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Machine Learning 

Given a collection of data, a machine learner 
explains the underlying process that generated 
the data in a general and simple fashion. 

Different learning paradigms: 
 supervised learning 
 unsupervised learning 
 semi-supervised learning 
 reinforcement learning 

Supervised Learning 
•  Sample data comprises input vectors 

along with the corresponding target values 
(labeled data) 

•  Supervised learning uses the given 
labeled data to find a model (hypothesis) 
that predicts the target values for 
previously unseen data 
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Supervised Learning: Classification 

•  Each element in the sample is labeled as 
belonging to some class (e.g., apple or orange).   

•  The learner builds a model to predict classes for 
all input data.   

•  There is no order among classes. 

Classification Example: 
Handwriting Recognition 

•  You've been given a set of 
N pictures of digits.  For 
each picture, you're told 
the digit number 

•  Discover a set of rules 
which, when applied to 
pictures you've never 
seen, correctly identifies 
the digits in those pictures 
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Supervised Learning: Regression 

•  Each element in the sample is associated with 
one or more continuous variables   

•  The learner builds a model to predict the 
value(s) for all input data 

•  Unlike classes, values have an order among 
them 

Regression Example: 
Automated Steering 

•  A CMU team trained a neural network to drive 
a car by feeding in many pictures of roads, 
plus the value according to which the 
graduate student was turning the steering 
wheel at the time. 

•  Eventually the neural network learned to 
predict the correct value for previously 
unseen pictures of roads. 

•  "No Hands Across America" 
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Unsupervised Learning 
•  The given data consists of input vectors 

without any corresponding target values 

•  The goal is to discover groups of similar 
examples within the data (clustering), or 
to determine the distribution of data within 
the input space (density estimation) 

Unsupervised Learning: 
Clustering 

•  The goal is to discover groups of similar 
examples within the data 
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Semi-supervised Learning 
•  Unlabeled data may be easily available, while labeled 

ones may be expensive to obtain because they require 
human effort.  

•  Semi-supervised learning is a recent learning paradigm: it 
exploits unlabeled examples, in addition to labeled ones, 
to improve the generalization ability of the resulting 
classifier 

Semi-supervised Clustering 
•  Constraints (must-link; cannot-link) on pairs of 

points are available 
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Reinforcement Learning 
•  The problem here is to find suitable actions to 

take in a given situation in order to maximize a 
reward 

•  Trial and error: no examples of optimal outputs 
are given 

•  Trade-off between exploration (try new actions to 
see how effective they are) and exploitation (use 
actions that are known to give high reward) 

A Classification 
Example 

(from Pattern Classification by  
Duda & Hart & Stork – Second Edition, 2001) 
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•  A fish-packing plant wants to automate 
the process of sorting incoming fish 
according to species 

•  As a pilot project, it is decided to try to 
separate sea bass from salmon using 
optical sensing 

To solve this problem, we adopt a 
machine learning approach:  

We use a training set  to tune 
the parameters of an adaptive 

model 
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•  Length 

•  Lightness 

•  Width 

•  Position of the mouth 

•  … 

Features to explore for use in 
our classifier 

•  Preprocessing: Images of 
different fishes are isolated 
from one another and from 
background; 

•  Feature extraction: The 
information of a single fish is 
then sent to a feature extractor, 
that measure certain “features” 
or “properties”; 

•  Classification: The values of 
these features are passed to a 
classifier that evaluates the 
evidence presented, and build a 
model to discriminate between 
the two species 
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•  Domain knowledge:  
   a sea bass is generally longer than a salmon 

•  Feature: Length 

•  Model:  
    Sea bass have some typical length, and this is 

greater than the length of a salmon 

•  Classification rule: 

If Length >= l*   then sea bass 

                          otherwise salmon 

•  How to choose l* ? 

•  Use length values of sample data (training data) 
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Histograms of the length feature for the two categories 

Leads to the smallest number of errors on average 

We cannot reliably separate sea bass from salmon by length alone! 

•  New Feature:  
Average lightness of the fish scales 
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Histograms of the lightness feature for the two categories 

Leads to the smallest number of errors on average 

The two classes are much better separated! 

Histograms of the lightness feature for the two categories 

Our actions are equally costly 
Classifying a sea bass as salmon 
costs more. Thus we reduce the 
number of sea bass classified as 
salmon. 
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•  In Summary: 

The overall task is to come up with a 
decision rule (i.e., a decision boundary) 
so as to minimize the cost (which is 
equal to the average number of 
mistakes for equally costly actions). 

•  No single feature gives satisfactory results 
•  We must rely on using more than one feature 
•  We observe that:  

sea bass usually are wider than salmon 
•  Two features: Lightness and Width 

•  Resulting fish representation: 



1/26/09 

13 

Decision rule: Classify the fish as a sea bass if its feature 
vector falls above the decision boundary shown, and as 
salmon otherwise 

Should we be satisfied with this result? 

Options we have: 
•  Consider additional features: 

– Which ones? 
– Some features may be redundant (e.g., if eye 

color perfectly correlates with width, then we 
gain no information by adding eye color as 
feature.) 

–  It may be costly to attain more features 
– Too many features may hurt the performance! 

•  Use a more complex model 
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All training data are perfectly separated 

Should we be satisfied now?? 

•  We must consider: Which decisions will the classifier take on 
novel patterns, i.e. fish not yet seen? Will the classifier 
suggest the correct actions? 

This is the issue of GENERALIZATION 

Generalization 

•  A good classifier should be able to generalize, i.e. 
perform well on unseen data 

•  The classifier should capture the underlying 
characteristics of the categories 

•  The classifier should NOT be tuned to the specific 
(accidental) characteristics of the training data 

•  Training data in practice contain some noise 
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•  As a consequence: 

We are better off with a slightly 
poorer performance on the training 
examples if this means that our 
classifier will have better 
performance on novel patterns. 

The decision boundary shown may represent the optimal tradeoff 
between accuracy on the training set and on new patterns 

How can we determine automatically when the optimal 
tradeoff has been reached? 
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Generalization 

  The idea is to use a model with an intermediate 
complexity, which gets most of the points right, without 
putting too much trust in any individual point. 

  The goal of statistical learning theory is to formalize 
these arguments by studying mathematical properties of 
learning machines, i.e. properties of the class of 
functions that the learning machine can implement 
(formalization of the complexity of the model). 

error 

Generalization error 

Error on training data 

Complexity of the model Optimal  

complexity 

Tradeoff between performance on training 
and novel examples 

Evaluation of the classifier on novel data is 
important to avoid over-fitting 
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Example: Regression Estimation 

€ 

xi,ti( )∈ ℜ×ℜ•   Data: input-output pairs 

•   Regularity:                                             drawn from  

•   Learning:  choose a function                          such that a given   
error function is minimized 

  

€ 

x1,t1( ),, xN ,tN( )

€ 

P x, t( )

€ 

f :ℜ→ℜ

€ 

t = sin 2πx( )

Polynomial Curve Fitting 

•   We fit the data using a polynomial function of the form: 

•   It is linear in the unknown parameters: linear model 

•   Fit the polynomial to the training data so that a given error 
function is minimized: 

    

€ 

y x,w( ) = w0 + w1x + w2x
2 ++ wM x

M = w j x
j

j= 0

M

∑

  

€ 

E w( ) =
1
2

y xn,w( ) − tn( )2
n=1

N

∑
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Polynomial Curve Fitting 

Geometrical interpretation of the sum-of-squares error function 

  

€ 

E w( ) =
1
2

y xn,w( ) − tn( )2
n=1

N

∑

Polynomial Curve Fitting 
Model selection: We need to choose the order M of the 
polynomial: 

    

€ 

y x,w( ) = w0 + w1x + w2x
2 ++ wM x

M = w j x
j

j= 0

M

∑

Over-fitting 
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Polynomial Curve Fitting 
Model selection: we can investigate the dependence of the 
generalization performance on the order M 

  

€ 

ERMS = 2E w*( ) /N Root-mean-square error 

Polynomial Curve Fitting 
We can also examine the behavior of a given model as the 
size of the data set changes 

For a given model, the over-fitting problem 
becomes less severe as the number of training 
data increases 
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How to dodge the over-fitting problem? 

Assumption: we have a limited number of training data 
available, and we wish to use relatively complex and flexible 
models. 

One possible solution: add a penalty term to the error 
function to discourage the coefficients from reaching large 
values, e.g.: 

This is an example of a regularization technique.  

[shrinkage methods, ridge regression, weight decay] 

Sum of all squared 
coefficients 

The impact of Regularization 
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The impact of Regularization 

      controls the effective complexity of the model 
and hence determines the degree of over-fitting 

Model selection 

Partition available data into a training set used to 
determine the coefficients    , and into a separate 
validation set (also called hold-out) used to optimize the 
model complexity (                )  

If the model design is iterated several times using a limited 
number of data, some over-fitting to the validation data can 
occur. 

Solution: Set aside a third test set on which performance of 
the selected model is finally evaluated.               



1/26/09 

22 

Model selection 

Often we have limited data available, and we wish to use 
as much of the available data as possible for training to 
build good models. 

However, if we use a small set for validation, we obtain 
noisy estimates of predictive performance. 

One solution to this problem is cross-validation. 

Cross-validation: Example 

4-fold cross-validation 

It allows to use ¾ of the available data 
for training, while making use of all of 

the data to assess performance 



1/26/09 

23 

k-fold Cross-validation 

  In general: we perform k runs. Each run uses (k-1)/k of 
the available data for training. 

  If the number of data is very limited, we can set k=N 
(total number of data points). This gives the leave-one-
out cross-validation technique. 

k-fold Cross-validation: Drawbacks 

 Computationally expensive: number of training runs is 
increased by a factor of k. 

 A single models may have multiple complexity 
parameters: exploring combinations of settings could 
require a number of training runs that is exponential in 
the number of parameters. 
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Bayesian Probabilities 

 A key issue in pattern recognition is uncertainty. It is 
due to incomplete and/or ambiguous information, i.e. 
finite and noisy data. 

 Probability theory and decision theory provide the 
tools to make optimal predictions given the limited 
available information. 

  In particular, the Bayesian interpretation of probability 
allows to quantify uncertainty, and make precise 
revisions of uncertainty in light of new evidence. 

Bayes’ Theorem 

                      is the prior probability: it expresses the 
probability before we observe any data 

                                  is the posterior probability: it 
expresses the probability after  we observed the data 

  The effect of the observed data is captured through the 
conditional probability 

€ 

p Y = y | X = x( ) =
p X = x |Y = y( )p Y = y( )

p X = x( )

€ 

p Y = y( )

€ 

p Y = y | X = x( )

€ 

p X = x |Y = y( )
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Curse of Dimensionality 

 Real world applications deal with spaces with high 
dimensionality 

 High dimensionality poses serious challenges for the 
design of pattern recognition techniques 

Oil flaw data in two 
dimensions 

Red = homogeneous 

Green = annular 

Blue = laminar 

Curse of Dimensionality 

 A simple classification approach 
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Curse of Dimensionality 

 Going higher in dimensionality… 

The number of regions of a regular grid grows 
exponentially with the dimensionality        of the 
space 

DMAX/DMIN 

Curse of Dimensionality       
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Curse of Dimensionality       

Curse of Dimensionality       
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Curse of Dimensionality       

Curse of Dimensionality       
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€ 

uniform distribution in the unit cube -.5,.5[ ]q
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Curse-of-Dimensionality 

€ 

K =1

€ 

d(q,N) =O(N−1/ q )

€ 

d(q,N)⇒

Curse-of-Dimensionality 
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Curse-of-Dimensionality 

Microarray Data Analysis 
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Document Classification 

Of all the sensory impressions proceeding to 
the brain, the visual experiences are the 
dominant ones. Our perception of the world 
around us is based essentially on the 
messages that reach the brain from our eyes. 
For a long time it was thought that the retinal 
image was transmitted point by point to visual 
centers in the brain; the cerebral cortex was a 
movie screen, so to speak, upon which the 
image in the eye was projected. Through the 
discoveries of Hubel and Wiesel we now 
know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By 
following the visual impulses along their path 
to the various cell layers of the optical cortex, 
Hubel and Wiesel have been able to 
demonstrate that the message about the 
image falling on the retina undergoes a step-
wise analysis in a system of nerve cells 
stored in columns. In this system each cell 
has its specific function and is responsible for 
a specific detail in the pattern of the retinal 
image. 

sensory, brain,  
visual, perception,  
retinal, cerebral cortex, 
eye, cell, optical  
nerve, image 
Hubel, Wiesel 

brain 
visual 

eye 

cell 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 

Bag-of-words 
representation of a 
document 

w1    w2                                 ….                                       wq 

Term Frequency 

brain 
visual 

eye 

cell 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 
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dictionary 



1/26/09 

33 

What’s the size of the dictionary? 
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Curse-of-Dimensionality 
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Dimensionality Reduction 

•  Many dimensions are often interdependent 
(correlated); 

We can: 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates into 
significant and independent ones; 


