


•  The problem of combining multiple 
clusterings; 

•  Suitable objective function for determining 
a single consensus clustering; 

•  Greedy approaches to optimize this 
objective function.  



  

€ 

X = x1,,xn{ } :  set of data

  

€ 

Cl | l =1,,k{ } :  partitioning of n data into k clusters

€ 

λ ∈ℵn :  label vector representing a partition
               of n data into k clusters

€ 

Clusterer Φ :  is a function that delivers a label vector
                         given a tuple of data X
                          Φ : X →λ



  

€ 

A consensus function  Γ combines clusterings λ q( ),q =1,,r



  

€ 

The consensus function Γ : λ1,,r( ){ }→λ

has access only to the r label vectors.
The function Γ has no knowledge of :
- the original feature measurements X;
- the clustering algorithms Φ



€ 

n = 7;r = 4;

k 1( ) = 3,k 2( ) = 3,k 3( ) = 3,k 4( ) = 2.

How is “good” defined? 



€ 

n = 7;r = 4;

k 1( ) = 3,k 2( ) = 3,k 3( ) = 3,k 4( ) = 2.

€ 

A good clustering choice seems
λ = 1,1,1,2,2,3,3( )
Infact, it can be shown that this clustering shares 
the maximum information with the given four label 
vectors. 

Assume canonical forms of label vectors. 



  

€ 

Γ : λ q( ) |q∈ 1,,r{ }{ }→λ

Λ = λ q( ) |q∈ 1,,r{ }{ }

How can we measure the “shared information” 
between clusterings? 



Mutual Information 

€ 

H X( ) :  measure the uncertainty in the random variable X (entropy)

€ 

I X,Y( ) = H X( ) −H X |Y( )

             = Pr x,y( )
y
∑

x
∑ log

Pr x,y( )
Pr x( )Pr y( )

Describes the information on X provided by Y 

 Symmetric measure to quantify the     
statistical information shared between two 
distributions. 

 It is defined in terms of Entropy H. 



Mutual Information 

€ 

X :  random variable described  by the cluster labeling λ a( )

€ 

I X,Y( ) =  shared information between λ a( ) and λ b( )

 So: The mutual information provides a sound 
measure to quantify the information shared between 
pair of clusterings. 

€ 

Y :  random variable described  by the cluster labeling λ b( )

€ 

It can be shown that I X,Y( ) is a metric (with no upper bound)  

€ 

For easier interpretation :

NMI X,Y( ) =
I X,Y( )
H X( )H Y( )

Since I X,X( ) = H X( ),NMI X,X( ) =1.



Estimation of NMI 

€ 

nh
a( ) :  number of data in cluster Ch  according to λ a( )

nl
b( ) :  number of data in cluster Cl  according to λ b( )

nh,l  :  number of data in both clusters Ch  and Cl

€ 

k a( ),k b( ) :  number of clusters in λ a( ) and λ b( ) respectively

€ 

NMI X,Y( ) needs to be estimated using the sampled
quantities provided by the clusterings.



  

€ 

Recall :  Λ = λ q( ) |q∈ 1,,r{ }{ }
We can now define a measure between a 

set of r labelings Λ and a single labeling ˆ λ  



€ 

The optimal combined clustering λ k−opt( ) is the one
that has the maximal ANMI with all individual
labelings  in Λ,  given that the number of consensus
clusters  is k. 



1.  Initial labeling: single labeling that gives highest ANMI; 

2.  For each data, its label is changed to each of the other possible 
k-1 labels, and the ANMI objective is re-evaluated; 

3.  If ANMI increases, the data’s label is changed to the best new 
value, and the algorithm proceeds to the next point; 

4.  When all data have been checked for possible improvements, an 
iteration is complete; 

5.  If at least one label was changed during the last iteration, go 
back to 2., otherwise terminate (local minimum is reached). 



  Intuitive heuristics; 

  Do not perform a direct maximization of ANMI 
objective; 

  Three different algorithms: 

  Cluster-based Similarity Partitioning Algorithm 
(CSPA) 

  HyperGraph Partitioning Algorithm (HGPA) 

  Meta-CLustering Algorithm (MCLA) 

  All three algorithms first transform the set of 
clustering into a hypergraph representation. 



  

€ 

For each label vector λ q( ) ∈ℵn ,  a binary membership indicator

matrix H q( ) is constructed, with a column for each cluster
(corresponding to a hyperedge).



    

€ 

The concatenated block matrix

H = H 1,,4( ) = H 1( )
H 4( )( )

defines the adjacency matrix of a hypergraph
with 7 vertices and 11 hyperedges

original 
label 
vectors 



  Two points have similarity 1 if they belong to the 
same cluster; similarity 0 otherwise. 

  This defines a binary similarity matrix for each 
clustering. 

  Overall similarity matrix S: entry-wise average of the 
r above matrices.  

  The element Sij of S represents the fraction of 
clusterings in which two data xi and xj are in the same 
cluster. 

€ 

S =
1
r
HHT





  The combined similarity matrix is used to recluster 
the data using a similarity based clustering algorithm. 

  A graph-partitioning based clustering approach is 
used: 
  The induced similarity graph (vertex = data; edge weight = 

similarity) is partitioned using METIS. 

  Advantages: 
  Simple heuristic. 

  Disadvantages: 
  Computational and storage complexity are both quadratic in 

n. 



  Seeks a partitioning of the hypergraph by 
cutting a minimal number of hyperedges. 

  All hyperedges have the same weight. 

  This algorithm looks for a hyperedge 
separator that partitions the hypergraph into 
k unconnected components of approximately 
the same size. 

  Captures n-way relationships between data 
points. 



h1 

h2 

h3 

We seek a minimal hyperedge cut that partitions 
the seven data into 3 balanced groups. 



h1 

h2 

h3 

The minimal hyperedge cut is 4. 



h1 

h2 

h3 

The minimal hyperedge cut is 4. 



h1 

h2 

h3 

The minimal hyperedge cut is 4. 
The resulting combined clustering is: 

€ 

x1,x2,x3{ }, x4 ,x5{ }, x6,x7{ }{ }



Limitation: No knowledge of partially cut 
hyperedges. 

I.e., The algorithm does not keep track of how 
much of a hyperedge is left in the same group 
after the cut. 



h1 

h2 

h3 

Both partitionings cut all three hyperedges. 

€ 

x1,x2,x7{ }, x3,x4{ }, x5,x6{ }{ },   x1,x7{ }, x3,x4{ }, x2,x5,x6{ }{ }



Advantage: Efficiency. Complexity is O(nkr) 

(assuming usage of HMETIS). 



  Based on clustering of clusters. 

  Provides object-wise confidence estimates of cluster 
membership. 

  Basic idea:  
  Each cluster corresponds to a hyperedge; 

  Hyperedges are grouped, and each data is assigned to the 
collapsed hyperedge to which it participates more strongly; 

€ 

Initial number of hyperedges :  k q( )

q=1

r

∑

After collapsing hyperedges :  k
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€ 

The resulting meta - clusters are :  

C1
M( ) = h3,h4 ,h9{ }

C2
M( ) = h2,h6,h8,h10{ }

C3
M( ) = h1,h5,h7,h11{ }
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€ 

The resulting meta - clusters are :  

C1
M( ) = h3,h4 ,h9{ }

C2
M( ) = h2,h6,h8,h10{ }

C3
M( ) = h1,h5,h7,h11{ }



€ 

C1
M( ) = h3,h4 ,h9{ }

C2
M( ) = h2,h6,h8,h10{ }

C3
M( ) = h1,h5,h7,h11{ }

€ 

⇒ 0,0,0,0,1/3,1,1( )



€ 

C1
M( ) = h3,h4 ,h9{ }

C2
M( ) = h2,h6,h8,h10{ }

C3
M( ) = h1,h5,h7,h11{ }

€ 

⇒ 0,0,0,0,1/3,1,1( )

€ 

⇒ 1/4,0,1/4,1,1/2,0,0( )



€ 

C1
M( ) = h3,h4 ,h9{ }

C2
M( ) = h2,h6,h8,h10{ }

C3
M( ) = h1,h5,h7,h11{ }

€ 

⇒ 0,0,0,0,1/3,1,1( )

€ 

⇒ 1/4,0,1/4,1,1/2,0,0( )

€ 

⇒ 3/4,1,1/2,0,1/4,0,0( )





€ 

C1
M( ) = h3,h4 ,h9{ }

C2
M( ) = h2,h6,h8,h10{ }

C3
M( ) = h1,h5,h7,h11{ }

€ 

⇒ 0,0,0,0,1/3,1,1( )

€ 

⇒ 1/4,0,1/4,1,1/2,0,0( )

€ 

⇒ 3/4,1,1/2,0,1/4,0,0( )

€ 

         ⇓
C1 = x6,x7{ }
C2 = x4 ,x5{ }
C3 = x1,x2,x3{ }



 Complexity:  

€ 

O nk 2r2( )





  n=400; k=10; clusters are balanced; 

  A partition is generated at random by a 
random permutation;   

  The partition is duplicated r=8 times; 

  In each of the 8 labelings, a fraction of labels 
is replaced with random labels from a uniform 
distribution from 1 to k=10; 

  The resulting noisy labelings are feeded to 
the proposed algorithms. 



€ 

Measures used are :

Normalized objective function φ ANMI( ) Λ,λ( )
of the ensemble output λ with all the individual
labels in Λ;

Normalized mutual information of the ensemble 
output with the original undistorted labeling

using φ NMI( ) κ,λ( )



€ 

 φ ANMI( ) Λ,λ( )



€ 

φ NMI( ) κ,λ( )



€ 

Objective function φ ANMI( ) Λ,λ( ) seems to be
a suitable choice to evaluate the algorithms

in practice when φ NMI( ) κ,λ( ) may not be available.





  Feature-Distributed Clustering (FDC): 
  Each entity has access only to a subset of 

features; 

  Object-Distributed Clustering (ODC) 
  Each entity has access only to a subset of 

objects; 

  Robust Centralized Clustering (RCC): 
  The robustness of clustering can be increased 

through combining a set of clusterings. 



  Each clusterer has access to all data; 

  Each clusterer has a partial view of the data 
(i.e., access to a subset of features); 

  Each clusterer uses the same algorithm to 
cluster the data; 

  In the combining phase, individual cluster 
labels are integrated. 





Reference clustering Consensus clustering 

Best individual result: 120 mislabeled points; 

Consensus clustering: 3 mislabeled points. 



The consensus clustering is as good as or better than the 
best individual input clustering, and always better than 
the average quality of individual clusterings. 



  Each clusterer has access only to a subset of 
objects; thus labelings are partial; 

  Sampling strategy: Objects are partitioned among 
the clusterers to provide full coverage; Partitions 
overlap. 

  Each clusterer uses the same algorithm to cluster 
the data (into k groups)  





  Each clusterer has access to all data and to 
all features; 

  Each clusterer uses a different algorithm; 

  Goal: to yield robust clustering without human 
interaction and/or parameter tuning. 





  RCC was performed 10 times each on sample sizes of 
50, 100, 200, 400, 800 (200, 400, and 800 for 
YAHOO). 

  Quality is measured in terms of difference in mutual 
information as compared to a random clustering 
algorithm. 





  Cluster ensembles can be used to boost robustness in 
risk-intolerant settings; 

  It’s hard to evaluate clustering in high-dimensional 
settings. Category labels may not be available. One 
can: 
  Utilize several algorithms; 

  Integrate their results using a consensus function. 



  Is consensus clustering robust with respect to 
different values of k that may be returned by 
different clusterings? 

  ANMI (unsupervised consensus function) seems a 
good indicator of NMI with the “true labels” (may not 
be available!) 

  Apply ANMI to allow soft clustering. 




