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Outline

* The problem of combining multiple
clusterings:

+ Suitable objective function for determining
a single consensus clustering;

+ Greedy approaches to optimize this
objective function.



Notation

X = {xl,- --,xn} . set of data
{C =1, ,k} . partitioning of n data into k clusters

A € X" : label vector representing a partition

of n data into k clusters

Clusterer @ : 1s a function that delivers a label vector
given a tuple of data X
d: X —= A



The Cluster Ensemble

A consensus function I' combines clusterings )L(Q),q =1,--.r



Assumptions

The consensus function I': {)»(1""”’)} — A

has access only to the r label vectors.
The function I" has no knowledge of :

- the original feature measurements X;

- the clustering algorithms @



AL —(1.1.1,2,2.3.3 A2 = (2.2.2.33 1.1
A3 =1(1,1,2.2.3.3,3) A —(1.2.7.1.2.2. N
n="7Tr=4;

KW =3k =3k =3k =2,

Objective: find a "good"” combined clustering with 3
clusters.

How is "good" defined?

Intuitively, a good combined clustering should
share as much information as possible with the
given 4 clusterings



Example (Contd.)

A —(1.1.1,2,2.3.3 A2 = (2.2.2.33 1.1
A3 =1(1,1,2,2.3,3.3) A =(1,2.7,1.2,72, )
n="7Tr=4;

KW =3k =3 k0 =3 k% =2

Objective: find a "good"” combined clustering with 3
clusters.

A good clustering choice seems

A=(111,2,2,3,3)

Infact, it can be shown that this clustering shares
the maximum information with the given four label
vectors.

Assume cahonical forms of label vectors.



Objective Function for Cluster
Ensembles
F:{)\.(q) lg € {1,---,r}} — A

A = {)\.(q) lg € {1,---,r}}

In absence of a-priori information, a
reasonable goal is to seek a clustering
that shares the most information with
the original clusterings.

How can we measure the “shared information”
between clusterings?

Use Mutual Information.



Mutual Information

» Symmetric measure to quantify the
statistical information shared between two
distributions.

»It is defined in ferms of Entropy H.

Let X and Y be random variables.

H (X ) : measure the uncertainty in the random variable X (entropy)

I(X,Y)=H(X)-H(XY)

= 22Pr(x,y)log > Pr(x.y)

r(x)Pr(y)

Describes the information on X provided by ¥




Mutual Information

»So0: The mutual information provides a sound

measure to quantify the information shared between
pair of clusterings.

X : random variable described by the cluster labeling A

Y : random variable described by the cluster labeling M)

1 (X Y ) — shared information between A and A
It can be shown that / (X Y ) 1s a metric (with no upper bound)

For easier interpretation :
I(X, Y)

JH(X)

H(X),NMI(X,X) =1.

NMIXY

Since I(X,X)



Estimation of NMI

NMI(X.Y) needs to be estimated using the sampled

quantities provided by the clusterings.

K k") : number of clusters in A and A*) respectively

nﬁj” : number of data in cluster C, according to A9

ngb) : number of data in cluster C, according to AP

n,, . number of data in both clusters C, and C,

ko) = i(®) nn, ¢
Zh 12( { h,¢ log ( @) (b))
U Ty

(D(NMI) ‘)\la) /\(b:l ] _

\/( ’L“ainh)lﬂﬂ ' )(Zt'bl. O b.)-



Average Normalized Mutual
Information (ANMI)

Recall: A = {)L(‘I) g€ {1, --,r}}
We can now define a measure between a

set of r labelings A and a single labeling A

(r(*\NMI A )\ Zo (NMI) )\ )\



Optimal Combined Clustering

The optimal combined clustering A*" ") is the one
that has the maximal ANMI with all individual
labelings 1n A, given that the number of consensus

clusters 1is k.

AK=9PY) _ are max c‘)(Nh'H)(’j\- )
sy

¢=1




Greedy Optimization Scheme

Initial labeling: single labeling that gives highest ANMI;

For each dataq, its label is changed to each of the other possible
k-1 labels, and the ANMI objective is re-evaluated:;

If ANMI increases, the data’s label is changed to the best new
value, and the algorithm proceeds to the next point;

When all data have been checked for possible improvements, an
iteration is complete;

If at least one label was changed during the last iteration, go
back to 2., otherwise terminate (local minimum is reached).

Expensive, dependency on initial labeling, poor
local minima.



More Efficient Greedy Approaches

4

Intuitive heuristics;

Do not perform a direct maximization of ANMI
objective;

Three different algorithms:

» Cluster-based Similarity Partitioning Algorithm
(CSPA)

> HyperGraph Partitioning Algorithm (HGPA)
» Meta-ClLustering Algorithm (MCLA)

All three algorithms first transform the set of
clustering into a hypergraph representation.



Mapping a set of Clusterings to a
Hypergraph

<+ Hypergraph: vertices and hyperedges:;

< Hyperedge: generalization of an edge; it can connect
any set of vertices;

For each label vector A € X", a binary membership indicator

matrix H' is constructed, with a column for each cluster

(corresponding to a hyperedge).



Hypergraph: Example

with 7 vertices and 11 hyperedges

HY H? H®) HW

)\(1) /\(2) )\(3) )\(4) hl hp_ 113 114 h5 h6 h-,- hg llg 1110 1111
rf 12 1 1 vl 1000 1T 001 001 0O
rof 12 1 2 w1 000 1T 001 000 1
vy 12 2 7 vl 10 00 1T 000 1T 00 0O
ryl 203 2 1 wl O 1000 010 1T 01 0O
vyl 2 3 3 2 vsl O 1T 000 0 1[0 01]0 1
el 3 1 3 7 vel O 0 101 000 0110 0
(3 1 3 7 w0011 0000 010 0O
— —————————————————

L The concatenated block matrix
original t) o) e

label H=H"""=(H" H")
vectors defines the adjacency matrix of a hypergraph



Cluster-based Similarity Partitioning
Algorithm (CSPA)

Two points have similarity 1 if they belong to the
same cluster; similarity O otherwise.

This defines a binary similarity matrix for each
clustering.

Overall similarity matrix S: entry-wise average of the
r above matrices.

The element Sij of S represents the fraction of
clusterings in which two data xi and xj are in the same

cluster.

S=1HHT
r



SNOMEWN —

Cluster-based Similarity Partitioning
Algorithm (CSPA) -- Example

1 1 1 1
2 2 2 -. 2
: : : :
4
5 S 5-. S
6 6 6 6
7 7 7 7
1234567 12343567 1234567 1234567 12343567
from A1) from A2 from A% from A% combined
HY H®2 H3) H@
)\(1) /\(2) )\(3) /\(4) 111 112 113 114 115 hG 117 hg hg 1110 1111
rf 12 1 1 vl 1000 1T 01 001 0O
ol 1 2 1 2 w1 000 1T 01 000 1
ra| 1 2 2 7T & vl 1 0 0 0 1 0 0 1 0 0 0
vyl 2 3 2 1 myl O 1 00 0O 170 1 01 O
rsl 2 3 3 2 sl O 1 0L 0 O 170 O 1[0 1
gl 3 1 3 7 vl O 0O 11 0O 00 O 1[0 O
13 1 3 7 - O 0O 11 0 00 O 10 O




Cluster-based Similarity Partitioning
Algorithm (CSPA)

The combined similarity matrix is used to recluster
the data using a similarity based clustering algorithm.

A graph-partitioning based clustering approach is
used:

o/

< The induced similarity graph (vertex = data; edge weight =
similarity) is partitioned using METLS.

Advantages:

/

< Simple heuristic.
Disadvantages:

K/

<+ Computational and storage complexity are both guadratic in
n.




HyperGraph-Partitioning Algorithm
(HGPA)

%+ Seeks a partitioning of the hypergraph by
cutting a minimal nhumber of hyperedges.

+ All hyperedges have the same weight.

<+ This algorithm looks for a hyperedge
separator that partitions the hypergraph into
k unconnected components of approximately
the same size.

» Captures n-way relationships between data
points.



hl

HyperGraph-Partitioning Algorithm
(HGPA) -- Example

We seek a minimal hyperedge cut that partitions
the seven data into 3 balanced groups.



HyperGraph-Partitioning Algorithm
(HGPA) -- Example

hl > X3 Xe X5

h2
The minimal hyperedge cut is 4.



HyperGraph-Partitioning Algorithm
(HGPA) -- Example

hl

h2
The minimal hyperedge cut is 4.



HyperGraph-Partitioning Algorithm
(HGPA) -- Example

hl

The minimal hyperedge cut is 4.
The resulting combined clustering is:

{{xlaxz ’x3}’{x4 9x5}9{x6 vx7}}



HyperGraph-Partitioning Algorithm
(HGPA)

Limitation: No knowledge of partially cut
hyperedges.

I.e., The algorithm does not keep track of how
much of a hyperedge is left in the same group
after the cut.



HyperGraph-Partitioning Algorithm
(HGPA) -- Example

hl

{{xl,xz,x7},{x3 ,x4},{x5 ’x6}}’ {{xl’x7}’{x3 sy }’{xz’xs ’x6}}

Both partitionings cut all three hyperedges.



HyperGraph-Partitioning Algorithm
(HGPA)

Advantage: Efficiency. Complexity is O(nkr)
(assuming usage of HMETILS).



Meta-Clustering Algorithm (MCLA)

Based on clustering of clusters.

Provides object-wise confidence estimates of cluster
membership.

Basic idea:

<+ Each cluster corresponds to a hyperedge;

<+ Hyperedges are grouped, and each data is assigned to the
collapsed hyperedge to which it participates more strongly:;

Initial number of hyperedges: E k()
q=1

After collapsing hyperedges: k



L)

4

Meta-Clustering Algorithm (MCLA) -
The Steps

Construct Meta-graph: View the indicator vectors h
(hyperedges of H) has vertices of another regular
undirected graph (the meta-graph). The edges have
weights proportional to the similarity between
vertices.

Binary Jaccard measure:

hihy Correspond§ to the ratio
= e 2t|hs|Z—nim, | Of the cardinality of the
] i intersection to the union
of the sets of data of the
two hyperedges.

Wa b




Construction of Meta-graph - Example
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Meta-Clustering Algorithm (MCLA) -
The Steps

<+ Cluster Hyperedges: partitions the meta-graph into k&
balanced meta-clusters.

» This results in a clustering of the h vectors.



Clustering Hyperedges - Example

The resulting meta - clusters are :

CI(M) = {h3,h4,h9}
) CgM) = {hzahwhs’hlo}
" 1 CgM) = {h19h5’h7’h11}

" H H? H®) HY
h10 | hy hy hg| hy hs hgl hy hg hg| hyg hyy
vl 1000 1T 001 001 0
. w1000 1 01 000 1
1 2 3 4 vel 10 0L 0 1 00 1 O[O0 O
ae {1....n wl 0 1000 010 101 0
vl O 1 0,0 O 10 O 1[0 1
vgl O 0O 11 0 00 O 1[0 O
-l O 0 11 0 00 O 1[0 O




Meta-Clustering Algorithm (MCLA) -
The Steps

<+ Collapse Meta-clusters: the hyperedges of each
meta-cluster are collapsed into a single meta-
hyperedge.

“+» This is achieved by averaging all the & vectors of a
particular meta-cluster .

“*» The entries of the meta-hyperedge indicate the level

of association of objects with the corresponding
meta-cluster.



Collapsing Meta-clusters - Example

The resulting meta - clusters are :

CI(M) = {h3,h4,h9}
) CgM) = {hzahwhs’hlo}
" 1 CgM) = {h19h5’h7’h11}

" H H? H®) HY
h10 | hy hy hg| hy hs hgl hy hg hg| hyg hyy
vl 1000 1T 001 001 0
. w1000 1 01 000 1
1 2 3 4 vel 10 0L 0 1 00 1 O[O0 O
ae {1....n wl 0 1000 010 101 0
vl O 1 0,0 O 10 O 1[0 1
vgl O 0O 11 0 00 O 1[0 O
-l O 0 11 0 00 O 1[0 O




Collapsing Meta-clusters - Example

C™) ={hy,h,,hy} = (0,0,0,0,1/3,1,1)
C(zM) = {hzahmhs’hlo}
CgM) = {hlahs’hwhu}

HWY H? H®) H@

hy hg hgl|hy| hs hg| hy hg hdl hig hyy
vyl 1 0pOoOy 1 0 1 OO 1 O
wl 1 0pOoyoy 1 01 000y 0 1
vgl 1T OpOQO) 1 O 0 1308 O O
wyl O 1fOoYoy o 170 10 1 O
vsl O 1JOYOL O 10 014 0 1
vgl O O L1440 O O OFQ1f O O
vl O OLLJLL) O O O Ofp1f O O




Collapsing Meta-clusters - Example

™ = fnn )t =(00001/311)
CM) = {h, g hg o}t = (1/4,0,1/4,1,1/2,0,0)
CgM) = {hlahs’hwhn}

H H? H® W

hy Ehg hy h{ hgl hs Jhglhg|{hid hiy
vl TP OO 0O 130 1 JOjO|1f 0O
vl T OO O 10 1 JOjO)of 1
vyl 1L OO 0O 130 O fJ1j0OoOf O
vyl O)P 1O 0O Op1f OfJ1jOp1f) O
vgl Of 1O 0 Op 1y O JOJrQgoy 1
vg| O 01| 1 Op0f) OfJOJ1L{|JoO] O
vl OLO) 1| 1 OLOJ O LOJ1(LO] O




Collapsing Meta-clusters - Example

C1(M) _ {h3,h4,h9} = (0,0,0,0,1/3,1,1)
CM) ={h, he hg.hy s = (1/4,0,1/4,11/2,0,0)
") ={n,hs,h, b} = (3/4,1,1/2,0,1/4,0,0)

(1) H? H®) HY
]?1] hy hg| hy mle h+;| hg hg| hig|hy
vl 1 O O O J1JO|f1y 0 O 140
vl 1 0 O O J1jO|j1y 0 O 0|1
vel 1 O O O J1jO|jJoy 1 Of O} O
wl O 1T O 0 JOJ1|Joy 1 Of 140
vsl O 1 00 0 JOJILJOL O 1] 07}1
vel Of O 1| 1 JOJO|JoOy O 1( 0} O
vl 0] O 1] 1 JOJO[LO] O 1( O O]




Meta-Clustering Algorithm (MCLA) -
The Steps

< Compete for Objects: each object is assigned o the
meta-cluster with the strongest association (i.e.,
highest entry in the association vector).




Competing for Objects - Example

™) ={h,.h, by} = (0,0,0,0,1/3,L,1)

C™) ={h, hg.hehy} = (1/4,0,1/4,1,1/2,0,0)
") ={n,hs,h, b} = (3/4,1,1/2,0,1/4,0,0)
U

C = {x6,x7}
C, = {x4,x5}
C, = {xl,xz,x3}



Meta-Clustering Algorithm (MCLA)

< Complexity: O(nkzrz)



Empirical Evaluation



Controlled Experiment

* n=400; k=10; clusters are balanced;

“+» A partition is generated at random by a
random permutation;

“» The partition is duplicated r=8 times;

“* In each of the 8 labelings, a fraction of labels
is replaced with random labels from a uniform
distribution from 1 to k=10;

» The resulting noisy labelings are feeded to
the proposed algorithms.



Controlled Experiment: Evaluation

Measures used are :

Normalized objective function ¢"**"")(A, 1)

of the ensemble output A with all the individual
labels 1n A;

Normalized mutual information of the ensemble

output with the original undistorted labeling

using o™ (i, A)
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Remarks

Objective function ¢(ANMI)(A,)L) seems to be

a suitable choice to evaluate the algorithms

in practice when ¢""*")(x,4) may not be available.

Findings: MCLA tends to be best in low noise/
diversity scenarios; HGPA/CSPA tend to be
better in high noise/diversity settings. Sounds
reasonable since MCLA assumes meaningful
cluster correspondences.



Data Sets

name features Ffeatures #categories balance | similarity
2D2K real 2 2 1.00 | Enclidean
8D5K real 8 5 1.00 | Euclidean
PENDIG  real 16 10 0.87 | Euclidean
YAHOO  ordinal 2003 20 0.24 (Cosine
Input

parameter



Three Scenarios

“+» Feature-Distributed Clustering (FDC):

» Each entity has access only to a subset of
features;

< Object-Distributed Clustering (ODC)

< Each entity has access only to a subset of
objects;

“» Robust Centralized Clustering (RCC):

/

» The robustness of clustering can be increased
through combining a set of clusterings.



Feature-Distributed Clustering (FDC)

» Each c

» Each c

usterer has access to all data;

usterer has a partial view of the data

(i.e., access to a subset of features);

<+ Each clusterer uses the same algorithm to
cluster the data;

“» In the combining phase, individual cluster
labels are integrated.



Experiments with 8D5K data

PC 2

PC 2

PC 2

PC 2

PC1

PC 2

8 PC 1



Experiments with 8D5K data

d

o

PC 2
PC 2

=Tal =Tal
Reference clustering Consensus clustering

Best individual result: 120 mislabeled points;

Consensus clustering: 3 mislabeled points.



FOC Results

input and parameters

quality

data | sub- # all features | consensus | max subspace |average subspace| min subspace
space |models |¢(NMD (5 A (al))|a(NMI) (A max, aveg, min,
#dims| r d,(NMI)(h-. /\(q)) ,p(NMI')(& /\(q]) é(‘NI\'il')(K’/\('q))
2D2K 1 3 0.84747 0.68864 0.68864 0.64145 0.54706
8DEK | 2 ] 1.00000 0.98913 0.76615 0.60823 0.62134
PENDIG| 4 10 0.67805 0.63918 0.47865 0.41951 0.32641
YAHOO | 128 20 0.48877 0.41008 0.20183 0.16033 0.11143

The consensus clustering is as good as or better than the
best individual input clustering, and always better than
the average quality of individual clusterings.




Object-Distributed Clustering (ODC)

<+ Each clusterer has access only to a subset of
objects; thus labelings are partial;

<+ Sampling strategy: Objects are partitioned among
the clusterers to provide full coverage; Partitions
overlap.

<+ Each clusterer uses the same algorithm to cluster
the data (into k groups)



ODC Results

1® E 13
=09 © = 0.9F
2 e 20)] =
© 08 5 08
= 0 Q o =
Zo7t ] 2oz
g $
=06} 1 <06
c c
S o0st . 205
£ £
S04} 1 S04
= £
® 0.3} 1 ® 0.3
2 2
g2 0.2t 1 g02

0.1f . 0.1
0 . : : : : : : 0 : : . : : : .
10 20 30 40 50 80 70 10 20 30 40 50 60 70
P P
(a) (b)

10 20 30 40 50 60 70 10 20 30 40 50 60 70



Robust Centralized Clustering (RCC)

» Each clusterer has access to all data and to
all features:

<+ Each clusterer uses a different algorithm;

“*» Goal: to yield robust clustering without human
interaction and/or parameter tuning.



RCC: Settings

<+ 10 algorithms: (1) SOMs; (2) Hypergraph
partitioning; k-means with distance based on (3)
Euclidean; (4) cosine; (5) correlation; (6) extended
Jaccard; and graph partitioning with distance based

on (7) Euclidean; (8) cosine; (9) correlation; (10)
extended Jaccard.

» Each clusterer uses a different algorithm;

“*» Goal: to yield robust clustering without human
interaction and/or parameter tuning.



RCC: Evaluation

< RCC was performed 10 times each on sample sizes of
50, 100, 200, 400, 800 (200, 400, and 800 for
YAHOO).

< Quality is measured in ferms of difference in mutual
information as compared to a random clustering
algorithm.



RCC: Results
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RCC: Remarks

% Cluster ensembles can be used to boost robustness in
risk-intolerant settings;

L)

* It's hard to evaluate clustering in high-dimensional

settings. Category labels may not be available. One
can:

)

/

<+ Utilize several algorithms;

<+ Integrate their results using a consensus function.



Concluding Remarks

<+ TIs consensus clustering robust with respect to
different values of & that may be returned by
different clusterings?

/

» ANMT (unsupervised consensus function) seems a

good indicator of NMI with the "true labels” (may not
be availablel)

 Apply ANMI to allow soft clustering.



Additional Comments?



