Quiz 1

Solutions

1. [30 points]

Determine whether the following statements are True or False.
$\{a, b\} \subseteq 2^{\{a, b,\{a, b\}\}}$

FALSE

$2^{\{a, b,\{a, b\}\}}=\{\emptyset,\{a\},\{b\},\{\{a, b\}\},\{a, b\},\{a,\{a, b\}\},\{b,\{a, b\}\},\{a, b,\{a, b\}\}\}$
So: $a \notin 2^{\{a, b,\{a, b\}\}}$ and $b \notin 2^{\{a, b,\{a, b\}\}}$. (Note that all elements of $2^{\{a, b,\{a, b\}\}}$ are sets.) Therefore $\{a, b\}$ is not a subset of $2^{\{a, b,\{a, b\}\}}$.
What's TRUE is the following: $\{a, b\} \in 2^{\{a, b,\{a, b\}\}}$
$\{a, b,\{a, b\}\}-\{a, b\}=\{a, b\} \quad$ FALSE
$\{a, b,\{a, b\}\}-\{a, b\}=\{\{a, b\}\}$ and $\{\{a, b\}\} \neq\{a, b\}$.
$\{\{a, b\}\}$ is a set with one element: $\{a, b\}$.
$\{a, b\}$ is a set with two elements: a and b.
$\emptyset \in \emptyset$
FALSE
By definition the empty set is the set that contains NO elements. It follows that the empty set cannot be an element of itself.
2. [30 points]

Define a binary relation P from \Re to \Re as follows:
$P=\left\{(x, y) \mid x \in \Re, y \in \Re, x=y^{2}\right\}$
Is P a function? Motivate your answer.
No, P is not a function. In fact:
$(4,2) \in P$ since $4=2^{2}$
$(4,-2) \in P$ since $4=(-2)^{2}$
So: the real number 4 is mapped into two different real numbers, i.e. 2 and -2 . It follows that P is not a function.
3. [40 points]

Is $(p \wedge q) \vee r \equiv p \wedge(q \vee r)$ a valid equivalence? Use truth tables to motivate your answer. No, the given equivalence is not valid. This is easily seen from the corresponding truth tables.

