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Let w be the direction of the first principal component, with w =1
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si = wT xi  is the projection of xi along w
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Variance of data along w :
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Thus :  the variance of data along direction w can be written as 
                                  wTΣw
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Our objective is to find w such that 
                                  w = argmax

w
wTΣw

with the constraint wTw =1
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By introducing one Lagrange multiplier λ,  we obtain
the following unconstrained optimization problem
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Setting ∂
∂w

= 0 gives :   2Σw − 2λw = 0
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That is :   Σw = λw
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That is :   Σw = λw
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The solution w  is the eigenvector of Σ 
corresponding to the largest eigenvalue λ
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 A typical eigenvalue spectrum and its division into  
two orthogonal subspaces 




