Dimensionality Reduction

« Many dimensions are often
interdependent (correlated);

We can:
» Reduce the dimensionality of problems;

» Transform interdependent coordinates
into significant and independent ones;

Principal Component Analysis




Principal Component Analysis -- PCA

(also called Karhunen-Loeve transformation)

« PCA transforms the original input space into
a lower dimensional space, by constructing
dimensions that are linear combinations of
the given features;

The objective is to consider independent
dimensions along which data have largest
variance (i.e., greatest variability);

Principal Component Analysis -- PCA

PCA involves a linear algebra procedure that
transforms a number of possibly correlated
variables into a smaller number of
uncorrelated variables called principal
components;

The first principal component accounts for as
much of the variability in the data as possible;

Each succeeding component (orthogonal to
the previous ones) accounts for as much of
the remaining variability as possible.




Principal Component Analysis -- PCA

» So: PCAfinds n linearly transformed

components so that they explain
the maximum amount of variance;

* We can define PCA in an intuitive way using a
recursive formulation:

Principal Component Analysis -- PCA

* Suppose data are first centered at the origin
(i.e., their meanis 0 );

» We define the direction of the first principal
component, say [lll, as follows

Wy =arg maxE [(w'x)]

where is of the same dimensionality ] as
the data vector

* Thus:




Principal Component Analysis -- PCA

Having determined the first k-7 principal
components, the k-th principal component is
determined as the principal component of the

data residual:

k-1
W, = arg max E{[w" (x- 2 ww; x)]"}
i=1

[wl=1

The principal components are then given by:

T

Simple illustration of PCA

First principal component of a two-dimensional
data set.




Simple illustration of PCA

Second principal component of a two-
dimensional data set.

PCA — Geometric interpretation

Basically:

PCA rotates the data

(centered at the origin) in
such a way that the maximum
variability is visible (i.e.,
aligned with the axes.)




PCA - How to compute the principal components

Let w be the direction of the first principal component, with HwH =1
s, =w' x, is the projection of x, along w
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PCA - How to c2<>mpute the principal components

N

Sample covariance matrix




PCA - How to compute the principal components

Thus: the variance of data along direction w can be written as
w' Zw
Our objective is to find w such that
W = argmax w' Zw
with the constraint w’w =1

By introducing one Lagrange multiplier A, we obtain

the following unconstrained optimization problem

w= argmjlx[wTZw - A(wTw - 1)]

Setting 6i =0 gives: 2Zw-2iw=0
w

Our problem is reduced to an

Thatis: Zw = Aw eigenvalue problem

PCA - How to compute the principal components

Thus: the variance of data along direction w can be written as
w' Zw
Our objective is to find w such that
W = argmax w' Zw
with the constraint w’w =1

By introducing one Lagrange multiplier A, we obtain

the following unconstrained optimization problem

w= argmjlx[wTZw - A(wTw - 1)]

Settin 9 0 gives: 2Zw-2Aw =0
ow

The solution w is the eigenvector of =
corresponding to the largest eigenvalue A

Thatis: Zw=Aw




PCA -- Summary

» The computation of the is accomplished by solving
an eigenvalue problem for the sample covariance
matrix (assuming data have 0 mean):

The eigenvector associated with the largest
eigenvalue corresponds to the first principal
component; the eigenvector associated with the
second largest eigenvalue corresponds to the second
principal component; and so on...

Thus: The are the eigenvectors of P that
correspond to the n largest eigenvalues of

PCA -- In practice

The basic goal of PCA is to reduce the
dimensionality of the data. Thus, one usually

chooses:

But how do we select the number of
components n ?




Determining the number of components

Plot the eigenvalues — each eigenvalue is
related to the amount of variation explained by
the corresponding axis (eigenvector);

If the points on the graph tend to level out
(show an “elbow” shape), these eigenvalues
are usually close enough to zero that they can
be ignored.

In general: Limit the variance accounted for.

Critical information lies in low
dimensional subspaces

F

A typical eigenvalue spectrum and its division into
two orthogonal subspaces
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