Dimensionality Reduction

- Many dimensions are often interdependent (correlated);

We can:

- Reduce the dimensionality of problems;
- Transform interdependent coordinates into significant and independent ones;

Principal Component Analysis

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

- PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations of the given features;
- The objective is to consider independent dimensions along which data have largest variance (i.e., greatest variability);

Principal Component Analysis -- PCA

- PCA involves a linear algebra procedure that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components;
- The first principal component accounts for as much of the variability in the data as possible;
- Each succeeding component (orthogonal to the previous ones) accounts for as much of the remaining variability as possible.

Principal Component Analysis -- PCA

- So: PCA finds n linearly transformed components $s_{1}, s_{2}, \cdots, s_{n}$ so that they explain the maximum amount of variance;
- We can define PCA in an intuitive way using a recursive formulation:

Principal Component Analysis -- PCA

- Suppose data are first centered at the origin (i.e., their mean is $\mathbf{0}$);
- We define the direction of the first principal component, say w_{1}, as follows
$w_{1}=\arg \max _{\|w\|=1} E\left[\left(w^{T} x\right)^{2}\right]$
where w_{1} is of the same dimensionality q as the data vector x
- Thus: the first principal component is the projection on the direction along which the variance of the projection is maximized.

Principal Component Analysis -- PCA

- Having determined the first $k-1$ principal components, the k-th principal component is determined as the principal component of the data residual:

$$
\boldsymbol{w}_{k}=\arg \max _{|\boldsymbol{w}| \mid=1} E\left\{\left[\boldsymbol{w}^{T}\left(\boldsymbol{x}-\sum_{i=1}^{k-1} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{T} \boldsymbol{x}\right)\right]^{2}\right\}
$$

- The principal components are then given by:

$$
s_{i}=\boldsymbol{w}_{i}^{T} \boldsymbol{x}
$$

Simple illustration of PCA

First principal component of a two-dimensional data set.

Simple illustration of PCA

Second principal component of a twodimensional data set.

PCA - Geometric interpretation

Basically:
PCA rotates the data
(centered at the origin) in
such a way that the maximum
variability is visible (i.e., aligned with the axes.)

PCA - How to compute the principal components

Let \boldsymbol{w} be the direction of the first principal component, with $\|\boldsymbol{w}\|=1$
$s_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i}$ is the projection of \boldsymbol{x}_{i} along \boldsymbol{w}
$\bar{s}=\frac{1}{N} \sum_{i=1}^{N} s_{i}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{w}^{T} \boldsymbol{x}_{i}$
Variance of data along \boldsymbol{w} :

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N}\left(s_{i}-\bar{s}\right)^{2}= \\
& \frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-\frac{1}{N} \sum_{j=1}^{N} \boldsymbol{w}^{T} \boldsymbol{x}_{j}\right)^{2}
\end{aligned}
$$

PCA - How to compute the principal components

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N}\left(s_{i}-\bar{s}\right)^{2}= \\
& \frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-\frac{1}{N} \sum_{j=1}^{N} \boldsymbol{w}^{T} \boldsymbol{x}_{j}\right)^{2}= \\
& \frac{1}{N} \sum_{i=1}^{N}\left[\boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\frac{1}{N} \sum_{j=1}^{N} \boldsymbol{x}_{j}\right)\right]^{2}= \\
& \frac{1}{N} \sum_{i=1}^{N}\left[\boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\right]^{2}= \\
& \frac{1}{N} \sum_{i=1}^{N}\left[\boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{w}\right]= \\
& \boldsymbol{w}^{T}\left[\left[\frac{1}{N} \sum_{i=1}^{N}\left[\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}\right]\right] \boldsymbol{w}=\boldsymbol{w}^{T} \Sigma \boldsymbol{w}\right.
\end{aligned}
$$

PCA - How to compute the principal components

Thus: the variance of data along direction \boldsymbol{w} can be written as

$$
\boldsymbol{w}^{T} \Sigma \boldsymbol{w}
$$

Our objective is to find \boldsymbol{w} such that

$$
\boldsymbol{w}=\arg \max _{w} \boldsymbol{w}^{T} \Sigma \boldsymbol{w}
$$

with the constraint $\boldsymbol{w}^{T} \boldsymbol{w}=1$
By introducing one Lagrange multiplier λ, we obtain the following unconstrained optimization problem

$$
\boldsymbol{w}=\arg \max _{w}\left[\boldsymbol{w}^{T} \Sigma \boldsymbol{w}-\lambda\left(\boldsymbol{w}^{T} \boldsymbol{w}-1\right)\right]
$$

Setting $\frac{\partial}{\partial \boldsymbol{w}}=0$ gives: $\quad 2 \Sigma \boldsymbol{w}-2 \lambda \boldsymbol{w}=0$
That is: $\Sigma \boldsymbol{w}=\lambda \boldsymbol{w}$

Our problem is reduced to an

 eigenvalue problem
PCA - How to compute the principal components

Thus: the variance of data along direction \boldsymbol{w} can be written as

$$
\boldsymbol{w}^{T} \Sigma \boldsymbol{w}
$$

Our objective is to find \boldsymbol{w} such that

$$
\boldsymbol{w}=\arg \max _{\boldsymbol{w}} \boldsymbol{w}^{T} \boldsymbol{\nu} \boldsymbol{w}
$$

with the constraint $\boldsymbol{w}^{T} \boldsymbol{w}=1$
By introducing one Lagrange multiplier λ, we obtain the following unconstrained optimization problem

$$
\boldsymbol{w}=\arg \max _{w}\left[\boldsymbol{w}^{T} \Sigma \boldsymbol{w}-\lambda\left(\boldsymbol{w}^{T} \boldsymbol{w}-1\right)\right]
$$

Setting $\frac{\partial}{\partial \boldsymbol{w}}=0$ gives : $\quad 2 \Sigma \boldsymbol{w}-2 \lambda \boldsymbol{w}=0$
That is: $\Sigma \boldsymbol{w}=\boldsymbol{\lambda} \boldsymbol{w}$

> The solution w is the eigenvector of Σ corresponding to the largest eigenvalue λ

PCA -- Summary

- The computation of the \boldsymbol{w}_{i} is accomplished by solving an eigenvalue problem for the sample covariance matrix (assuming data have 0 mean):

$$
\Sigma=E\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]
$$

- The eigenvector associated with the largest eigenvalue corresponds to the first principal component; the eigenvector associated with the second largest eigenvalue corresponds to the second principal component; and so on...
- Thus: The \boldsymbol{w}_{i} are the eigenvectors of Σ that correspond to the n largest eigenvalues of Σ

PCA -- In practice

- The basic goal of PCA is to reduce the dimensionality of the data. Thus, one usually chooses:

$$
n \ll q
$$

- But how do we select the number of components n ?

Determining the number of components

- Plot the eigenvalues - each eigenvalue is related to the amount of variation explained by the corresponding axis (eigenvector);
- If the points on the graph tend to level out (show an "elbow" shape), these eigenvalues are usually close enough to zero that they can be ignored.
- In general: Limit the variance accounted for.

Critical information lies in low

 dimensional subspaces

A typical eigenvalue spectrum and its division into two orthogonal subspaces

