
Ensembles of Classifiers
Lecture 3

Reasons for using Ensembles

Statistical reasons:

Combining the output of several classifiers may
reduce the risk of an unfortunate selection of a
poorly performing classifier

Reasons for using Ensembles

Large Volumes of Data:

Sometimes, the amount of data to be analyzed can
be too large to be handled by a single classifier.
Thus, we can:

Partition the data into smaller subsets;

Train different classifiers;

Combine their outputs using a combination rule

Reasons for using Ensembles

Too Little Data:

A reasonable sized set of training data is crucial
to learn the underlying data distribution. When
available data is scarce, we can:

Draw overlapping random subsets of the
available data using resampling techniques

Train different classifiers, creating the
ensemble

Reasons for using Ensembles

Divide and Conquer:

The given task may be too complex, or lie
outside the space of functions that can be
implemented by the chosen classifier method
(e.g.: non-linear problem, and linear classifiers)

Appropriate combinations of simple (e.g., linear)
classifiers can learn complex (e.g., non-linear)
boundaries

an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary.

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers

23THIRD QUARTER 2006 IEEE CIRCUITS AND SYSTEMS MAGAZINE

OO

OO

OO
OO

OOOO

OO

OO

OO
OO

XX
XX

XX
XX

XX
XX

XX

XXXX

XX

XX
XX
XX

XX

XX

XX
XX
XX

XX

XX
XX

XX
XX

XXXX

XX
XX
XX

XX

XX

XX

XX
XX

XX

XX

XX

XX
XXXX

OO

OO OO

OO

OO
OO

OOOO
OO

OOOO

OO
OO

OO

OO
OO

OO
OO
OO

OOOO
OOOO

OO

OO

OO

OO
OO

OO
OO

OO OOOO
OOOO

OO OO
OO

OO
OO OO

OOOOOO

OO
OO
OO

OO
OO

OO

OO

OO

OO
OO

OO

OO

OO

OOOO
OOOO

OO

OOOO OO
OO OO

OOOO
OOOO

OO
OO

OO
OO

OO

OO OO OO
OO
OO

OO

OO

OO

OO

OO

OO

OO

XX

XX

XX XX

XX

XX
XX

XX

OO

OO

OO
OO

OO

OO

OO
OO

O
bs

er
va

tio
n/

M
ea

su
re

m
en

t/F
ea

tu
re

 2

Training Data Examples
for Class 1

Observation/Measurement/Feature 1

Training Data
Examples
for Class 2

Complex Decision
Boundary to Be Learned

OO

Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers.

OO

OO

OO
OO

OOOO

OO

OO

OO
OO

XX
XX

XX
XX

XX
XX

XX

XXXX

XX

XX
XX
XX

XX

XX

XX
XX
XX

XX

XX
XX

XX
XX

XXXX

XX
XX
XX

XX

XX

XX

XX
XX

XX

XX

XX

XX
XXXX

OO

OO OO

OO

OO
OO

OOOO
OO

OOOO

OO
OO

OO

OO
OO

OO
OO
OO

OO
OO
OOOO

OO

OO

OO

OO
OO

OO
OO

OO OOOO
OOOO

OO OO
OO

OO
OO OO

OOOO
OO
OO

OO
OO
OO

OO
OO

OO

OO

OO

OO
OO

OO

OO

OO

OO
OO
OOOO

OO

OOOO OO
OO OO

OO
OO
OOOO

OO
OO

OO
OO

OO

OO OO
OO

OO
OO

OO

OO

OO

OO

OO

OO

OO

XX

XX

XX XX

XX

XX
XX

XX

OO

OO

OO
OO

OO

OO

OO
OO

Observation/Measurement/Feature 1

O
bs

er
va

tio
n/

M
ea

su
re

m
en

t/F
ea

tu
re

 2

OOOO

OOOO
OOOO OOOO
OOOO

OOOO
OOOO

OOOOOOO

OOOO

OOOO

XXXX

XXXX
XXXX
XXXX

XXXXXXXX
XXXX

OOOOOOO

OOOOOOOO

OOO OOOO

OOO

OO
O

OO

OOOO
OOOO

OO

OOOO

OOOO
OOOO

OOOO
OOO

XXXX

XXXX

XXXX

XXXX
OOOO

OOOO OOOO
OOOOOOO

OOOO
OOOO

OOOO
OOOO

XXXX
XXXX

X
OOOO

O
OOO

O
OOO

OO
OOOOOOO

OOOO

OOOO
OOOO

OOOOOOOO

OOOO

XXXX
XXXX

XXXX
XXXX

XXXX

XXXXOOOO

OOOO

OOOO
OOOO

OOOO

OOOO
OOOO
OOOOOOOO

OOOO

OOOOO
OOOOO
O

OOO
OO

OOOOOOOOOOOOO

OOOO
O

OOOO
OOOO

OOOO
OOOO
OOOO

OOOO
OOOO
OO

OOO
OO

OOOOOO XXXX

XXXX

XXXX

OOOO
OOOO

XXXX
XXXX

XXXX
XXXXXXXXXXXXXXXXX

XXX
XXXX

XXXX

OOOO

OOO

OOOO
OOOO

OOOO

OOOO

OOOO
OOOO
OOOOOOOO

OOOO

OOOOOOOO OOOO
OOOO OOOO

OOOOOOO
OOOOOOOO

OOOO

OOOOOOOOOOOOOOO

OOOOOOOOO

OOOO
OOOO

OOOO
OOOOOOOO

OOOOOOOO
OOOO XXXX

XXXX XX
OOO

OOOO
OOOO

Decision Boundaries Generated by Individual Classifiers

XXX
XXX
XXXX

XXXXXXXX

XXXX XXXX
XXXX

XXXX

XXX
XXXX

XXXX

XXX

XXXX
XXXX

XXX
X

XXXXXXXXXXXXXXXXXX
OOO

XXXX
OOXXXXXXXX

XXXX
XXXX XX XXXX

XXXX
XXXX

XXXX

XXXX
XXXX XXXX
XXX

XXX
XXXX

XXXXX
XXXX

XXX
XXXX

XXXX

XXXX

XXX

Figure 2. Ensemble of classifiers spanning the decision
space.

Reasons for using Ensembles

Data Fusion:

Several sets of data obtained from different
sources, where the nature of features is different
(e.g.: categorical and numerical features)

Data from each source can be used to train a
different classifier, thus creating an ensemble

Components of an Ensemble

Two key components:

A method to generate the individual classifiers of
the ensemble

A method for combining the outputs of these
classifiers

Diversity: The Key Feature

The individual classifiers must be diverse, i.e., they
make errors on different data

Intuition: if they make the same errors, such
mistakes will be carried into the final prediction

Thus: the errors the classifiers make should be
uncorrelated

Accuracy

The component classifiers need to be “reasonably
accurate” to avoid poor classifiers to obtain the
majority of votes.

Intuition: If the components of the ensemble are
poor classifiers, they make a lot of errors, and
those errors are carried out to the final prediction.

Accuracy and Diversity

Requirements for accuracy and diversity have
been quantified:

Under simple majority voting and independent
error conditions, if all classifiers have the same
probability of error of less than 50%, then the
error of the ensemble decreases monotonically
with an increasing number of classifiers.

How to achieve diversity

Use different training data sets to train individual
classifiers

Such data sets are often obtained through
resampling techniques (bootstrapping or
bagging): training data subsets are drawn
randomly, usually with replacement, from the
entire training data

filtering of the noise. The overarching principal in ensem-
ble systems is therefore to make each classifier as unique
as possible, particularly with respect to misclassified
instances. Specifically, we need classifiers whose decision
boundaries are adequately different from those of others.
Such a set of classifiers is said to be diverse.

Classifier diversity can be achieved in several ways.
The most popular method is to use different training
datasets to train individual classifiers. Such datasets are
often obtained through resampling techniques, such as
bootstrapping or bagging, where training data subsets
are drawn randomly, usually with replacement, from the
entire training data. This is illustrated in Figure 3, where
random and overlapping training data subsets are select-
ed to train three classifiers, which then form three differ-
ent decision boundaries. These boundaries are combined
to obtain a more accurate classification.

To ensure that individual boundaries are adequately
different, despite using substantially similar training

data, unstable classifiers are used as base models, since
they can generate sufficiently different decision bound-
aries even for small perturbations in their training
parameters. If the training data subsets are drawn with-
out replacement, the procedure is also called jackknife
or k-fold data split: the entire dataset is split into k
blocks, and each classifier is trained only on k-1 of them.
A different subset of k blocks is selected for each classi-
fier as shown in Figure 4.

Another approach to achieve diversity is to use dif-
ferent training parameters for different classifiers. For
example, a series of multilayer perceptron (MLP) neural
networks can be trained by using different weight initial-
izations, number of layers/nodes, error goals, etc. Adjust-
ing such parameters allows one to control the instability
of the individual classifiers, and hence contribute to
their diversity. The ability to control the instability of
neural network and decision tree type classifiers make
them suitable candidates to be used in an ensemble

25THIRD QUARTER 2006 IEEE CIRCUITS AND SYSTEMS MAGAZINE

∑

Classifier 1→ Decision Boundary 1 Classifier 2 → Decision Boundary 2 Classifier 3 → Decision Boundary 3

Feature 1

Ensemble Decision Boundary

Fe
at

ur
e

2

Feature 1Feature 1

Fe
at

ur
e

2

Feature 1 Feature 1

Fe
at

ur
e

2

Fe
at

ur
e

2

Fe
at

ur
e

2

Figure 3. Combining classifiers that are trained on different subsets of the training data.

How to achieve diversity

Use different training data sets to train individual
classifiers

If the training data subsets are drawn without
replacement, the procedure is also called
jackknife or k-fold data split: the entire data set is
split into k blocks, and each classifier is trained
only on k-1 of them. A different subset of k blocks
is selected for each classifier

setting. Alternatively, entirely different type of classifiers,
such MLPs, decision trees, nearest neighbor classifiers,
and support vector machines can also be combined for
added diversity. However, combining different models,
or even different architectures of the same model, is
used only for specific applications that warrant them.
Diversity is typically obtained through resampling of the
training data, as this procedure is theoretically more
tractable. Finally, diversity can also be achieved by using
different features. In fact, generating different classifiers
using random feature subsets is known as the random
subspace method [44], and it has found widespread use in
certain applications, which are discussed later in future
research areas.

2.3. Measures of Diversity
Several measures have been defined for quantitative
assessment of diversity. The simplest ones are pair-wise
measures, defined between two classifiers. For T classi-
fiers, we can calculate T(T -1)/2 pair-wise diversity meas-
ures, and an overall diversity of the ensemble can be
obtained by averaging these pair-wise measures. Given
two hypotheses hi and hj, we use the notations

where a is the fraction of instances that are correctly clas-
sified by both classifiers, b is the fraction of instances
correctly classified by hi but incorrectly classified by hj,
and so on. Of course, a+b + c+d = !. Then, the following
pair-wise diversity measures can be defined:
Correlation Diversity is measured as the correlation
between two classifier outputs, defined as

ρi, j = ad − bc√
(a + b) (c + d) (a + c) (b + d)

, 0 ≤ ρ ≤ 1. (1)

Maximum diversity is obtained for ρ = 0, indicating that
the classifiers are uncorrelated.
Q-Statistic Defined as

Qi, j = (ad − bc)/(ad + bc) (2)

Q assumes positive values if the same instances are cor-
rectly classified by both classifiers; and negative values,
otherwise. Maximum diversity is, once again, obtained
for Q= 0.
Disagreement and Double Fault Measures The disagree-
ment is the probability that the two classifiers will dis-
agree, whereas the double fault measure is the

26 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2006

hj is correct hj is incorrect

hi is correct a b

hi is incorrect c d

…

…

…

.

.

.

.

.

.

.

.

.

.

.

.

Entire Original Training Data

k−1 Blocks – Shown in Dark Background – Selected
for Training Individual Classifiers

One Block – Shown in Light
Background – Is Left Out

Classifier 1

Classifier 2

Classifier 3

Classifier k−1

Classifier k

Block 1

Block 1

Block 1

Block 1

Block 1

Block 2

Block 1 Block 2 Block 3

Block 3

Block 3

Block 3

Block 2

Block 2

Block 2

Block 2

Block 3

Block 3

Block k−1

Block k−1

Block k−1

Block k−1

Block k−1 Block k

Block k

Block k

Block k

Block k

Block k−1 Block k

…

…

…

…

…

…

…

…

…

Figure 4. k-fold data splitting for generating different, but overlapping, training datasets.

How to achieve diversity

When is bagging (bootstrapping) effective?

To ensure diverse classifiers, the base classifier
should be unstable, that is, small changes in the
training set should lead to large changes in the
classifier output.

How to achieve diversity

When is bagging (bootstrapping) effective?

Large error reductions have been observed with
decision trees and bagging. This is because
decision trees are highly sensitive to small
perturbations of the training data.

How to achieve diversity
When is bagging (bootstrapping) effective?

Bagging is not effective with nearest neighbor classifiers. Why?
NN classifiers are highly stable with respect to variations of the
training data

It has been shown that the probability that any given training
point is included in a data set bootstrapped by bagging is
approximately 63.2%. It follows that the nearest neighbor will
be the same in 63.2% of the classifiers

Thus, the errors are highly correlated, and bagging becomes
ineffective

How to achieve diversity

Use different training parameters for different
classifiers

E.g., ensemble of neural networks trained with
different weight initialization, or different number of
layers/nodes

If the base classifier is unstable with respect to the
tuning parameters, diverse classifiers can be
generated

How to achieve diversity

Use different type of classifiers

E.g., an ensemble of neural networks, decision
trees, nearest neighbor classifiers, and support
vector machines

How to achieve diversity

Use different subsets of features to train the
individual classifiers

E.g., random feature subsets (random subspace
method)

This approach is effective with nearest neighbor
(NN) methods, because NN techniques are highly
sensitive to the chosen features

Bagging
bootstrap aggregating

Bagging
Intuitive and simple

Achieves good performance

Diversity is obtained by bootstrapping replicas of
the training data:

different subsets of data are randomly drawn
with replacement from the entire training data

Each resulting training data is used to train a
different classifier of the same type.

Bagging

Given a test point, individual classifiers are
combined by taking a majority vote of their
decisions.

That is: for any given instance, the class chosen by
most classifiers is the ensemble decision.

samples in each subset, relatively large portions of the
samples (75% to 100%) are drawn into each subset. This
causes individual training subsets to overlap significantly,
with many of the same instances appearing in most sub-
sets, and some instances appearing multiple times in a
given subset. In order to ensure diversity under this sce-
nario, a relatively unstable model is used so that suffi-
ciently different decision boundaries can be obtained for
small perturbations in different training datasets. As men-
tioned above, neural networks and decision trees are good
candidates for this purpose, as their instability can be
controlled by the selection of their free parameters. The
pseudocode for the bagging algorithm is given in Figure 5.

3.2. Variations of Bagging
Random Forests: A variation of the bagging algorithm is
the Random Forests, so-called because it is constructed
from decision trees [49]. A random forest can be creat-
ed from individual decision trees, whose certain training
parameters vary randomly. Such parameters can be
bootstrapped replicas of the training data, as in bagging,
but they can also be different feature subsets as in ran-
dom subspace methods.
Pasting Small Votes: Unlike bagging, pasting small votes
is designed to be used with large datasets [50]. A large
dataset is partitioned into smaller subsets, called bites,
each of which is used to train a different classifier. Two
variations of pasting small votes have emerged: one that
creates the data subsets at random, called Rvotes, and
one that creates consecutive datasets based on the
importance of the instances, called Ivotes.

The latter approach is known to provide better
results [51], and is similar to the approach followed by
boosting based algorithms, where each classifier focus-
es on most important (or most informative) instances for
the current ensemble member.

Basically, the important instances are those that
improve diversity; and one way to do so is to train each
classifier on a dataset that consists of a balanced distri-
bution of easy and difficult instances. This is achieved by
evaluating the current ensemble Et , consisting of t classi-
fiers, on instances that have not yet been used for train-
ing. For any given instance x, those classifiers that did
not use x in their training are called out-of-bag classifiers.
If x is misclassified by a simple majority vote of the cur-
rent ensemble, then it is automatically placed in the
training subset of the next classifier. Otherwise, it is still
placed in the training set, but only with probability ε t/(1–
ε t), where 0<εt <1/2 is the error of the tth classifier. Indi-
vidual classifiers are expected to perform at least 50% to
ensure that a meaningful performance can be provided
by each classifier. In Section 4, within the context of vot-
ing algorithms, we will see that the error threshold of 0.5

is in fact a strategically chosen value. The complete algo-
rithm for pasting small votes is given in Figure 6.

3.3. Boosting
In 1990, Schapire proved that a weak learner, an algo-
rithm that generates classifiers that can merely do better
than random guessing, can be turned into a strong learner
that generates a classifier that can correctly classify all
but an arbitrarily small fraction of the instances [3]. For-
mal definitions of weak and strong learner, as defined in
the PAC learning frame work, can be found in [3], where
Schapire also provides an elegant algorithm for boosting
the performance of a weak learner to the level of a strong
one. Hence called boosting, the algorithm is now consid-
ered as one of the most important developments in the
recent history of machine learning.

Similar to bagging, boosting also creates an ensemble
of classifiers by resampling the data, which are then com-
bined by majority voting. However, similarities end there.
In boosting, resampling is strategically geared to provide
the most informative training data for each consecutive

28 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2006

Algorithm: Bagging
Input:
! Training data S with correct labels ωi

∈ #={ω1,...,ωC } representing C classes
! Weak learning algorithm WeakLearn,
! Integer T specifying number of iterations.
! Percent (or fraction) F to create bootstrapped

training data
Do t = 1, . . . , T

1. Take a bootstrapped replica St by random-
ly drawing F percent of S.

2. Call WeakLearn with St and receive the
hypothesis (classifier) ht .

3. Add ht to the ensemble, !.
End
Test: Simple Majority Voting – Given unlabeled

instance x
1. Evaluate the ensemble != {h1, . . . ,hT } on x.

2. Let vt, j =
{

1, if ht picks class ωj
0, otherwise

(8)

be the vote given to class ωj by classifier ht .
3. Obtain total vote received by each class

Vj =
∑T

t =1
vt, j , j= 1,. . . ,C (9)

4. Choose the class that receives the highest
total vote as the final classification.

Figure 5. The bagging algorithm.

Bagging

Particularly appealing when data available is of
limited size

To ensure that there are sufficient training samples in
each subset, relatively large portions of the samples
(75% to 100%) are drawn into each subset

Bagging

To ensure diversity under this scenario, an unstable
learning method is used so that different decision
boundaries can be obtained with small perturbations
in different training data sets

Neural networks and decision trees are unstable,
and are good candidates for bagging

K nearest methods are stable. They are not good
candidates for bagging

Experiments
from

Bagging Predictors
by Leo Breiman

Machine Learning, 24:123-140, 1996

Bagging Classification Trees

� � �

BAGGING PREDICTORS 125

Table 1. Data Set Summary

Data Set # Samples # Variables # Classes

waveform 300 21 3

heart 1395 16 2

breast cancer 699 9 2

ionosphere 351 34 2

diabetes 768 8 2

glass 214 9 6

soybean 683 35 19

In all runs the following procedure was used:

i) The data set is randomly divided into a test set T and a learning set L. In the real data
sets T is 10% of the data. In the simulated waveform data, 1800 samples are generated.
L consists of 300 of these, and T the remainder.

ii) A classification tree is constructed from L using 10-fold cross-validation. Running the
test set T down this tree gives the misclassification rate eS(L, T).

iii) A bootstrap sample LB is selected from L, and a tree grown using LB . The original
learning set L is used as test set to select the best pruned subtree (see Section 4.3). This
is repeated 50 times giving tree classifiers φ1(x), . . . ,φ50(x).

iv) If (jn,xn) ∈ T , then the estimated class of xn is that class having the plurality in
φ1(xn), . . . ,φ50(xn). If there is a tie, the estimated class is the one with the lowest
class label. The proportion of times the estimated class differs from the true class is the

bagging misclassification rate eB(L, T).

v) The random division of the data into L and T is repeated 100 times and the reported

ēS , ēB are the averages over the 100 iterations. For the waveform data, 1800 new cases
are generated at each iteration. Standard errors of ēS and ēB over the 100 iterations are
also computed.

Table 2 gives the values of ēS , ēB , and Table 3 their estimated standard errors.

Table 2. Misclassification Rates (%)

Data Set ēS ēB Decrease

waveform 29.1 19.3 34%

heart 4.9 2.8 43%

breast cancer 5.9 3.7 37%

ionosphere 11.2 7.9 29%

diabetes 25.3 23.9 6%

glass 30.4 23.6 22%

soybean 8.6 6.8 21%

DATA SETS

Bagging Classification Trees
MISCLASSIFICATION RATES (%)

BAGGING PREDICTORS 125

Table 1. Data Set Summary

Data Set # Samples # Variables # Classes

waveform 300 21 3

heart 1395 16 2

breast cancer 699 9 2

ionosphere 351 34 2

diabetes 768 8 2

glass 214 9 6

soybean 683 35 19

In all runs the following procedure was used:

i) The data set is randomly divided into a test set T and a learning set L. In the real data
sets T is 10% of the data. In the simulated waveform data, 1800 samples are generated.
L consists of 300 of these, and T the remainder.

ii) A classification tree is constructed from L using 10-fold cross-validation. Running the
test set T down this tree gives the misclassification rate eS(L, T).

iii) A bootstrap sample LB is selected from L, and a tree grown using LB . The original
learning set L is used as test set to select the best pruned subtree (see Section 4.3). This
is repeated 50 times giving tree classifiers φ1(x), . . . ,φ50(x).

iv) If (jn,xn) ∈ T , then the estimated class of xn is that class having the plurality in
φ1(xn), . . . ,φ50(xn). If there is a tie, the estimated class is the one with the lowest
class label. The proportion of times the estimated class differs from the true class is the

bagging misclassification rate eB(L, T).

v) The random division of the data into L and T is repeated 100 times and the reported

ēS , ēB are the averages over the 100 iterations. For the waveform data, 1800 new cases
are generated at each iteration. Standard errors of ēS and ēB over the 100 iterations are
also computed.

Table 2 gives the values of ēS , ēB , and Table 3 their estimated standard errors.

Table 2. Misclassification Rates (%)

Data Set ēS ēB Decrease

waveform 29.1 19.3 34%

heart 4.9 2.8 43%

breast cancer 5.9 3.7 37%

ionosphere 11.2 7.9 29%

diabetes 25.3 23.9 6%

glass 30.4 23.6 22%

soybean 8.6 6.8 21%

Bagging Classification Trees

LARGER DATA SETS

126 L. BREIMAN

Table 3. Standard Errors of Misclassi-

fication

Data Set SE(ēS) SE(ēB)

waveform .2 .1

heart .2 .1

breast cancer .3 .2

ionosphere .5 .4

diabetes .4 .4

glass 1.1 .9

soybean .4 .3

For the waveform data, its known that the lowest possible error rate is 14%. Bagging

reduces the excess error by about two-thirds. We conjecture that the small decrease in the

diabetes data set is because bagging is pushing close to the minimal attainable error rate.

For instance, in the comparison by Michie et al. [1994] of 22 classifiers on this data set,

the smallest error rate achieved (estimated by 12-fold cross-validation) was 22.3%.

2.2. Statlog Comparisons for Larger Data Sets

The Statlog Project [Michie et al., 1994] compared 22 classification methods over a wide

variety of data sets. For most of these data sets, error rates were estimated using a single

cross-validation. Without knowing the random subdivisions used in these cross-validations,

the variability in the resulting error estimates makes comparisons chancey.

However, there were larger data sets used in the project which were divided into training

and test sets. Four are publically available, and we used these as a basis for comparison.

They can be accessed by ftp to ftp.strath.ac.uk and are described both in the Michie et al.

[1994] book and in the data repository. Their numerical characteristics are given in Table

4 with brief descriptions in the Appendix.

Table 4. Statlog Data Set Summary

Data Set #Training #Variables #Classes #Test Set

letters 15,000 16 26 5000

satellite 4,435 36 6 2000

shuttle 43,500 9 7 14,500

DNA 2,000 60 3 1186

In each data set, a random 10% of the training set was set aside and a tree grown on the

other 90%. The set aside 10% was then used to select the best pruned subtree. In bagging,

50 bootstrap replicates of the training set were generated and a large tree grown on each

one. The original training set is used to select the best pruned subtree (see Section 4.3).

The test set errors are listed in Table 5.

Bagging Classification Trees

BAGGING PREDICTORS 127

Table 5. Test SetMisclassification Rates

(%)

Data Set eS eB Decrease

letters 12.6 6.4 49%

satellite 14.8 10.3 30%

shuttle .062 .014 77%

DNA 6.2 5.0 19%

Compared to the 22 classifiers in the Statlog Project, bagged trees ranked 2nd in accuracy

on the DNA data set, 1st on the shuttle, 2nd on the satellite and 1st on letters. Following

the Statlog method of ordering classifiers by their average rank, bagged trees was the top

classifier on these four data sets with an average rank of 1.8. The next highest of the 22 has

an average rank of 6.3. Average ranks for well-known classifiers are given in Table 6.

Table 6. Average Ranks of Classifiers

Algorithm Average Rank

Radial Basis Functions 8.0

K-NN 8.5

C4.5 9.3

Quad. Discriminant 10.8

Neural Net 12.3

Some of the misclassification rates for the CART algorithm in Table 5 differ from those

listed in the Statlog results. Possible sources for these differences are:

i) Different strategies may have been used to grow and prune the tree. I used the 90%-10%

method specified above. Its not clear what was done in the Statlog project.

ii) An important setting is the minimum node size. This setting is not specified in the

Statlog project. We used a minimum node size of one throughout.

iii) In the DNA data, different preprocessing of the input variable was used (see Appendix).

3. Bagging Regression Trees

Bagging trees was used on five data sets with numerical responses.

Boston Housing

Ozone

Friedman #1 (simulated)

Friedman #2 (simulated)

Friedman #3 (simulated)

TEST SET MISCLASSIFICATION RATES (%)

Bagging Class Probability Estimates

p̂(j|x)
Some classification methods estimate probabilities:

Decision rule:

 A natural competitor to bagging by voting is to
average the over all the bootstrap
replications:

Final decision:

arg max
j

p̂(j|x)

arg max
j

p̂B(j|x)

p̂B(j|x)
p̂(j|x)

How Many Bootstrap Replicates are
Enough?

BAGGING PREDICTORS 135

For suchmethods, a natural competitor to bagging by voting is to average the p̂(j|x) over all
bootstrap replications, getting p̂B(j|x), and then use the estimated class arg maxj p̂B(j|x).
This estimate was computed in every classification example we worked on. The resulting

misclassification rate was always virtually identical to the voting misclassification rate.

In some applications, estimates of class probabilities are required instead of, or along

with, the classifications. The evidence so far indicates that bagged estimates are likely to

be more accurate than the single estimates. To verify this, it would be necessary to compare

both estimates with the true values p∗(j|x) over the x in the test set. For real data the true
values are unknown. But they can be computed for the simulated waveform data, where

they reduce to computing an expression involving error functions.

Using the waveform data, we did a simulation similar to that in Section 2 with learning

and test sets both of size 300, and 25 bootstrap replications. In each iteration, we computed

the average over the test set and classes of |p̂(j|x) − p∗(j|x)| and |p̂B(j|x) − p∗(j|x)|.
This was repeated 50 times and the results averaged. The single tree estimates had an error

of .189. The error of the bagged estimates was .124, a decrease of 34%.

6.2. How Many Bootstrap Replicates Are Enough?

In our experiments, 50 bootstrap replicates was used for classification and 25 for regression.

This does not mean that 50 or 25 were necessary or sufficient, but simply that they seemed

reasonable. My sense of it is that fewer are required when y is numerical and more are
required with an increasing number of classes.

The answer is not too important when procedures like CART are used, because running

times, even for a large number of bootstraps, are very nominal. But neural nets progress

much more slowly and replications may require many days of computing. Still, bagging is

almost a dream procedure for parallel computing. The construction of a predictor on each

L(B) proceeds with no communication necessary from the other CPU’s.

To give some ideas of what the results are as connected with the number of bootstrap

replicates we ran the waveform data using 10, 25, 50 and 100 replicates using the same

simulation scheme as in Section 2. The results appear in Table 10.

Table 10. Bagged Misclassification Rates (%)

No. Bootstrap Replicates Misclassification Rate

10 21.8

25 19.4

50 19.3

100 19.3

The unbagged rate is 29.1, so its clear that we are getting most of the improvement using

only 10 bootstrap replicates. More than 25 bootstrap replicates is love’s labor lost.

BAGGED MISCLASSIFICATION RATES

How Big Should the Bootstrap
Learning Set Be?

In the previous runs, the size of the bootstrap
replicates was the same as the initial learning set

While a bootstrap replicate may have 2,3,...
duplicates of a given instance, it also leaves out
about .37 of the instances.

One can increase the size of the bootstrap
replicates

Diversity may decrease

Bagging Nearest Neighbor Classifiers

136 L. BREIMAN

6.3. How Big Should the Bootstrap Learning Set Be?

In all of our runs we used bootstrap replicates L(B) of the same size as the initial learning

set L. While a bootstrap replicate may have 2, 3, . . . duplicates of a given instance, it also
leaves out about .37 of the instances. A reader of the technical report on which this paper is

based remarked that this was an appreciable loss of data, and that accuracy might improve

if a larger bootstrap set was used. We experimented with bootstrap learning sets twice the

size of L. These left out about e−2 = .14 of the instances. There was no improvement in
accuracy.

6.4. Bagging Nearest Neighbor Classifiers

Nearest neighbor classifiers were run on all the data sets described in Section 2 except for

the soybean data whose variables were nominal. The same random division into learning

and test sets was used with 100 bootstrap replicates, and 100 iterations in each run. A

Euclidean metric was used with each coordinate standardized by dividing by its standard

deviation over the learning set. See Table 11 for the results.

Table 11. Misclassification

Rates for Nearest Neighbor

Data Set ēS ēB

waveform 26.1 26.1

heart 5.1 5.1

breast cancer 4.4 4.4

ionosphere 36.5 36.5

diabetes 29.3 29.3

glass 30.1 30.1

Nearest neighbor is more accurate than single trees in 3 of the 6 data sets, but bagged trees

are more accurate in all of the 6 data sets.

Cycles did not have to be expended to find that bagging nearest neighbors does not change

things. Some simple computations show why. Given N possible outcomes of a trial (the

N cases (yn,xn) in the learning set) and N trials, the probability that the nth outcome is
selected 0, 1, 2, . . . times is approximately Poisson distributed with λ = 1 for largeN . The
probability that the nth outcome will occur at least once is 1− (1/e) " .632.
If there are NB bootstrap repetitions in a 2-class problem, then a test case may change

classification only if its nearest neighbor in the learning set is not in the bootstrap sample

in at least half of the NB replications. This probability is given by the probability that the
number of heads in NB tosses of a coin with probability .632 of heads is less than .5NB .
As NB gets larger, this probability gets very small. Analogous results hold for J-class
problems.

The stability of nearest neighbor classification methods with respect to perturbations of

the data distinguishes them from competitors such as trees and neural nets.

MISCLASSIFICATION RATES FOR NEAREST NEIGHBOR

Variations of Bagging

Pasting Small Votes

Unlike bagging, pasting small votes is designed to
be used with large data sets

A large data set is partitioned into smaller subsets,
called bites, each of which is used to train a
different classifier

Two variations: subsets are created at random
(Rvotes); subsets are created based on the
importance of instances (Ivotes)

Pasting Small Ivotes
Each classifier focuses on the most important (or
most informative) instances

Classifiers are added to the ensemble in an
incremental and sequential fashion

Current ensemble is evaluated on instances not
used during training (out-of-bag classifiers)

If an instance is misclassified by a majority vote, it
is placed in the training set of the next classifier;
otherwise, it is placed in the training set with a
certain probability

classifier. In essence, boosting creates three weak classi-
fiers: the first classifier C1 is trained with a random sub-
set of the available training data. The training data subset
for the second classifier C2 is chosen as the most inform-
ative subset, given C1. That is, C2 is trained on a training
data only half of which is correctly classified by C1, and
the other half is misclassified. The third classifier C3 is
trained with instances on which C1and C2 disagree. The
three classifiers are combined through a three-way major-
ity vote. The algorithm is shown in detail in Figure 7.

Schapire has shown that the error of this three-classi-
fier ensemble is bounded above, and it is less than the
error of the best classifier in the ensemble, provided that
each classifier has an error rate that is less than 0.5. For a
two-class problem, an error rate of 0.5 is the least we can

expect from a classifier, as an error of 0.5 amounts to ran-
dom guessing. Hence, a stronger classifier is generated
from three weaker classifiers. A strong classifier in the
strict PAC learning sense can then be created by recur-
sive applications of boosting.

3.4. AdaBoost
In 1997, Freund and Schapire introduced AdaBoost [26],
which has since enjoyed a remarkable attention, one that
is rarely matched in computational intelligence.
AdaBoost is a more general version of the original boost-
ing algorithm. Among its many variations, AdaBoost.M1
and AdaBoost.R are more commonly used, as they are
capable of handling multiclass and regression problems,
respectively. In this paper, we discuss AdaBoost.M1 in
detail, and provide a brief survey and references for other
algorithms that are based on AdaBoost.

29THIRD QUARTER 2006 IEEE CIRCUITS AND SYSTEMS MAGAZINE

Algorithm: Boosting
Input:
! Training data S of size N with correct labels ωi

∈ "= {ω1, ω2};
! Weak learning algorithm WeakLearn.
Training

1. Select N1<N patterns without replacement
from S to create data subset S1.

2. Call WeakLearn and train with S1 to create
classifier C1.

3. Create dataset S2 as the most informative
dataset, given C1, such that half of S2 is cor-
rectly classified by C2, and the other half is
misclassified. To do so:
a. Flip a fair coin. If Head, select samples from

S , and present them to C1 until the first
instance is misclassified. Add this instance
to S2.

b. If Tail, select samples from S , and present
them to C1 until the first one is correctly
classified. Add this instance to S2.

c. Continue flipping coins until no more pat-
terns can be added to S2.

4. Train the second classifier C2 with S2.
5. Create S3 by selecting those instances for

which C1 and C2 disagree. Train the third
classifier C3 with S3.

Test -- Given a test instance x
1. Classify x by C1 and C2. If they agree on the

class, this class is the final classification.
2. If they disagree, choose the class predicted

by C3 as the final classification.

Figure 7. The boosting algorithm.

Algorithm: Pasting Small Votes (Ivotes)
Input:
! Training data S with correct labels ωi ∈ " =

{ω1,..., ωC } representing C classes;
! Weak learning algorithm WeakLearn;
! Integer T specifying number of iterations;
! Bitesize M, indicating the size of individual train-

ing subsets to be created.
Initialize

1. Choose a random subset S0 of size M from S .
2. Call WeakLearn with S0, and receive the

hypothesis (classifier) h0.
3. Evaluate h0 on a validation dataset, and

obtain error ε0 of h0..
4. If ε0>1/2, return to step 1.

Do t=1, . . . , T
1. Randomly draw an instance x from S accord-

ing to uniform distribution.
2. Evaluate x using majority vote of out-of-bag

classifiers in the current ensemble !" .
3. If x is misclassified, place x in St . Otherwise,

place x in St with probability p

p = εt−1
(1−εt−1)

. (10)

Repeat Steps 1-3 until St has M such instances.
4. Call WeakLearn with St and receive the

hypothesis ht .
5. Evaluate ht on a validation dataset, and

obtain error εt of ht.. If εt>1/2, return to step
4.

6. Add ht to the ensemble to obtain !" .
End
Test -- Use simple majority voting on test data.

Figure 6. Pasting small votes (Ivotes) algorithm.

Boosting

Boosting

Similar to bagging, boosting also creates an
ensemble of classifiers by resampling the data,
which are then combined by majority voting

In boosting, though, the resampling strategy is
geared to provide the most informative training
data for each consecutive classifier

Boosting (Adaboost.M1)
Freund and Schapire, 1996

Generates a set of classifiers, and combines them
through weighted majority voting of the classes
predicted by the individual classifiers

Classifiers are trained using instances drawn from an
iteratively updated distribution of the training data

The distribution ensures that instances misclassified by
the previous classifier are more likely to be included in
the training data of the next classifier

Thus, consecutive classifiers’ training data are more
geared towards increasingly hard-to-classify instances

AdaBoost generates a set of hypotheses, and combines
them through weighted majority voting of the classes pre-
dicted by the individual hypotheses. The hypotheses are
generated by training a weak classifier, using instances
drawn from an iteratively updated distribution of the
training data. This distribution update ensures that
instances misclassified by the previous classifier are more
likely to be included in the training data of the next classi-
fier. Hence, consecutive classifiers’ training data are
geared towards increasingly hard-to-classify instances.

The pseudocode of the algorithm is provided in Fig-
ure 8. Several interesting features of the algorithm are
worth noting. The algorithm maintains a weight distribu-
tion Dt(i) on training instances xi, i = 1, . . . , N , from
which training data subsets St are chosen for each con-
secutive classifier (hypothesis) ht . The distribution is ini-
tialized to be uniform, so that all instances have equal
likelihood to be selected into the first training dataset.
The training error ε t of classifier ht is also weighted by
this distribution, such that ε t is the sum of distribution
weights of the instances misclassified by ht (Equation 12).
As before, we require that this error be less than 1/2. A
normalized error is then obtained as βt, such that for
< 0 εt < 1/2, we have 0 < βt < 1.

Equation 14 describes the distribution update rule:
the distribution weights of those instances that are cor-
rectly classified by the current hypothesis are reduced by
a factor of βt , whereas the weights of the misclassified
instances are unchanged. When the updated weights are
renormalized, so that Dt+1 is a proper distribution, the
weights of the misclassified instances are effectively
increased. Hence, iteration by iteration, AdaBoost focus-
es on increasingly difficult instances. Note that AdaBoost
raises the weights of instanced misclassified by ht so that
they add up to 1/2, and lowers the weights of correctly
classified instances, so that they too add up to 1/2. Since
the base model learning algorithm WeakLearn is required
to have an error less than 1/2, it is guaranteed to cor-
rectly classify at least one previously misclassified train-
ing example. Once a preset T number of classifiers are
generated, AdaBoost is ready for classifying unlabeled
test instances. Unlike bagging or boosting, AdaBoost uses
a rather undemocratic voting scheme, called the weighted
majority voting. The idea is an intuitive one: those classi-
fiers that have shown good performance during training
are rewarded with higher voting weights than the others.
Recall that a normalized error βt was calculated in Equa-
tion 13. The reciprocal of this quantity, 1/βt is therefore a
measure of performance, and can be used to weight the
classifiers. Furthermore, since βt is training error, it is
often close to zero and 1/βt can therefore be a very large
number. To avoid potential instability that can be caused
by asymptotically large numbers, the logarithm of

1/βt is usually used as the voting weight of ht . At the end,
the class that receives the highest total vote from all clas-
sifiers is the ensemble decision.

A conceptual block diagram of the algorithm is provid-
ed in Figure 9. The diagram should be interpreted with the
understanding that the algorithm is sequential: classifier
C K is created before classifier C K+1, which in turn requires
that βK and the current distribution DK be available.

Freund and Schapire also showed that the training
error of AdaBoost.M1 is bounded above:

E < 2T
T∏

t=1

√
εt (1 − εt) (16)

30 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2006

Algorithm AdaBoost.M1
Input:
! Sequence of N examples S = [(xi, yi)], i = 1, · · · , N

with labels yi ∈ #, # = {ω1, . . . ,ωC };
! Weak learning algorithm WeakLearn;
! Integer T specifying number of iterations.

Initialize D1 (i) = 1
N ., i = 1, · · · , N (11)

Do for t = 1, 2, . . . , T :
1. Select a training data subset St , drawn from

the distribution Dt .
2. Train WeakLearn with St , receive hypothe-

sis ht .
3. Calculate the error of

ht : εt =
∑

i:ht(xi)#=yi

Dt(i). (12)

If εt >1/2, abort.
4. Set βt = εt/(1 − εt). (13)

5. Update distribution

Dt : Dt+1(i) = Dt(i)
Zt

×
{

βt if ht(xi) = yi
1, otherwise

(14)

where Zt =
∑

i Dt (i) is a normalization con-
stant chosen so that Dt+1 becomes a proper
distribution function.

Test -- Weighted Majority Voting: Given an unla-
beled instance x,

1. Obtain total vote received by each class

Vj =
∑

t:ht(x)=ωj

log 1
βt

, j= 1,. . . ,C . (15)

2. Choose the class that receives the highest
total vote as the final classification.

Figure 8. The AdaBoost.M1 algorithm.

Boosting (property)

Freund and Schapire proved that, provided that
is always , the error rate of boosting on a
given training data set, under the original uniform
distribution, approaches zero exponentially fast as
T increases.

εt < 0.5

Boosting (property)

Thus, a succession of weak classifiers can be
boosted to a strong classifier that is at least as
accurate as, and usually more accurate than, the
best weak classifier on the training data.

Of course, this gives no guarantee on the
generalization performance on unseen instances.

Experiments
from

Bagging, Boosting, and C4.5
by J. R. Quinlan

National Conference on Artificial Intelligence, 1996

Description of data sets

C4.5, and its bagged and boosted versions

C4.5, and its bagged and boosted versions

Comparison of Bagging and Boosting
on chess and colic data sets

