CS 330 (Fall 2013), Instructor: Carlotta Domeniconi Quiz 2

Solutions

1. [50 points]

Prove the following equivalence by substitution, i.e., use known logical equivalences to show that $\neg(p \lor \neg q) \lor (\neg p \land \neg q)$ is equivalent to $\neg p$. You must start from the statement $\neg(p \lor \neg q) \lor (\neg p \land \neg q)$. Justify each step with the name of the corresponding logical equivalence being used. For full credit, do not skip steps.

$$\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv \neg p$$

$\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv (\neg p \land q) \lor (\neg p \land \neg q)$	De Morgan's law
$\equiv \neg p \land (q \lor \neg q)$	distributive law
$\equiv \neg p \land \text{TRUE}$	excluded middle law
$\equiv \neg p$	property of the constant TRUE

2. [50 points]

Using rules of inference with no substitution, prove that *modus ponens* is a valid rule. Use the notation introduced in class, and state, for each line, the rule of inference that justifies it. Make sure you do *not* to use *modus ponens* itself in your proof!

Modus ponens: Write below the equivalent expression you need to prove: $p \rightarrow q$ p

q

Equivalent expression:

 $((p \to q) \land p) \to q$

Proof:

$[(p \to q) \land p]$	Assumption
$p \rightarrow q$	\wedge elimination
p	\wedge elimination
$[\neg q]$	Assumption
$\neg p$	Modus tollens
FALSE	Contradiction
q	Reduction to absurdity
$((p \to q) \land p) \to q$	\rightarrow introduction