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The	
  Problem	
  
Current	
  scenario	
  in	
  ML	
  Algorithms:	
  

o  Need	
  en;re	
  training	
  data	
  in	
  memory	
  for	
  modeling	
  
o  Training	
  ;me	
  and	
  memory	
  requirements	
  

•  E.g.	
  SVMs:	
  	
  O(n3)	
  ;me	
  -­‐	
  	
  O(n2)	
  space	
  
	
  

Current	
  solu;ons:	
  
o  Sampling	
  data	
  
o  Algorithm-­‐specific	
  customiza;on	
  for	
  paralleliza;on	
  

Parallel	
  Boos;ng	
  Algorithm	
  
•  Main	
  ingredients:	
  

o Meta-­‐Learning:	
  can	
  use	
  any	
  classifier	
  
o Paralleliza;on	
  using	
  a	
  grid	
  structure	
  and	
  
neighborhoods	
  

o Ensemble	
  and	
  Boos;ng	
  methodologies	
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Conveying  the  Idea…	


The	
  Overall	
  Idea	
  

•  Classifiers:	
  C1,	
  C2,	
  …,	
  C9	
  	
  	
  
•  Training	
  Data:	
  D1,	
  D2,	
  …,	
  D9	
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Algorithm	
  Details	
  

•  Parallelism: 
 
 
 

Neighborhood structures  

Algorithm	
  Details	
  

•  Ensemble assessment of confidence: 

csi = minn∈Nicni

csnormi = csi−csmin
csmax−csmin

wi = 1− csnormi

Confidence of instance i 

Weight of instance i 



11/20/13 

5 

Algorithm	
  Details	
  
•  Boosting-like behavior: 

–  Weighted Sampling using 

–  The weights define a distribution over the data 

–  The smaller the confidence credited to an 
instance, the larger the probability to be 
selected 

wi = 1− csnormi
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Theore;cal	
  Analysis	
  

•  We	
  use	
  Gaussian	
  Mixtures	
  (GMMs)	
  and	
  mean-­‐
shiX	
  to	
  model	
  the	
  behavior	
  of	
  PSBML	
  

•  We	
  show:	
  PSBML	
  converges	
  to	
  a	
  data	
  distribu;on	
  
whose	
  modes	
  are	
  centered	
  around	
  the	
  margin,	
  i.e.	
  
around	
  the	
  hardest	
  points	
  to	
  classify 

Theore;cal	
  Analysis	
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Theore;cal	
  Analysis	
  -­‐	
  Tools	
  

Gaussian	
  Mixture	
  Model	
  

p(x) =
M�

m=1
p(m)p(x|m) ∀x ∈ RD

x|m ∼ ND(µm,Σm)

Theore;cal	
  Analysis	
  -­‐	
  Tools	
  

Mean-Shift Algorithm 

•  Finds modes in a set of data samples, manifesting 
an  underlying distribution  

•  Non-Parametric Model 

•  Distribution changes along the gradient  
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Mean	
  ShiX-­‐Intui;ve	
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Distribu;on	
  of	
  iden;cal	
  billiard	
  balls	
  

Region	
  of	
  
interest	
  

Center	
  of	
  
mass	
  

Objec)ve	
  :	
  Find	
  the	
  densest	
  region	
  

Mean	
  ShiX-­‐Intui;ve	
  Descrip;on	
  

Adap)ve	
  
Gradient	
  	
  
Ascent	
  

• 	
  Automa;c	
  convergence	
  speed	
  –	
  the	
  mean	
  shiX	
  	
  	
  
	
  	
  vector	
  size	
  depends	
  on	
  the	
  gradient	
  itself	
  
	
  
• 	
  Near	
  maxima,	
  the	
  steps	
  are	
  small	
  and	
  refined	
  

• 	
  Convergence	
  is	
  guaranteed	
  for	
  infinitesimal	
  	
  	
  
	
  	
  steps	
  only	
  è	
  infinitely	
  convergent,	
  	
  
	
  	
  (therefore	
  set	
  a	
  lower	
  bound)	
  

• 	
  For	
  Uniform	
  Kernel,	
  convergence	
  is	
  achieved	
  in	
  
	
  	
  a	
  finite	
  number	
  of	
  steps	
  

• 	
  Normal	
  Kernel,	
  exhibits	
  a	
  smooth	
  trajectory,	
  but	
  	
  
	
  	
  is	
  slower	
  than	
  Uniform	
  Kernel	
  	
  

Mean	
  ShiX	
  Proper;es	
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Mean	
  ShiX	
  Proper;es	
  
Mean	
  shiX	
  and	
  GMMs	
  

o  Fixed-­‐point	
  itera;ve	
  method	
  solu;on:	
  
	
  

x(t+1) = f(x(t))

x = f(x) = (
M�

m=1
p(m|x)Σ−1

m )−1
M�

m=1
p(m|x)Σ−1

m µm

Theore;cal	
  Analysis	
  

•  We	
  model	
  the	
  sample	
  data	
  assigned	
  to	
  a	
  node	
  and	
  to	
  its	
  
neighbors	
  using	
  a	
  GMM	
  

•  We	
  need	
  to	
  model	
  the	
  weighted	
  sampling	
  process	
  within	
  a	
  
GMM	
  

p�(x|m) = w(x) ∗ p(x|m)

w(x) = (2π)−D/2|Σs|−1/2e−1/2(x−s)TΣ−1
s (x−s)
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Theore;cal	
  Analysis	
  

•  Our	
  fixed-­‐point	
  solu;on:	
  

x = (
M�

m=1
p(m|x)Σs

−1 +
M�

m=1
p(m|x)Σm

−1)
−1

×

(
M�

m=1
p(m|x)Σs

−1s+
M�

m=1
p(m|x)Σm

−1µm)

x = f(x) = (
M�

m=1
p(m|x)Σ−1

m )−1
M�

m=1
p(m|x)Σ−1

m µm

Compare with: 

Theore;cal	
  Analysis	
  -­‐	
  Experiment	
  1	
  
Circle dataset 

5 x 5 grid with large margin classifiers vs.  
5 x 5 grid with GMM + mean shift 
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Figure 2: Density estimation of one dimensional

data based on the distance from the boundary.

weighted a priori using the Gaussian weighting func-
tion as defined in the theoretical analysis. We ran
GMM with mean-shift on each node and performed
sampling iteratively at every training epoch exactly as
in PSBML. We observed the population distribution
change over time.

3. We removed the grid structure and ran GMMs with
mean-shift estimation on the whole dataset, with each
instance weighted according to its distance from the
known boundary as above. We observed the data distri-
bution and final modes at convergence, and compared
them with those obtained in the previous setting.

5.1 A Non-linearly Separable Dataset

Instances were drawn at random within a square centered
at the origin and with side of length two. Points with a
distance smaller than 0.4 from the origin are labeled as
negative, and those with a distance greater or equal than
0.4 are labeled as positive (see Figure 6). We ran the three
experiments as described in Section 5. For experiment 1, the
large margin classifier used at each node fits a circle to its
training set by setting its radius to the average distance of
the origin from the smallest positive and the largest negative
instances. For testing, the learner outputs “−” when the
instance falls within the circle, and “+” otherwise. The
confidence of the prediction is the distance of the instance
from the circular boundary.

To compare the data distributions obtained in experiments
1 and 2, we recorded the number of points at various intervals
of distances from the origin at training epochs 25 and 50. The
resulting histograms are given in Figure 3. We can clearly
observe that the two methodologies, PSBML and GMMs
with mean-shift, provide a nearly identical distribution at
both generations, and they converge to a distribution with
modes centered on the points closest to the boundary.
For experiment 3, we ran GMMs with mean-shift estima-

tion 30 times on the whole weighted data. The means of the
modes at convergence were (−0.01, 0.38) and (0.01,−0.41),
with a very small standard deviation of 0.03. The distri-
bution at convergence was very close to those obtained in
experiments 1 and 2. Interestingly, we observed that, when
the weights were removed, the modes at convergence moved
to (−0.03, 0.51) and (0.03,−0.49).

Weight Distribution Changes. One important prop-
erty of boosting is to scale the weights of data as a function
of its distance from the margin. SSEAs have similar behavior
where the takeover curves exhibit a logistic function with
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Figure 3: Circle dataset: Data distribution at

epochs 25 (Left) and 50 (Right) using PSBML and

GMMs.

time [24]. To observe the effect of weight changes, in Figure
5 we plotted the weights of all points at different radii and
for different generations for the circle dataset. We can clearly
see the exponential decay and the logistic increase based on
the vicinity to the margin of the data. For positive points,
when the radius is between 0.3 and 0.4, and for negative
points, when the radius is between 0.4 and 0.5, an increase
is seen with time, and for the rest there is an exponential
decay, confirming a behavior analogous to boosting.

5.2 Linearly Separable Bivariate Gaussians

We created a synthetic dataset consisting of 5 Gaussians
for each class, with roughly the same density but different
shapes (see Figure 6). The Gaussians with means (14, 8)
and (24, 8) are the closest to the boundary, given by the
line x = 20. They simulate the “global modes”. We again
ran the three experiments described in Section 5. The large
margin classifier was simulated by estimating the average dis-
tance between the smallest positive and the largest negative
instances.
Again we observed that the data distributions produced

by PSBML and GMM with mean-shift and grid structure are
very much alike, as illustrated in Figure 4. For experiment 3,
with 30 runs on the weighted dataset, the means of the modes
converged to (14.02, 7.89) and (24.09, 7.88), with deviation of
0.002, matching exactly our results for experiments 1 and 2.

5.3 Hard Instances and Support Vectors

We also analyzed the data distribution at convergence by
comparing the hard instances identified by PSBML with
the support vectors of a trained SVM. Table 1 shows the
percentage of overlap for the two simulated datasets. The
support vectors of the trained SVMs with the highest α (i.e.
weight) values correspond to the hard instances with the top
10% largest weights identified by the PSBML algorithm for
both the datasets.

2D Circle 2D Gaussians

SV overlap 90% 94%

Table 1: Overlap percentage between support vec-

tors and PSBML hard instances.

6. EXPERIMENTAL RESULTS

We ran all scalability experiments (in which running times
were measured) on a dual, 3.33 GHz, 6 core Intel Xeon

25 iterations 50 iterations 

Theore;cal	
  Analysis	
  -­‐	
  Experiment	
  1	
  

Support vectors and PSBML hard instances overlap (90%) 

Theore;cal	
  Analysis	
  -­‐	
  Experiment	
  1	
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Mixture of Gaussian dataset 

5 x 5 grid of large margin classifiers vs.  
5 x 5 grid of GMM + mean shift 
 

Theore;cal	
  Analysis	
  –	
  Experiment	
  2	
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Figure 4: Linearly separable Gaussian dataset: Data
distribution at epochs 25 (Left) and 50 (Right) using
PSBML and GMMs.
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increase.
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Figure 6: (Left) Circle dataset; (Right) Bivariate
Gaussian dataset.

5670 processor. PSBML was implemented both as a sin-

gle threaded Weka [18] classifier and as a multithreaded

standalone Java implementation that can run on any JVM

version above 1.5 (see Section 8). All experiments with PS-

BML were run using a maximum heap size of 8GB and a

number of threads equal to the number of nodes in the grid.

All SVMs and boosting implementations, where running

times were compared, used either the native Matlab or C++

code, except for AdaBoostM1, where Weka 3.7.1 was used.

All statistical significance tests were performed using the

Matlab paired-t test function.

6.1 Meta-learning Experiments
The goal of this experiment is two-fold: first to validate

that PSBML provides a general framework for meta-learning,

and therefore can be used in combination with a variety

of learners; second, to verify that it’s an effective parallel

algorithm, i.e. it performs at least as well as the sequential

counterpart. To illustrate this, we performed experiments

using three base classifiers: Naive Bayes, Decision Trees

(C4.5), and Linear SVMs (LibLinear v1.8) (the correspond-

ing Weka implementations were used). We used five medium

to large UCI datasets [14], commonly used for performance

comparisons. Table 2 provides a description of the data. We

preprocessed the datasets so that they have two classes and

normalized features in the range [0,1]. This is because certain

classifiers like LibLinear were well optimized for binary clas-

sification with scaled features. The PSBML algorithm was

run with the C9 neighborhood, a 3× 3 grid, a replacement

probability of 0.2, 20 training epochs, and a validation set

size of 10%. We first optimized the base classifiers for per-

formance, and then used the optimized settings in PSBML.

Naive Bayes was used with the option of kernel estimation

instead of using the default normal estimation; C4.5 was

used with the default settings; and LibLinear was used with

L2 loss function in both experiments. Each run, with the

exception of Cover and C4.5, was repeated 30 times, and

paired-t tests were used for statistical significance computa-

tion using the Area Under the Curve (AUC) [3] as the metric.

The experiments involving Cover and C4.5 were run only 10

times, due to the long processing time. Hence significance

is not recorded in this case. Results are reported in Table 3.

All statistically significant results are marked in bold-face.

We observe that PSBML, combined with the Naive Bayes

classifier, performs statistically significantly better than the

Naive Bayes classifier itself on all the datasets. Similar results

were observed, and theoretical insights were provided, with

regular boosting and Naive Bayes [10]. Another important

result to note is that the ensemble effect of PSBML makes

the accuracy of a linear SVM significantly better (in three

cases), while parallelizing the LibLinear SVM, which was

already optimized for speed.

Adult W8A ICJNN1 Cod Cover

# Train 32560 49749 49990 331617 581012

# Test 16279 14951 91701 59535 58102

# Features 123 300 22 8 54

Table 2: UCI datasets used in the experiments.

25 iterations 

50 iterations 

Theore;cal	
  Analysis	
  –	
  Experiment	
  2	
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Figure 4: Linearly separable Gaussian dataset: Data
distribution at epochs 25 (Left) and 50 (Right) using
PSBML and GMMs.
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Gaussian dataset.

5670 processor. PSBML was implemented both as a sin-

gle threaded Weka [18] classifier and as a multithreaded

standalone Java implementation that can run on any JVM

version above 1.5 (see Section 8). All experiments with PS-

BML were run using a maximum heap size of 8GB and a

number of threads equal to the number of nodes in the grid.

All SVMs and boosting implementations, where running

times were compared, used either the native Matlab or C++

code, except for AdaBoostM1, where Weka 3.7.1 was used.

All statistical significance tests were performed using the

Matlab paired-t test function.

6.1 Meta-learning Experiments
The goal of this experiment is two-fold: first to validate

that PSBML provides a general framework for meta-learning,

and therefore can be used in combination with a variety

of learners; second, to verify that it’s an effective parallel

algorithm, i.e. it performs at least as well as the sequential

counterpart. To illustrate this, we performed experiments

using three base classifiers: Naive Bayes, Decision Trees

(C4.5), and Linear SVMs (LibLinear v1.8) (the correspond-

ing Weka implementations were used). We used five medium

to large UCI datasets [14], commonly used for performance

comparisons. Table 2 provides a description of the data. We

preprocessed the datasets so that they have two classes and

normalized features in the range [0,1]. This is because certain

classifiers like LibLinear were well optimized for binary clas-

sification with scaled features. The PSBML algorithm was

run with the C9 neighborhood, a 3× 3 grid, a replacement

probability of 0.2, 20 training epochs, and a validation set

size of 10%. We first optimized the base classifiers for per-

formance, and then used the optimized settings in PSBML.

Naive Bayes was used with the option of kernel estimation

instead of using the default normal estimation; C4.5 was

used with the default settings; and LibLinear was used with

L2 loss function in both experiments. Each run, with the

exception of Cover and C4.5, was repeated 30 times, and

paired-t tests were used for statistical significance computa-

tion using the Area Under the Curve (AUC) [3] as the metric.

The experiments involving Cover and C4.5 were run only 10

times, due to the long processing time. Hence significance

is not recorded in this case. Results are reported in Table 3.

All statistically significant results are marked in bold-face.

We observe that PSBML, combined with the Naive Bayes

classifier, performs statistically significantly better than the

Naive Bayes classifier itself on all the datasets. Similar results

were observed, and theoretical insights were provided, with

regular boosting and Naive Bayes [10]. Another important

result to note is that the ensemble effect of PSBML makes

the accuracy of a linear SVM significantly better (in three

cases), while parallelizing the LibLinear SVM, which was

already optimized for speed.

Adult W8A ICJNN1 Cod Cover

# Train 32560 49749 49990 331617 581012

# Test 16279 14951 91701 59535 58102

# Features 123 300 22 8 54

Table 2: UCI datasets used in the experiments.

Goal:  Does PSBML provide a general framework for meta-learning? 
          Is PSBML effective as a parallel algorithm? 

Adult W8A ICJNN1 Cod Cover

NB 90.1 94.30 81.60 87.20 84.90

PSBML 90.69 96.10 81.79 91.79 87.01
C4.5 89.88 87.80 94.60 95.90 99.50

PSBML 89.78 84.80 97.30 97.24 97.44

Linear SVM 54.60 80.20 64.60 88.80 72.20

PSBML 60.01 80.70 64.80 95.10 79.10

Table 3: Meta-learning results (AUC) comparing
the base classifiers and PSBML combined with the
same.

6.2 Scalability Experiments
The goal of this experiment is to validate whether PSBML

performs competitively against custom optimized learning

algorithms, in terms of training time, as a measure of speed,

and in terms of accuracy, as a measure of performance. PS-

BML shares an important feature with SVMs: it reduces

the training data to those close to the boundary. Thus,

we compared PSBML with a number of SVM implementa-

tions: a fast Newton method-based LP-SVM [16], a struc-

tural optimization-based SVM-PERF [19](linear because

with an RBF kernel it crashed), most commonly used Lib-

SVM [12], fast optimized LibLinear [11], stochastic gradient

approximation-based SGDT [2], and fast ball enclosure-based

BVM [27]. We also compared PSBML against a parallel Ad-

aBoost algorithm [13] and the standard AdaBoostM1. All of

the above mentioned implementations of SVMs incorporate

some form of custom changes to boost the speed, like incre-

mentally sampling the dataset, or simplifying the quadratic

optimization, or assuming linearly separable data. In the

following, we first present the results with synthetic datasets,

and then with real ones.

6.2.1 Synthetic Datasets
The first dataset was a two dimensional decision boundary

based on a sine wave generated by the function f(x) =

2sin(2πx1). The dimension x1 was sampled from [0, 6.28]
and the y = f(x) dimension was randomly sampled from

[0, 2]. The second dataset is a 4 × 4 rotated checkerboard

data with alternate positive and negative classes as shown in

Figure 7. Each dataset has one million instances, and all the

experiments were repeated 30 times. We measured training

time for each of the runs, and the average training time is

reported. 10 fold cross-validation was performed for accuracy

and the average accuracy is reported. Each of the algorithms

were tuned to some level of optimality for comparisons.

The PSBML algorithm was run with the C9 neighborhood,

a 3×3 grid, replacement probability of 0.2, 10 training epochs,

and a validation set size of 10% for each training fold. The

C4.5 classifier with default parameters was used as it had

an intermediate training speed between the fast LibLinear

and the kernel estimated Naive Bayes. Results are shown in

Table 4. For both the synthetic datasets, PSBML gives the

most accurate results with comparable training speed. The

synthetic datasets, being highly non-linear, exaggerate the

trade-offs implemented by the algorithms.

6.2.2 Real-world Dataset
The KDD Cup 1999 intrusion detection dataset was used

to compare the performance of the algorithms. The dataset

contains 4,898,431 training instances. The problem was

Figure 7: Synthetic datasets: (Left) Sine wave;
(Right) Checkerboard.

Checkerboard Sine Wave
Algorithm Speed Acc Speed Acc

SVM
LP-SVM (Linear) 44.20 50.23 33.20 68.80

LP-SVM (RBF) 33.20 57.11 105.56 70.11

LibLinear 133.20 50.08 203.12 68.60

SGDT (10 iterations) 4.20 54.49 4.20 54.89

SVM-PERF (Linear) 1.10 51.01 2.01 61.90

BVM (RBF) 1.80 50.03 1.20 49.03

LibSVM 136.20 98.20 423.23 70.80

(RBF, 0.1% data)

Boosting
AdaBoostM1 38.21 51.25 30.71 74.25

ParalleAdalBoost 17.90 51.22 13.90 78.30

(9 threads,10 iterations)

PSBML
PSBML (C4.5) 123.10 99.49 193.10 99.56

Table 4: Training speed (in seconds) and accuracy
for the Checkerboard and the Sine Wave datasets.

converted into a binary classification problem because many

SVM implementations did not support multi-class labels.

The feature set was also scaled within the range [0,1], which

improved the performance of many SVMs almost 10 times.

The PSBML algorithm was run with the C9 neighborhood, a

3× 3 grid, replacement probability of 0.2, 10 training epochs,

and a validation size of 0.1% of the training data. The C4.5

classifier was used with default parameters again for the same

reasons mentioned earlier.

In previous work, it was noted that many algorithms have

a very similar error rate on this dataset. Hence, the number

of mis-classifications was suggested and used as comparison

metric [31]. We do the same here. Each of the experiments

were run 30 times, except the AdaBoostM1 (only 10 times)

due to large training time. The mean training times for run

and the mean mis-classification averages are reported in Table

5. Some of the algorithms, like LP-SVM, couldn’t be run with

a 12GB RAMmachine, because the loading of the data matrix

itself failed. We observe that most algorithms that were

optimized for speed had to compensate for classification rate.

Also, sampling as done in LibSVM increased the training

timing considerable from 1% to 10% data with small change

in classification rate. Thus PSBML, while working on the

entire dataset finds a good classification rate at a considerable

performance speed.

To see the impact of data sizes on the PSBML algorithm,

the training data was sampled in various sizes from 50K,

100K, 500K, and one million. 10 runs were performed with

standard PSBML with decision trees, a 3× 3 grid, and the
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Adult W8A ICJNN1 Cod Cover

NB 90.1 94.30 81.60 87.20 84.90

PSBML 90.69 96.10 81.79 91.79 87.01
C4.5 89.88 87.80 94.60 95.90 99.50

PSBML 89.78 84.80 97.30 97.24 97.44

Linear SVM 54.60 80.20 64.60 88.80 72.20

PSBML 60.01 80.70 64.80 95.10 79.10

Table 3: Meta-learning results (AUC) comparing
the base classifiers and PSBML combined with the
same.

6.2 Scalability Experiments
The goal of this experiment is to validate whether PSBML

performs competitively against custom optimized learning

algorithms, in terms of training time, as a measure of speed,

and in terms of accuracy, as a measure of performance. PS-

BML shares an important feature with SVMs: it reduces

the training data to those close to the boundary. Thus,

we compared PSBML with a number of SVM implementa-

tions: a fast Newton method-based LP-SVM [16], a struc-

tural optimization-based SVM-PERF [19](linear because

with an RBF kernel it crashed), most commonly used Lib-

SVM [12], fast optimized LibLinear [11], stochastic gradient

approximation-based SGDT [2], and fast ball enclosure-based

BVM [27]. We also compared PSBML against a parallel Ad-

aBoost algorithm [13] and the standard AdaBoostM1. All of

the above mentioned implementations of SVMs incorporate

some form of custom changes to boost the speed, like incre-

mentally sampling the dataset, or simplifying the quadratic

optimization, or assuming linearly separable data. In the

following, we first present the results with synthetic datasets,

and then with real ones.

6.2.1 Synthetic Datasets
The first dataset was a two dimensional decision boundary

based on a sine wave generated by the function f(x) =

2sin(2πx1). The dimension x1 was sampled from [0, 6.28]
and the y = f(x) dimension was randomly sampled from

[0, 2]. The second dataset is a 4 × 4 rotated checkerboard

data with alternate positive and negative classes as shown in

Figure 7. Each dataset has one million instances, and all the

experiments were repeated 30 times. We measured training

time for each of the runs, and the average training time is

reported. 10 fold cross-validation was performed for accuracy

and the average accuracy is reported. Each of the algorithms

were tuned to some level of optimality for comparisons.

The PSBML algorithm was run with the C9 neighborhood,

a 3×3 grid, replacement probability of 0.2, 10 training epochs,

and a validation set size of 10% for each training fold. The

C4.5 classifier with default parameters was used as it had

an intermediate training speed between the fast LibLinear

and the kernel estimated Naive Bayes. Results are shown in

Table 4. For both the synthetic datasets, PSBML gives the

most accurate results with comparable training speed. The

synthetic datasets, being highly non-linear, exaggerate the

trade-offs implemented by the algorithms.

6.2.2 Real-world Dataset
The KDD Cup 1999 intrusion detection dataset was used

to compare the performance of the algorithms. The dataset

contains 4,898,431 training instances. The problem was

Figure 7: Synthetic datasets: (Left) Sine wave;
(Right) Checkerboard.

Checkerboard Sine Wave
Algorithm Speed Acc Speed Acc

SVM
LP-SVM (Linear) 44.20 50.23 33.20 68.80

LP-SVM (RBF) 33.20 57.11 105.56 70.11

LibLinear 133.20 50.08 203.12 68.60

SGDT (10 iterations) 4.20 54.49 4.20 54.89

SVM-PERF (Linear) 1.10 51.01 2.01 61.90

BVM (RBF) 1.80 50.03 1.20 49.03

LibSVM 136.20 98.20 423.23 70.80

(RBF, 0.1% data)

Boosting
AdaBoostM1 38.21 51.25 30.71 74.25

ParalleAdalBoost 17.90 51.22 13.90 78.30

(9 threads,10 iterations)

PSBML
PSBML (C4.5) 123.10 99.49 193.10 99.56

Table 4: Training speed (in seconds) and accuracy
for the Checkerboard and the Sine Wave datasets.

converted into a binary classification problem because many

SVM implementations did not support multi-class labels.

The feature set was also scaled within the range [0,1], which

improved the performance of many SVMs almost 10 times.

The PSBML algorithm was run with the C9 neighborhood, a

3× 3 grid, replacement probability of 0.2, 10 training epochs,

and a validation size of 0.1% of the training data. The C4.5

classifier was used with default parameters again for the same

reasons mentioned earlier.

In previous work, it was noted that many algorithms have

a very similar error rate on this dataset. Hence, the number

of mis-classifications was suggested and used as comparison

metric [31]. We do the same here. Each of the experiments

were run 30 times, except the AdaBoostM1 (only 10 times)

due to large training time. The mean training times for run

and the mean mis-classification averages are reported in Table

5. Some of the algorithms, like LP-SVM, couldn’t be run with

a 12GB RAMmachine, because the loading of the data matrix

itself failed. We observe that most algorithms that were

optimized for speed had to compensate for classification rate.

Also, sampling as done in LibSVM increased the training

timing considerable from 1% to 10% data with small change

in classification rate. Thus PSBML, while working on the

entire dataset finds a good classification rate at a considerable

performance speed.

To see the impact of data sizes on the PSBML algorithm,

the training data was sampled in various sizes from 50K,

100K, 500K, and one million. 10 runs were performed with

standard PSBML with decision trees, a 3× 3 grid, and the
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Synthetic data: Results 

Adult W8A ICJNN1 Cod Cover

NB 90.1 94.30 81.60 87.20 84.90

PSBML 90.69 96.10 81.79 91.79 87.01
C4.5 89.88 87.80 94.60 95.90 99.50

PSBML 89.78 84.80 97.30 97.24 97.44

Linear SVM 54.60 80.20 64.60 88.80 72.20

PSBML 60.01 80.70 64.80 95.10 79.10

Table 3: Meta-learning results (AUC) comparing
the base classifiers and PSBML combined with the
same.

6.2 Scalability Experiments
The goal of this experiment is to validate whether PSBML

performs competitively against custom optimized learning

algorithms, in terms of training time, as a measure of speed,

and in terms of accuracy, as a measure of performance. PS-

BML shares an important feature with SVMs: it reduces

the training data to those close to the boundary. Thus,

we compared PSBML with a number of SVM implementa-

tions: a fast Newton method-based LP-SVM [16], a struc-

tural optimization-based SVM-PERF [19](linear because

with an RBF kernel it crashed), most commonly used Lib-

SVM [12], fast optimized LibLinear [11], stochastic gradient

approximation-based SGDT [2], and fast ball enclosure-based

BVM [27]. We also compared PSBML against a parallel Ad-

aBoost algorithm [13] and the standard AdaBoostM1. All of

the above mentioned implementations of SVMs incorporate

some form of custom changes to boost the speed, like incre-

mentally sampling the dataset, or simplifying the quadratic

optimization, or assuming linearly separable data. In the

following, we first present the results with synthetic datasets,

and then with real ones.

6.2.1 Synthetic Datasets
The first dataset was a two dimensional decision boundary

based on a sine wave generated by the function f(x) =

2sin(2πx1). The dimension x1 was sampled from [0, 6.28]
and the y = f(x) dimension was randomly sampled from

[0, 2]. The second dataset is a 4 × 4 rotated checkerboard

data with alternate positive and negative classes as shown in

Figure 7. Each dataset has one million instances, and all the

experiments were repeated 30 times. We measured training

time for each of the runs, and the average training time is

reported. 10 fold cross-validation was performed for accuracy

and the average accuracy is reported. Each of the algorithms

were tuned to some level of optimality for comparisons.

The PSBML algorithm was run with the C9 neighborhood,

a 3×3 grid, replacement probability of 0.2, 10 training epochs,

and a validation set size of 10% for each training fold. The

C4.5 classifier with default parameters was used as it had

an intermediate training speed between the fast LibLinear

and the kernel estimated Naive Bayes. Results are shown in

Table 4. For both the synthetic datasets, PSBML gives the

most accurate results with comparable training speed. The

synthetic datasets, being highly non-linear, exaggerate the

trade-offs implemented by the algorithms.

6.2.2 Real-world Dataset
The KDD Cup 1999 intrusion detection dataset was used

to compare the performance of the algorithms. The dataset

contains 4,898,431 training instances. The problem was

Figure 7: Synthetic datasets: (Left) Sine wave;
(Right) Checkerboard.

Checkerboard Sine Wave
Algorithm Speed Acc Speed Acc

SVM
LP-SVM (Linear) 44.20 50.23 33.20 68.80

LP-SVM (RBF) 33.20 57.11 105.56 70.11

LibLinear 133.20 50.08 203.12 68.60

SGDT (10 iterations) 4.20 54.49 4.20 54.89

SVM-PERF (Linear) 1.10 51.01 2.01 61.90

BVM (RBF) 1.80 50.03 1.20 49.03

LibSVM 136.20 98.20 423.23 70.80

(RBF, 0.1% data)

Boosting
AdaBoostM1 38.21 51.25 30.71 74.25

ParalleAdalBoost 17.90 51.22 13.90 78.30

(9 threads,10 iterations)

PSBML
PSBML (C4.5) 123.10 99.49 193.10 99.56

Table 4: Training speed (in seconds) and accuracy
for the Checkerboard and the Sine Wave datasets.

converted into a binary classification problem because many

SVM implementations did not support multi-class labels.

The feature set was also scaled within the range [0,1], which

improved the performance of many SVMs almost 10 times.

The PSBML algorithm was run with the C9 neighborhood, a

3× 3 grid, replacement probability of 0.2, 10 training epochs,

and a validation size of 0.1% of the training data. The C4.5

classifier was used with default parameters again for the same

reasons mentioned earlier.

In previous work, it was noted that many algorithms have

a very similar error rate on this dataset. Hence, the number

of mis-classifications was suggested and used as comparison

metric [31]. We do the same here. Each of the experiments

were run 30 times, except the AdaBoostM1 (only 10 times)

due to large training time. The mean training times for run

and the mean mis-classification averages are reported in Table

5. Some of the algorithms, like LP-SVM, couldn’t be run with

a 12GB RAMmachine, because the loading of the data matrix

itself failed. We observe that most algorithms that were

optimized for speed had to compensate for classification rate.

Also, sampling as done in LibSVM increased the training

timing considerable from 1% to 10% data with small change

in classification rate. Thus PSBML, while working on the

entire dataset finds a good classification rate at a considerable

performance speed.

To see the impact of data sizes on the PSBML algorithm,

the training data was sampled in various sizes from 50K,

100K, 500K, and one million. 10 runs were performed with

standard PSBML with decision trees, a 3× 3 grid, and the
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Figure 8: Mean training times with varying dataset
sizes.

C9 neighborhood. The training times are shown in Figure 8,
which clearly shows almost linear scalability with training
data sizes.

Algorithm Training Time (secs) MisClass

SVM
LibLinear 80.20 25447.3
LibSVM (RBF, 1% data) 90.20 25517.8
LibSVM (RBF, 10% data) 1495.20 25366.1
SGDT (10 iterations) 211.10 121301
SVM-PERF (Linear) 2.90 25877.1
BVM (RBF) 3.20 25451.3

Boosting
AdaBoostM1 13296.42 190103.3
ParallelAdaBoost 202.30 26170.2

(9 threads, 10 iterations)

PSBML
PSBML(C4.5) 2913.10 21089.8

Table 5: Training speed and accuracy for the KDD
Cup 1999 dataset.

6.3 Comparison against AdaBoost and Im-

pact of Noise

Here we compare PSBML against AdaBoost and test the
robustness in presence of noise. Previous work found that
boosting is more susceptible to noise as compared to other
ensemble methods like bagging and stacking [21]. We added
class label noise by randomly changing different percentages
of labels. We used AdaBoostM1 both with decision stumps
and with Naive Bayes (optimized using kernel estimators),
and compared it against PSBML combined with the same
underlying Naive Bayes classifier. PSBML was used with
the default C9 neighborhood, replacement probability of 0.2,
and validation set of 10%.
We used the same datasets used for the meta-learning

experiments, and did the same preprocessing. We performed
30 runs to compare the three algorithms without noise and
in presence of 10% and 20% of noise. The results are shown
in Table 6. Statistically significant results are highlighted in
bold-face.
In absence of noise, PSBML with Naive Bayes performs

significantly better than AdaBoostM1 with decision stumps
or with the same optimized Naive Bayes in three of the five
datasets. To measure how robust a method is across all the
datasets being considered, we compute the following quantity,
which we call impact :

impact =

N�
i=i

aucino-noise − aucinoise

N
(14)

where N is the number of datasets. The smaller the value of
the impact is for an algorithm, the more robust that method
is on average.
The impact values of AdaBoostM1 (DecisionStump), Ad-

aBoostM1 (NaiveBayes) and PSBML (NaiveBayes) with 10%
noise are 4.41, 3.32, and 1.71, respectively. Similarly, with
20% noise the impact values for AdaBoostM1 (DecisionS-
tump), AdaBoostM1(NaiveBayes) and PSBML(NaiveBayes)
are 5.02, 4.62, and 2.02, respectively. This shows that the PS-
BML algorithm with its spatial topology and neighborhood
interaction is more robust to noise as compared to standard
boosting.

Adult W8A ICJNN1 Cod Cover

No Noise
AdaBoostM1/DS 87.10 77.80 93.40 92.80 75.70
AdaBoostM1/NB 87.20 93.30 84.30 95.70 85.30
PSBML/NB 90.69 96.10 81.79 91.79 87.31

10% Noise
AdaBoostM1/DS 85.70 58.90 92.82 92.20 75.10
AdaBoostM1/NB 85.80 83.40 79.80 95.10 85.10
PSBML/NB 90.46 96.01 77.46 88.06 87.14

20% Noise
AdaBoostM1/DS 85.10 57.10 92.30 92.10 75.10
AdaBoostM1/NB 84.88 79.01 79.70 94.90 84.20
PSBML/NB 90.10 95.97 77.42 86.98 87.11

Table 6: Performance of AdaBoostM1 (DS: Deci-
sion Stump), AdaBoostM1 (NB: Naive Bayes) and
PSBML (NB: Naive Bayes) with no, 10%, and 20%
noise.

7. CONCLUSION

In this paper, we have taken a significant step in analyz-
ing a parallel boosting algorithm. The theoretical analysis
was obtained by creating a model for a stochastic parallel
supervised learning algorithm in terms of a well-known sta-
tistical distribution model. Our empirical analysis confirmed
the veracity of the theoretical model. Having a theoretical
model for parallel large-scale meta-learner gives an important
insights and constraints for the practitioners.

Various meta-leaning experiments have shown that PSBML
exhibits characteristics similar to that of AdaBoost in the
sense that adding ensemble boosting to a standard classifier
produces at least comparable and often better results.
Scalability experiments confirm that while maintaining

good running times for training, the accuracy is not com-
promised. In addition, the spatial EA aspects of PSBML
provide a resilience to noise, an important feature for real-
world applications.
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sizes.

C9 neighborhood. The training times are shown in Figure 8,
which clearly shows almost linear scalability with training
data sizes.

Algorithm Training Time (secs) MisClass

SVM
LibLinear 80.20 25447.3
LibSVM (RBF, 1% data) 90.20 25517.8
LibSVM (RBF, 10% data) 1495.20 25366.1
SGDT (10 iterations) 211.10 121301
SVM-PERF (Linear) 2.90 25877.1
BVM (RBF) 3.20 25451.3

Boosting
AdaBoostM1 13296.42 190103.3
ParallelAdaBoost 202.30 26170.2

(9 threads, 10 iterations)

PSBML
PSBML(C4.5) 2913.10 21089.8

Table 5: Training speed and accuracy for the KDD
Cup 1999 dataset.

6.3 Comparison against AdaBoost and Im-

pact of Noise

Here we compare PSBML against AdaBoost and test the
robustness in presence of noise. Previous work found that
boosting is more susceptible to noise as compared to other
ensemble methods like bagging and stacking [21]. We added
class label noise by randomly changing different percentages
of labels. We used AdaBoostM1 both with decision stumps
and with Naive Bayes (optimized using kernel estimators),
and compared it against PSBML combined with the same
underlying Naive Bayes classifier. PSBML was used with
the default C9 neighborhood, replacement probability of 0.2,
and validation set of 10%.
We used the same datasets used for the meta-learning

experiments, and did the same preprocessing. We performed
30 runs to compare the three algorithms without noise and
in presence of 10% and 20% of noise. The results are shown
in Table 6. Statistically significant results are highlighted in
bold-face.
In absence of noise, PSBML with Naive Bayes performs

significantly better than AdaBoostM1 with decision stumps
or with the same optimized Naive Bayes in three of the five
datasets. To measure how robust a method is across all the
datasets being considered, we compute the following quantity,
which we call impact :

impact =

N�
i=i

aucino-noise − aucinoise

N
(14)

where N is the number of datasets. The smaller the value of
the impact is for an algorithm, the more robust that method
is on average.
The impact values of AdaBoostM1 (DecisionStump), Ad-

aBoostM1 (NaiveBayes) and PSBML (NaiveBayes) with 10%
noise are 4.41, 3.32, and 1.71, respectively. Similarly, with
20% noise the impact values for AdaBoostM1 (DecisionS-
tump), AdaBoostM1(NaiveBayes) and PSBML(NaiveBayes)
are 5.02, 4.62, and 2.02, respectively. This shows that the PS-
BML algorithm with its spatial topology and neighborhood
interaction is more robust to noise as compared to standard
boosting.

Adult W8A ICJNN1 Cod Cover

No Noise
AdaBoostM1/DS 87.10 77.80 93.40 92.80 75.70
AdaBoostM1/NB 87.20 93.30 84.30 95.70 85.30
PSBML/NB 90.69 96.10 81.79 91.79 87.31

10% Noise
AdaBoostM1/DS 85.70 58.90 92.82 92.20 75.10
AdaBoostM1/NB 85.80 83.40 79.80 95.10 85.10
PSBML/NB 90.46 96.01 77.46 88.06 87.14

20% Noise
AdaBoostM1/DS 85.10 57.10 92.30 92.10 75.10
AdaBoostM1/NB 84.88 79.01 79.70 94.90 84.20
PSBML/NB 90.10 95.97 77.42 86.98 87.11

Table 6: Performance of AdaBoostM1 (DS: Deci-
sion Stump), AdaBoostM1 (NB: Naive Bayes) and
PSBML (NB: Naive Bayes) with no, 10%, and 20%
noise.

7. CONCLUSION

In this paper, we have taken a significant step in analyz-
ing a parallel boosting algorithm. The theoretical analysis
was obtained by creating a model for a stochastic parallel
supervised learning algorithm in terms of a well-known sta-
tistical distribution model. Our empirical analysis confirmed
the veracity of the theoretical model. Having a theoretical
model for parallel large-scale meta-learner gives an important
insights and constraints for the practitioners.

Various meta-leaning experiments have shown that PSBML
exhibits characteristics similar to that of AdaBoost in the
sense that adding ensemble boosting to a standard classifier
produces at least comparable and often better results.
Scalability experiments confirm that while maintaining

good running times for training, the accuracy is not com-
promised. In addition, the spatial EA aspects of PSBML
provide a resilience to noise, an important feature for real-
world applications.
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10% noise 
AdaBoostM1/DS:  4.41 
AdaBoostM1/NB:  3.32 
PSBML/NB:   1.71 
 
20% noise 
AdaBoostM1/DS:  5.02 
AdaBoostM1/NB:  4.62 
PSBML/NB:   2.02 
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Conclusion	
  
•  A	
  parallel	
  boos;ng	
  framework	
  was	
  introduced	
  
•  Behavior	
  modeled	
  in	
  terms	
  of	
  well-­‐known	
  
sta;s;cal	
  methods	
  

•  Extensive	
  results	
  on	
  accuracy,	
  scalability,	
  and	
  
resilience	
  to	
  noise	
  

•  Future	
  work	
  
o Extension	
  to	
  semi-­‐supervised	
  secng	
  
o Extension	
  to	
  unsupervised	
  secng	
  
o Implementa;on	
  using	
  a	
  distributed	
  
architecture	
  in	
  combina;on	
  with	
  Map-­‐reduce	
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