Example: PCA does not always work
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First principal component
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Confused mixture of samples from both classes

How to classify a new data point?
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How to classify a new data paint?
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First principal com ponent
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Points frem both classes are
intermingled.
We cannot predict with accuracy

the class of the new unlabeled
paint!
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Can we find a better projection?
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How about the horizontal dimension?
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How about the horizontal dimension?
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How to classify a new data point?
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How to classify a new data point?

The new point is much closer to

the red samples than to the green
ones.
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How to classify a new data point?

The new point is much closer to

the red samples than to the green
ones.

We can label the new point as
“red".
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What did we do?

* Find an orientation along which the projected
samples are well separated;

= This is exaclly the goal of

* |n other words: we are after the linear
projection that best separate the data, i.e. best
data of different classes.

How can we find such discriminant direction?
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Consider w eR°  with |w|=1

Then: w'x is the projection of x along the
direction of w

We want the projections w'x where x=C
separated from the projections w'x where
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LDA

= Ameasure of the separation between the
projected points is the difference of the
sample means:
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ish to make the above difference as large as
1. In addition. ..
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= To obtain good separation of the projected data we
really want the difference between the means to be
large relative to some measure of the standard
deviation of eaach class:
ol wa' = :| Scatter for the projected
ot © samples of class
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To obtain .-'l'll'_| ag an explich Tunction of = we daline
fhe following malrices
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We have obtained
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It can be shown tha t awectort hat maxmezes J
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We observe that:
Always in the direction of
(ror, — o, )
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we S (mr —m, )
» Givas the linear function with the maximum ratio of
batwaan-class scatter to within-class scattar.

# The probleam, e.g. classification, has been reduced
from a g-dimensional problem to a more
managaable one-dimensional problam.

« Dptimal for multivariate normal class conditional
densities.

LDA

+ Th lysis can be extended to multiple classas.

+ Both PCA and LDA are linear technigues for
dirmensionality reduction: they project the data along
directions that can be expressed as linear
combination of the input featuras.

+ The "appropriate” transformation depends on the data
and on the task nt to perform on the data. Note
that LDA uses class labals, PCA doas not.

+ Mon-linear extensions of PCA and LDA exist (e.q.,
Kemel-PCA, generalized LOA).




