = (
M�

m=1
p(m|x)Σ−1

m)−1
M�

m=1
p(m|x)Σ−1

m µm

Compare with:

Theore;cal	
 Analysis	
 -­‐	
 Experiment	
 1	

Circle dataset

5 x 5 grid with large margin classifiers vs.
5 x 5 grid with GMM + mean shift

11/20/13

14

Figure 2: Density estimation of one dimensional

data based on the distance from the boundary.

weighted a priori using the Gaussian weighting func-
tion as defined in the theoretical analysis. We ran
GMM with mean-shift on each node and performed
sampling iteratively at every training epoch exactly as
in PSBML. We observed the population distribution
change over time.

3. We removed the grid structure and ran GMMs with
mean-shift estimation on the whole dataset, with each
instance weighted according to its distance from the
known boundary as above. We observed the data distri-
bution and final modes at convergence, and compared
them with those obtained in the previous setting.

5.1 A Non-linearly Separable Dataset

Instances were drawn at random within a square centered
at the origin and with side of length two. Points with a
distance smaller than 0.4 from the origin are labeled as
negative, and those with a distance greater or equal than
0.4 are labeled as positive (see Figure 6). We ran the three
experiments as described in Section 5. For experiment 1, the
large margin classifier used at each node fits a circle to its
training set by setting its radius to the average distance of
the origin from the smallest positive and the largest negative
instances. For testing, the learner outputs “−” when the
instance falls within the circle, and “+” otherwise. The
confidence of the prediction is the distance of the instance
from the circular boundary.

To compare the data distributions obtained in experiments
1 and 2, we recorded the number of points at various intervals
of distances from the origin at training epochs 25 and 50. The
resulting histograms are given in Figure 3. We can clearly
observe that the two methodologies, PSBML and GMMs
with mean-shift, provide a nearly identical distribution at
both generations, and they converge to a distribution with
modes centered on the points closest to the boundary.
For experiment 3, we ran GMMs with mean-shift estima-

tion 30 times on the whole weighted data. The means of the
modes at convergence were (−0.01, 0.38) and (0.01,−0.41),
with a very small standard deviation of 0.03. The distri-
bution at convergence was very close to those obtained in
experiments 1 and 2. Interestingly, we observed that, when
the weights were removed, the modes at convergence moved
to (−0.03, 0.51) and (0.03,−0.49).

Weight Distribution Changes. One important prop-
erty of boosting is to scale the weights of data as a function
of its distance from the margin. SSEAs have similar behavior
where the takeover curves exhibit a logistic function with

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

F
re

q
u

e
n

cy
 o

f
D

a
ta

 P
o

in
ts

Circle Radius at different levels

PSBML
GuassianMixtureModel

 0

 500

 1000

 1500

 2000

 2500

 3000

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

F
re

q
u

e
n

cy
 o

f
D

a
ta

 P
o

in
ts

Circle Radius at different levels

PSBML
GuassianMixtureModel

Figure 3: Circle dataset: Data distribution at

epochs 25 (Left) and 50 (Right) using PSBML and

GMMs.

time [24]. To observe the effect of weight changes, in Figure
5 we plotted the weights of all points at different radii and
for different generations for the circle dataset. We can clearly
see the exponential decay and the logistic increase based on
the vicinity to the margin of the data. For positive points,
when the radius is between 0.3 and 0.4, and for negative
points, when the radius is between 0.4 and 0.5, an increase
is seen with time, and for the rest there is an exponential
decay, confirming a behavior analogous to boosting.

5.2 Linearly Separable Bivariate Gaussians

We created a synthetic dataset consisting of 5 Gaussians
for each class, with roughly the same density but different
shapes (see Figure 6). The Gaussians with means (14, 8)
and (24, 8) are the closest to the boundary, given by the
line x = 20. They simulate the “global modes”. We again
ran the three experiments described in Section 5. The large
margin classifier was simulated by estimating the average dis-
tance between the smallest positive and the largest negative
instances.
Again we observed that the data distributions produced

by PSBML and GMM with mean-shift and grid structure are
very much alike, as illustrated in Figure 4. For experiment 3,
with 30 runs on the weighted dataset, the means of the modes
converged to (14.02, 7.89) and (24.09, 7.88), with deviation of
0.002, matching exactly our results for experiments 1 and 2.

5.3 Hard Instances and Support Vectors

We also analyzed the data distribution at convergence by
comparing the hard instances identified by PSBML with
the support vectors of a trained SVM. Table 1 shows the
percentage of overlap for the two simulated datasets. The
support vectors of the trained SVMs with the highest α (i.e.
weight) values correspond to the hard instances with the top
10% largest weights identified by the PSBML algorithm for
both the datasets.

2D Circle 2D Gaussians

SV overlap 90% 94%

Table 1: Overlap percentage between support vec-

tors and PSBML hard instances.

6. EXPERIMENTAL RESULTS

We ran all scalability experiments (in which running times
were measured) on a dual, 3.33 GHz, 6 core Intel Xeon

25 iterations 50 iterations

Theore;cal	
 Analysis	
 -­‐	
 Experiment	
 1	

Support vectors and PSBML hard instances overlap (90%)

Theore;cal	
 Analysis	
 -­‐	
 Experiment	
 1	

11/20/13

15

Mixture of Gaussian dataset

5 x 5 grid of large margin classifiers vs.
5 x 5 grid of GMM + mean shift

Theore;cal	
 Analysis	
 –	
 Experiment	
 2	

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

<4 <8 <12 <16 <20 <24 <28 <32 <36 <40

Fre
que

ncy
 of

Da
ta P

oin
ts

X dimensions of Data

PSBML
GMM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

<4 <8 <12 <16 <20 <24 <28 <32 <36 <40

Fre
que

ncy
 of

Da
ta P

oin
ts

X dimensions of Data

PSBML
GMM

Figure 4: Linearly separable Gaussian dataset: Data
distribution at epochs 25 (Left) and 50 (Right) using
PSBML and GMMs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45 50

S
um

 o
f W

ei
gh

ts

Generations

0.0 < radius < 0.1 (+ data)
0.9 < radius < 1.0 (- data)

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

S
um

 o
f W

ei
gh

ts

Generations

0.3 < radius < 0.4 (+ data)
0.4 < radius < 0.5 (- data)

Figure 5: Changes in weight distribution as function
of time: (Left) exponential decay; (Right) logistic
increase.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

X
2

X1

Positive Samples
Negative Samples

 0

 2

 4

 6

 8

 10

 12

 14

 16

-5 0 5 10 15 20 25 30 35 40

Positive Samples
Negative Samples

Figure 6: (Left) Circle dataset; (Right) Bivariate
Gaussian dataset.

5670 processor. PSBML was implemented both as a sin-

gle threaded Weka [18] classifier and as a multithreaded

standalone Java implementation that can run on any JVM

version above 1.5 (see Section 8). All experiments with PS-

BML were run using a maximum heap size of 8GB and a

number of threads equal to the number of nodes in the grid.

All SVMs and boosting implementations, where running

times were compared, used either the native Matlab or C++

code, except for AdaBoostM1, where Weka 3.7.1 was used.

All statistical significance tests were performed using the

Matlab paired-t test function.

6.1 Meta-learning Experiments
The goal of this experiment is two-fold: first to validate

that PSBML provides a general framework for meta-learning,

and therefore can be used in combination with a variety

of learners; second, to verify that it’s an effective parallel

algorithm, i.e. it performs at least as well as the sequential

counterpart. To illustrate this, we performed experiments

using three base classifiers: Naive Bayes, Decision Trees

(C4.5), and Linear SVMs (LibLinear v1.8) (the correspond-

ing Weka implementations were used). We used five medium

to large UCI datasets [14], commonly used for performance

comparisons. Table 2 provides a description of the data. We

preprocessed the datasets so that they have two classes and

normalized features in the range [0,1]. This is because certain

classifiers like LibLinear were well optimized for binary clas-

sification with scaled features. The PSBML algorithm was

run with the C9 neighborhood, a 3× 3 grid, a replacement

probability of 0.2, 20 training epochs, and a validation set

size of 10%. We first optimized the base classifiers for per-

formance, and then used the optimized settings in PSBML.

Naive Bayes was used with the option of kernel estimation

instead of using the default normal estimation; C4.5 was

used with the default settings; and LibLinear was used with

L2 loss function in both experiments. Each run, with the

exception of Cover and C4.5, was repeated 30 times, and

paired-t tests were used for statistical significance computa-

tion using the Area Under the Curve (AUC) [3] as the metric.

The experiments involving Cover and C4.5 were run only 10

times, due to the long processing time. Hence significance

is not recorded in this case. Results are reported in Table 3.

All statistically significant results are marked in bold-face.

We observe that PSBML, combined with the Naive Bayes

classifier, performs statistically significantly better than the

Naive Bayes classifier itself on all the datasets. Similar results

were observed, and theoretical insights were provided, with

regular boosting and Naive Bayes [10]. Another important

result to note is that the ensemble effect of PSBML makes

the accuracy of a linear SVM significantly better (in three

cases), while parallelizing the LibLinear SVM, which was

already optimized for speed.

Adult W8A ICJNN1 Cod Cover

Train 32560 49749 49990 331617 581012

Test 16279 14951 91701 59535 58102

Features 123 300 22 8 54

Table 2: UCI datasets used in the experiments.

25 iterations

50 iterations

Theore;cal	
 Analysis	
 –	
 Experiment	
 2	

11/20/13

16

Meta-­‐learning	
 –	
 Experiment	
 3	

Datasets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

<4 <8 <12 <16 <20 <24 <28 <32 <36 <40

Fre
que

ncy
 of

Da
ta P

oin
ts

X dimensions of Data

PSBML
GMM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

<4 <8 <12 <16 <20 <24 <28 <32 <36 <40

Fre
que

ncy
 of

Da
ta P

oin
ts

X dimensions of Data

PSBML
GMM

Figure 4: Linearly separable Gaussian dataset: Data
distribution at epochs 25 (Left) and 50 (Right) using
PSBML and GMMs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45 50

S
um

 o
f W

ei
gh

ts

Generations

0.0 < radius < 0.1 (+ data)
0.9 < radius < 1.0 (- data)

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

S
um

 o
f W

ei
gh

ts

Generations

0.3 < radius < 0.4 (+ data)
0.4 < radius < 0.5 (- data)

Figure 5: Changes in weight distribution as function
of time: (Left) exponential decay; (Right) logistic
increase.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

X
2

X1

Positive Samples
Negative Samples

 0

 2

 4

 6

 8

 10

 12

 14

 16

-5 0 5 10 15 20 25 30 35 40

Positive Samples
Negative Samples

Figure 6: (Left) Circle dataset; (Right) Bivariate
Gaussian dataset.

5670 processor. PSBML was implemented both as a sin-

gle threaded Weka [18] classifier and as a multithreaded

standalone Java implementation that can run on any JVM

version above 1.5 (see Section 8). All experiments with PS-

BML were run using a maximum heap size of 8GB and a

number of threads equal to the number of nodes in the grid.

All SVMs and boosting implementations, where running

times were compared, used either the native Matlab or C++

code, except for AdaBoostM1, where Weka 3.7.1 was used.

All statistical significance tests were performed using the

Matlab paired-t test function.

6.1 Meta-learning Experiments
The goal of this experiment is two-fold: first to validate

that PSBML provides a general framework for meta-learning,

and therefore can be used in combination with a variety

of learners; second, to verify that it’s an effective parallel

algorithm, i.e. it performs at least as well as the sequential

counterpart. To illustrate this, we performed experiments

using three base classifiers: Naive Bayes, Decision Trees

(C4.5), and Linear SVMs (LibLinear v1.8) (the correspond-

ing Weka implementations were used). We used five medium

to large UCI datasets [14], commonly used for performance

comparisons. Table 2 provides a description of the data. We

preprocessed the datasets so that they have two classes and

normalized features in the range [0,1]. This is because certain

classifiers like LibLinear were well optimized for binary clas-

sification with scaled features. The PSBML algorithm was

run with the C9 neighborhood, a 3× 3 grid, a replacement

probability of 0.2, 20 training epochs, and a validation set

size of 10%. We first optimized the base classifiers for per-

formance, and then used the optimized settings in PSBML.

Naive Bayes was used with the option of kernel estimation

instead of using the default normal estimation; C4.5 was

used with the default settings; and LibLinear was used with

L2 loss function in both experiments. Each run, with the

exception of Cover and C4.5, was repeated 30 times, and

paired-t tests were used for statistical significance computa-

tion using the Area Under the Curve (AUC) [3] as the metric.

The experiments involving Cover and C4.5 were run only 10

times, due to the long processing time. Hence significance

is not recorded in this case. Results are reported in Table 3.

All statistically significant results are marked in bold-face.

We observe that PSBML, combined with the Naive Bayes

classifier, performs statistically significantly better than the

Naive Bayes classifier itself on all the datasets. Similar results

were observed, and theoretical insights were provided, with

regular boosting and Naive Bayes [10]. Another important

result to note is that the ensemble effect of PSBML makes

the accuracy of a linear SVM significantly better (in three

cases), while parallelizing the LibLinear SVM, which was

already optimized for speed.

Adult W8A ICJNN1 Cod Cover

Train 32560 49749 49990 331617 581012

Test 16279 14951 91701 59535 58102

Features 123 300 22 8 54

Table 2: UCI datasets used in the experiments.

Goal: Does PSBML provide a general framework for meta-learning?
 Is PSBML effective as a parallel algorithm?

Adult W8A ICJNN1 Cod Cover

NB 90.1 94.30 81.60 87.20 84.90

PSBML 90.69 96.10 81.79 91.79 87.01
C4.5 89.88 87.80 94.60 95.90 99.50

PSBML 89.78 84.80 97.30 97.24 97.44

Linear SVM 54.60 80.20 64.60 88.80 72.20

PSBML 60.01 80.70 64.80 95.10 79.10

Table 3: Meta-learning results (AUC) comparing
the base classifiers and PSBML combined with the
same.

6.2 Scalability Experiments
The goal of this experiment is to validate whether PSBML

performs competitively against custom optimized learning

algorithms, in terms of training time, as a measure of speed,

and in terms of accuracy, as a measure of performance. PS-

BML shares an important feature with SVMs: it reduces

the training data to those close to the boundary. Thus,

we compared PSBML with a number of SVM implementa-

tions: a fast Newton method-based LP-SVM [16], a struc-

tural optimization-based SVM-PERF [19](linear because

with an RBF kernel it crashed), most commonly used Lib-

SVM [12], fast optimized LibLinear [11], stochastic gradient

approximation-based SGDT [2], and fast ball enclosure-based

BVM [27]. We also compared PSBML against a parallel Ad-

aBoost algorithm [13] and the standard AdaBoostM1. All of

the above mentioned implementations of SVMs incorporate

some form of custom changes to boost the speed, like incre-

mentally sampling the dataset, or simplifying the quadratic

optimization, or assuming linearly separable data. In the

following, we first present the results with synthetic datasets,

and then with real ones.

6.2.1 Synthetic Datasets
The first dataset was a two dimensional decision boundary

based on a sine wave generated by the function f(x) =

2sin(2πx1). The dimension x1 was sampled from [0, 6.28]
and the y = f(x) dimension was randomly sampled from

[0, 2]. The second dataset is a 4 × 4 rotated checkerboard

data with alternate positive and negative classes as shown in

Figure 7. Each dataset has one million instances, and all the

experiments were repeated 30 times. We measured training

time for each of the runs, and the average training time is

reported. 10 fold cross-validation was performed for accuracy

and the average accuracy is reported. Each of the algorithms

were tuned to some level of optimality for comparisons.

The PSBML algorithm was run with the C9 neighborhood,

a 3×3 grid, replacement probability of 0.2, 10 training epochs,

and a validation set size of 10% for each training fold. The

C4.5 classifier with default parameters was used as it had

an intermediate training speed between the fast LibLinear

and the kernel estimated Naive Bayes. Results are shown in

Table 4. For both the synthetic datasets, PSBML gives the

most accurate results with comparable training speed. The

synthetic datasets, being highly non-linear, exaggerate the

trade-offs implemented by the algorithms.

6.2.2 Real-world Dataset
The KDD Cup 1999 intrusion detection dataset was used

to compare the performance of the algorithms. The dataset

contains 4,898,431 training instances. The problem was

Figure 7: Synthetic datasets: (Left) Sine wave;
(Right) Checkerboard.

Checkerboard Sine Wave
Algorithm Speed Acc Speed Acc

SVM
LP-SVM (Linear) 44.20 50.23 33.20 68.80

LP-SVM (RBF) 33.20 57.11 105.56 70.11

LibLinear 133.20 50.08 203.12 68.60

SGDT (10 iterations) 4.20 54.49 4.20 54.89

SVM-PERF (Linear) 1.10 51.01 2.01 61.90

BVM (RBF) 1.80 50.03 1.20 49.03

LibSVM 136.20 98.20 423.23 70.80

(RBF, 0.1% data)

Boosting
AdaBoostM1 38.21 51.25 30.71 74.25

ParalleAdalBoost 17.90 51.22 13.90 78.30

(9 threads,10 iterations)

PSBML
PSBML (C4.5) 123.10 99.49 193.10 99.56

Table 4: Training speed (in seconds) and accuracy
for the Checkerboard and the Sine Wave datasets.

converted into a binary classification problem because many

SVM implementations did not support multi-class labels.

The feature set was also scaled within the range [0,1], which

improved the performance of many SVMs almost 10 times.

The PSBML algorithm was run with the C9 neighborhood, a

3× 3 grid, replacement probability of 0.2, 10 training epochs,

and a validation size of 0.1% of the training data. The C4.5

classifier was used with default parameters again for the same

reasons mentioned earlier.

In previous work, it was noted that many algorithms have

a very similar error rate on this dataset. Hence, the number

of mis-classifications was suggested and used as comparison

metric [31]. We do the same here. Each of the experiments

were run 30 times, except the AdaBoostM1 (only 10 times)

due to large training time. The mean training times for run

and the mean mis-classification averages are reported in Table

5. Some of the algorithms, like LP-SVM, couldn’t be run with

a 12GB RAMmachine, because the loading of the data matrix

itself failed. We observe that most algorithms that were

optimized for speed had to compensate for classification rate.

Also, sampling as done in LibSVM increased the training

timing considerable from 1% to 10% data with small change

in classification rate. Thus PSBML, while working on the

entire dataset finds a good classification rate at a considerable

performance speed.

To see the impact of data sizes on the PSBML algorithm,

the training data was sampled in various sizes from 50K,

100K, 500K, and one million. 10 runs were performed with

standard PSBML with decision trees, a 3× 3 grid, and the

AUC Results

Meta-­‐learning	
 –	
 Experiment	
 3	

11/20/13

17

Scalability	
 –	
 Experiment	
 4	

•  Goal: Is PSBML competitive against custom

optimized learning algorithms?
•  Machine used: dual, 3.33 GHz, 6 core Intel

Xeon 5670 processor
•  Comparisons:

o Various customized SVMs
o  Parallel AdaBoost

•  Synthetic data: Sine wave and Checkerboard
•  Real data: KDD Cup 1999

	

Scalability	
 –	
 Experiment	
 4	

Adult W8A ICJNN1 Cod Cover

NB 90.1 94.30 81.60 87.20 84.90

PSBML 90.69 96.10 81.79 91.79 87.01
C4.5 89.88 87.80 94.60 95.90 99.50

PSBML 89.78 84.80 97.30 97.24 97.44

Linear SVM 54.60 80.20 64.60 88.80 72.20

PSBML 60.01 80.70 64.80 95.10 79.10

Table 3: Meta-learning results (AUC) comparing
the base classifiers and PSBML combined with the
same.

6.2 Scalability Experiments
The goal of this experiment is to validate whether PSBML

performs competitively against custom optimized learning

algorithms, in terms of training time, as a measure of speed,

and in terms of accuracy, as a measure of performance. PS-

BML shares an important feature with SVMs: it reduces

the training data to those close to the boundary. Thus,

we compared PSBML with a number of SVM implementa-

tions: a fast Newton method-based LP-SVM [16], a struc-

tural optimization-based SVM-PERF [19](linear because

with an RBF kernel it crashed), most commonly used Lib-

SVM [12], fast optimized LibLinear [11], stochastic gradient

approximation-based SGDT [2], and fast ball enclosure-based

BVM [27]. We also compared PSBML against a parallel Ad-

aBoost algorithm [13] and the standard AdaBoostM1. All of

the above mentioned implementations of SVMs incorporate

some form of custom changes to boost the speed, like incre-

mentally sampling the dataset, or simplifying the quadratic

optimization, or assuming linearly separable data. In the

following, we first present the results with synthetic datasets,

and then with real ones.

6.2.1 Synthetic Datasets
The first dataset was a two dimensional decision boundary

based on a sine wave generated by the function f(x) =

2sin(2πx1). The dimension x1 was sampled from [0, 6.28]
and the y = f(x) dimension was randomly sampled from

[0, 2]. The second dataset is a 4 × 4 rotated checkerboard

data with alternate positive and negative classes as shown in

Figure 7. Each dataset has one million instances, and all the

experiments were repeated 30 times. We measured training

time for each of the runs, and the average training time is

reported. 10 fold cross-validation was performed for accuracy

and the average accuracy is reported. Each of the algorithms

were tuned to some level of optimality for comparisons.

The PSBML algorithm was run with the C9 neighborhood,

a 3×3 grid, replacement probability of 0.2, 10 training epochs,

and a validation set size of 10% for each training fold. The

C4.5 classifier with default parameters was used as it had

an intermediate training speed between the fast LibLinear

and the kernel estimated Naive Bayes. Results are shown in

Table 4. For both the synthetic datasets, PSBML gives the

most accurate results with comparable training speed. The

synthetic datasets, being highly non-linear, exaggerate the

trade-offs implemented by the algorithms.

6.2.2 Real-world Dataset
The KDD Cup 1999 intrusion detection dataset was used

to compare the performance of the algorithms. The dataset

contains 4,898,431 training instances. The problem was

Figure 7: Synthetic datasets: (Left) Sine wave;
(Right) Checkerboard.

Checkerboard Sine Wave
Algorithm Speed Acc Speed Acc

SVM
LP-SVM (Linear) 44.20 50.23 33.20 68.80

LP-SVM (RBF) 33.20 57.11 105.56 70.11

LibLinear 133.20 50.08 203.12 68.60

SGDT (10 iterations) 4.20 54.49 4.20 54.89

SVM-PERF (Linear) 1.10 51.01 2.01 61.90

BVM (RBF) 1.80 50.03 1.20 49.03

LibSVM 136.20 98.20 423.23 70.80

(RBF, 0.1% data)

Boosting
AdaBoostM1 38.21 51.25 30.71 74.25

ParalleAdalBoost 17.90 51.22 13.90 78.30

(9 threads,10 iterations)

PSBML
PSBML (C4.5) 123.10 99.49 193.10 99.56

Table 4: Training speed (in seconds) and accuracy
for the Checkerboard and the Sine Wave datasets.

converted into a binary classification problem because many

SVM implementations did not support multi-class labels.

The feature set was also scaled within the range [0,1], which

improved the performance of many SVMs almost 10 times.

The PSBML algorithm was run with the C9 neighborhood, a

3× 3 grid, replacement probability of 0.2, 10 training epochs,

and a validation size of 0.1% of the training data. The C4.5

classifier was used with default parameters again for the same

reasons mentioned earlier.

In previous work, it was noted that many algorithms have

a very similar error rate on this dataset. Hence, the number

of mis-classifications was suggested and used as comparison

metric [31]. We do the same here. Each of the experiments

were run 30 times, except the AdaBoostM1 (only 10 times)

due to large training time. The mean training times for run

and the mean mis-classification averages are reported in Table

5. Some of the algorithms, like LP-SVM, couldn’t be run with

a 12GB RAMmachine, because the loading of the data matrix

itself failed. We observe that most algorithms that were

optimized for speed had to compensate for classification rate.

Also, sampling as done in LibSVM increased the training

timing considerable from 1% to 10% data with small change

in classification rate. Thus PSBML, while working on the

entire dataset finds a good classification rate at a considerable

performance speed.

To see the impact of data sizes on the PSBML algorithm,

the training data was sampled in various sizes from 50K,

100K, 500K, and one million. 10 runs were performed with

standard PSBML with decision trees, a 3× 3 grid, and the

Synthetic data

Sine wave Checkerboard

11/20/13

18

Scalability	
 –	
 Experiment	
 4	

Synthetic data: Results

Adult W8A ICJNN1 Cod Cover

NB 90.1 94.30 81.60 87.20 84.90

PSBML 90.69 96.10 81.79 91.79 87.01
C4.5 89.88 87.80 94.60 95.90 99.50

PSBML 89.78 84.80 97.30 97.24 97.44

Linear SVM 54.60 80.20 64.60 88.80 72.20

PSBML 60.01 80.70 64.80 95.10 79.10

Table 3: Meta-learning results (AUC) comparing
the base classifiers and PSBML combined with the
same.

6.2 Scalability Experiments
The goal of this experiment is to validate whether PSBML

performs competitively against custom optimized learning

algorithms, in terms of training time, as a measure of speed,

and in terms of accuracy, as a measure of performance. PS-

BML shares an important feature with SVMs: it reduces

the training data to those close to the boundary. Thus,

we compared PSBML with a number of SVM implementa-

tions: a fast Newton method-based LP-SVM [16], a struc-

tural optimization-based SVM-PERF [19](linear because

with an RBF kernel it crashed), most commonly used Lib-

SVM [12], fast optimized LibLinear [11], stochastic gradient

approximation-based SGDT [2], and fast ball enclosure-based

BVM [27]. We also compared PSBML against a parallel Ad-

aBoost algorithm [13] and the standard AdaBoostM1. All of

the above mentioned implementations of SVMs incorporate

some form of custom changes to boost the speed, like incre-

mentally sampling the dataset, or simplifying the quadratic

optimization, or assuming linearly separable data. In the

following, we first present the results with synthetic datasets,

and then with real ones.

6.2.1 Synthetic Datasets
The first dataset was a two dimensional decision boundary

based on a sine wave generated by the function f(x) =

2sin(2πx1). The dimension x1 was sampled from [0, 6.28]
and the y = f(x) dimension was randomly sampled from

[0, 2]. The second dataset is a 4 × 4 rotated checkerboard

data with alternate positive and negative classes as shown in

Figure 7. Each dataset has one million instances, and all the

experiments were repeated 30 times. We measured training

time for each of the runs, and the average training time is

reported. 10 fold cross-validation was performed for accuracy

and the average accuracy is reported. Each of the algorithms

were tuned to some level of optimality for comparisons.

The PSBML algorithm was run with the C9 neighborhood,

a 3×3 grid, replacement probability of 0.2, 10 training epochs,

and a validation set size of 10% for each training fold. The

C4.5 classifier with default parameters was used as it had

an intermediate training speed between the fast LibLinear

and the kernel estimated Naive Bayes. Results are shown in

Table 4. For both the synthetic datasets, PSBML gives the

most accurate results with comparable training speed. The

synthetic datasets, being highly non-linear, exaggerate the

trade-offs implemented by the algorithms.

6.2.2 Real-world Dataset
The KDD Cup 1999 intrusion detection dataset was used

to compare the performance of the algorithms. The dataset

contains 4,898,431 training instances. The problem was

Figure 7: Synthetic datasets: (Left) Sine wave;
(Right) Checkerboard.

Checkerboard Sine Wave
Algorithm Speed Acc Speed Acc

SVM
LP-SVM (Linear) 44.20 50.23 33.20 68.80

LP-SVM (RBF) 33.20 57.11 105.56 70.11

LibLinear 133.20 50.08 203.12 68.60

SGDT (10 iterations) 4.20 54.49 4.20 54.89

SVM-PERF (Linear) 1.10 51.01 2.01 61.90

BVM (RBF) 1.80 50.03 1.20 49.03

LibSVM 136.20 98.20 423.23 70.80

(RBF, 0.1% data)

Boosting
AdaBoostM1 38.21 51.25 30.71 74.25

ParalleAdalBoost 17.90 51.22 13.90 78.30

(9 threads,10 iterations)

PSBML
PSBML (C4.5) 123.10 99.49 193.10 99.56

Table 4: Training speed (in seconds) and accuracy
for the Checkerboard and the Sine Wave datasets.

converted into a binary classification problem because many

SVM implementations did not support multi-class labels.

The feature set was also scaled within the range [0,1], which

improved the performance of many SVMs almost 10 times.

The PSBML algorithm was run with the C9 neighborhood, a

3× 3 grid, replacement probability of 0.2, 10 training epochs,

and a validation size of 0.1% of the training data. The C4.5

classifier was used with default parameters again for the same

reasons mentioned earlier.

In previous work, it was noted that many algorithms have

a very similar error rate on this dataset. Hence, the number

of mis-classifications was suggested and used as comparison

metric [31]. We do the same here. Each of the experiments

were run 30 times, except the AdaBoostM1 (only 10 times)

due to large training time. The mean training times for run

and the mean mis-classification averages are reported in Table

5. Some of the algorithms, like LP-SVM, couldn’t be run with

a 12GB RAMmachine, because the loading of the data matrix

itself failed. We observe that most algorithms that were

optimized for speed had to compensate for classification rate.

Also, sampling as done in LibSVM increased the training

timing considerable from 1% to 10% data with small change

in classification rate. Thus PSBML, while working on the

entire dataset finds a good classification rate at a considerable

performance speed.

To see the impact of data sizes on the PSBML algorithm,

the training data was sampled in various sizes from 50K,

100K, 500K, and one million. 10 runs were performed with

standard PSBML with decision trees, a 3× 3 grid, and the

Scalability	
 –	
 Experiment	
 4	

Real data: Results

 1

 10

 100

 1000

 0 5 10 15 20 25

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
) L

og
 S

ca
le

Generations

50 K
100 K
500 K

1 Million
4.89 Million

Figure 8: Mean training times with varying dataset
sizes.

C9 neighborhood. The training times are shown in Figure 8,
which clearly shows almost linear scalability with training
data sizes.

Algorithm Training Time (secs) MisClass

SVM
LibLinear 80.20 25447.3
LibSVM (RBF, 1% data) 90.20 25517.8
LibSVM (RBF, 10% data) 1495.20 25366.1
SGDT (10 iterations) 211.10 121301
SVM-PERF (Linear) 2.90 25877.1
BVM (RBF) 3.20 25451.3

Boosting
AdaBoostM1 13296.42 190103.3
ParallelAdaBoost 202.30 26170.2

(9 threads, 10 iterations)

PSBML
PSBML(C4.5) 2913.10 21089.8

Table 5: Training speed and accuracy for the KDD
Cup 1999 dataset.

6.3 Comparison against AdaBoost and Im-

pact of Noise

Here we compare PSBML against AdaBoost and test the
robustness in presence of noise. Previous work found that
boosting is more susceptible to noise as compared to other
ensemble methods like bagging and stacking [21]. We added
class label noise by randomly changing different percentages
of labels. We used AdaBoostM1 both with decision stumps
and with Naive Bayes (optimized using kernel estimators),
and compared it against PSBML combined with the same
underlying Naive Bayes classifier. PSBML was used with
the default C9 neighborhood, replacement probability of 0.2,
and validation set of 10%.
We used the same datasets used for the meta-learning

experiments, and did the same preprocessing. We performed
30 runs to compare the three algorithms without noise and
in presence of 10% and 20% of noise. The results are shown
in Table 6. Statistically significant results are highlighted in
bold-face.
In absence of noise, PSBML with Naive Bayes performs

significantly better than AdaBoostM1 with decision stumps
or with the same optimized Naive Bayes in three of the five
datasets. To measure how robust a method is across all the
datasets being considered, we compute the following quantity,
which we call impact :

impact =

N�
i=i

aucino-noise − aucinoise

N
(14)

where N is the number of datasets. The smaller the value of
the impact is for an algorithm, the more robust that method
is on average.
The impact values of AdaBoostM1 (DecisionStump), Ad-

aBoostM1 (NaiveBayes) and PSBML (NaiveBayes) with 10%
noise are 4.41, 3.32, and 1.71, respectively. Similarly, with
20% noise the impact values for AdaBoostM1 (DecisionS-
tump), AdaBoostM1(NaiveBayes) and PSBML(NaiveBayes)
are 5.02, 4.62, and 2.02, respectively. This shows that the PS-
BML algorithm with its spatial topology and neighborhood
interaction is more robust to noise as compared to standard
boosting.

Adult W8A ICJNN1 Cod Cover

No Noise
AdaBoostM1/DS 87.10 77.80 93.40 92.80 75.70
AdaBoostM1/NB 87.20 93.30 84.30 95.70 85.30
PSBML/NB 90.69 96.10 81.79 91.79 87.31

10% Noise
AdaBoostM1/DS 85.70 58.90 92.82 92.20 75.10
AdaBoostM1/NB 85.80 83.40 79.80 95.10 85.10
PSBML/NB 90.46 96.01 77.46 88.06 87.14

20% Noise
AdaBoostM1/DS 85.10 57.10 92.30 92.10 75.10
AdaBoostM1/NB 84.88 79.01 79.70 94.90 84.20
PSBML/NB 90.10 95.97 77.42 86.98 87.11

Table 6: Performance of AdaBoostM1 (DS: Deci-
sion Stump), AdaBoostM1 (NB: Naive Bayes) and
PSBML (NB: Naive Bayes) with no, 10%, and 20%
noise.

7. CONCLUSION

In this paper, we have taken a significant step in analyz-
ing a parallel boosting algorithm. The theoretical analysis
was obtained by creating a model for a stochastic parallel
supervised learning algorithm in terms of a well-known sta-
tistical distribution model. Our empirical analysis confirmed
the veracity of the theoretical model. Having a theoretical
model for parallel large-scale meta-learner gives an important
insights and constraints for the practitioners.

Various meta-leaning experiments have shown that PSBML
exhibits characteristics similar to that of AdaBoost in the
sense that adding ensemble boosting to a standard classifier
produces at least comparable and often better results.
Scalability experiments confirm that while maintaining

good running times for training, the accuracy is not com-
promised. In addition, the spatial EA aspects of PSBML
provide a resilience to noise, an important feature for real-
world applications.

11/20/13

19

Impact	
 of	
 Noise	
 –	
 Experiment	
 5	

•  Goal: test robustness in presence of noise

•  Comparisons:
o AdaBoost

•  decision stumps
•  Naïve Bayes	

 1

 10

 100

 1000

 0 5 10 15 20 25

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
) L

og
 S

ca
le

Generations

50 K
100 K
500 K

1 Million
4.89 Million

Figure 8: Mean training times with varying dataset
sizes.

C9 neighborhood. The training times are shown in Figure 8,
which clearly shows almost linear scalability with training
data sizes.

Algorithm Training Time (secs) MisClass

SVM
LibLinear 80.20 25447.3
LibSVM (RBF, 1% data) 90.20 25517.8
LibSVM (RBF, 10% data) 1495.20 25366.1
SGDT (10 iterations) 211.10 121301
SVM-PERF (Linear) 2.90 25877.1
BVM (RBF) 3.20 25451.3

Boosting
AdaBoostM1 13296.42 190103.3
ParallelAdaBoost 202.30 26170.2

(9 threads, 10 iterations)

PSBML
PSBML(C4.5) 2913.10 21089.8

Table 5: Training speed and accuracy for the KDD
Cup 1999 dataset.

6.3 Comparison against AdaBoost and Im-

pact of Noise

Here we compare PSBML against AdaBoost and test the
robustness in presence of noise. Previous work found that
boosting is more susceptible to noise as compared to other
ensemble methods like bagging and stacking [21]. We added
class label noise by randomly changing different percentages
of labels. We used AdaBoostM1 both with decision stumps
and with Naive Bayes (optimized using kernel estimators),
and compared it against PSBML combined with the same
underlying Naive Bayes classifier. PSBML was used with
the default C9 neighborhood, replacement probability of 0.2,
and validation set of 10%.
We used the same datasets used for the meta-learning

experiments, and did the same preprocessing. We performed
30 runs to compare the three algorithms without noise and
in presence of 10% and 20% of noise. The results are shown
in Table 6. Statistically significant results are highlighted in
bold-face.
In absence of noise, PSBML with Naive Bayes performs

significantly better than AdaBoostM1 with decision stumps
or with the same optimized Naive Bayes in three of the five
datasets. To measure how robust a method is across all the
datasets being considered, we compute the following quantity,
which we call impact :

impact =

N�
i=i

aucino-noise − aucinoise

N
(14)

where N is the number of datasets. The smaller the value of
the impact is for an algorithm, the more robust that method
is on average.
The impact values of AdaBoostM1 (DecisionStump), Ad-

aBoostM1 (NaiveBayes) and PSBML (NaiveBayes) with 10%
noise are 4.41, 3.32, and 1.71, respectively. Similarly, with
20% noise the impact values for AdaBoostM1 (DecisionS-
tump), AdaBoostM1(NaiveBayes) and PSBML(NaiveBayes)
are 5.02, 4.62, and 2.02, respectively. This shows that the PS-
BML algorithm with its spatial topology and neighborhood
interaction is more robust to noise as compared to standard
boosting.

Adult W8A ICJNN1 Cod Cover

No Noise
AdaBoostM1/DS 87.10 77.80 93.40 92.80 75.70
AdaBoostM1/NB 87.20 93.30 84.30 95.70 85.30
PSBML/NB 90.69 96.10 81.79 91.79 87.31

10% Noise
AdaBoostM1/DS 85.70 58.90 92.82 92.20 75.10
AdaBoostM1/NB 85.80 83.40 79.80 95.10 85.10
PSBML/NB 90.46 96.01 77.46 88.06 87.14

20% Noise
AdaBoostM1/DS 85.10 57.10 92.30 92.10 75.10
AdaBoostM1/NB 84.88 79.01 79.70 94.90 84.20
PSBML/NB 90.10 95.97 77.42 86.98 87.11

Table 6: Performance of AdaBoostM1 (DS: Deci-
sion Stump), AdaBoostM1 (NB: Naive Bayes) and
PSBML (NB: Naive Bayes) with no, 10%, and 20%
noise.

7. CONCLUSION

In this paper, we have taken a significant step in analyz-
ing a parallel boosting algorithm. The theoretical analysis
was obtained by creating a model for a stochastic parallel
supervised learning algorithm in terms of a well-known sta-
tistical distribution model. Our empirical analysis confirmed
the veracity of the theoretical model. Having a theoretical
model for parallel large-scale meta-learner gives an important
insights and constraints for the practitioners.

Various meta-leaning experiments have shown that PSBML
exhibits characteristics similar to that of AdaBoost in the
sense that adding ensemble boosting to a standard classifier
produces at least comparable and often better results.
Scalability experiments confirm that while maintaining

good running times for training, the accuracy is not com-
promised. In addition, the spatial EA aspects of PSBML
provide a resilience to noise, an important feature for real-
world applications.

AUC Results

Impact	
 of	
 Noise	
 –	
 Experiment	
 5	

11/20/13

20

10% noise
AdaBoostM1/DS: 4.41
AdaBoostM1/NB: 3.32
PSBML/NB: 1.71

20% noise
AdaBoostM1/DS: 5.02
AdaBoostM1/NB: 4.62
PSBML/NB: 2.02

impact = 1
N

�N
i=1(auc

i
no−noise − aucinoise)

Impact	
 of	
 Noise	
 –	
 Experiment	
 5	

Conclusion	

•  A	
 parallel	
 boos;ng	
 framework	
 was	
 introduced	

•  Behavior	
 modeled	
 in	
 terms	
 of	
 well-­‐known	

sta;s;cal	
 methods	

•  Extensive	
 results	
 on	
 accuracy,	
 scalability,	
 and	

resilience	
 to	
 noise	

•  Future	
 work	

o Extension	
 to	
 semi-­‐supervised	
 secng	

o Extension	
 to	
 unsupervised	
 secng	

o Implementa;on	
 using	
 a	
 distributed	

architecture	
 in	
 combina;on	
 with	
 Map-­‐reduce	
 	

11/20/13

21

Reference	

•  U.	
 Kamath,	
 C.	
 Domeniconi,	
 and	
 K.	
 De	
 Jong,	
 An	

analysis	
 of	
 a	
 spa;al	
 EA	
 parallel	
 boos;ng	
 algorithm,	

GECCO	
 2013.	

