## Solutions:

1. [100 points]

Prove the following statement by mathematical induction:

$$
\sum_{i=1}^{n+1} i \times 2^{i}=n \times 2^{n+2}+2
$$

for all integers $n \geq 0$.
Base case: clearly state what you need to prove as base case, and then prove it.

We need to show that the equality holds for $n=0$ :
When $n=0, \sum_{i=1}^{n+1} i \times 2^{i}=\sum_{i=1}^{1} i \times 2^{i}=2$ and $n \times 2^{n+2}+2=2$.
Thus the equality holds for $n=0$.
Inductive step: clearly write the inductive hypothesis and the inductive conclusion (i.e., the statement to be proved). Then proceed with the proof.

## Inductive hypothesis:

$$
\sum_{i=1}^{n+1} i \times 2^{i}=n \times 2^{n+2}+2, n \geq 0
$$

## Inductive conclusion:

$$
\sum_{i=1}^{n+2} i \times 2^{i}=(n+1) \times 2^{n+3}+2
$$

## Proof:

$$
\sum_{i=1}^{n+2} i \times 2^{i}=\sum_{i=1}^{n+1} i \times 2^{i}+(n+2) \times 2^{n+2}=n \times 2^{n+2}+2+(n+2) \times 2^{n+2}
$$

by the inductive hypothesis

$$
=(n+n+2) \times 2^{n+2}+2=(2 n+2) \times 2^{n+2}+2=(n+1) 2^{n+3}+2
$$

This proves the inductive conclusion.

