CS 688 - Spring 2016

Homework 3 - Due March 28

Professor: Carlotta Domeniconi
Problem 1 Consider the following kernel function: $\left.K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(<\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle\right)^{2}$. Verify that for each of the following two mappings ϕ, it holds $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=<\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)>$. Show your calculations.

1. $\phi: \Re^{2} \rightarrow \Re^{3}, \phi(\mathbf{x})=\frac{1}{\sqrt{2}}\left(\begin{array}{c}x_{1}^{2}-x_{2}^{2} \\ 2 x_{1} x_{2} \\ x_{1}^{2}+x_{2}^{2}\end{array}\right)$
2. $\phi: \Re^{2} \rightarrow \Re^{4}, \phi(\mathbf{x})=\left(\begin{array}{c}x_{1}^{2} \\ x_{1} x_{2} \\ x_{1} x_{2} \\ x_{2}^{2}\end{array}\right)$

Problem 2 Consider the kernel function:

$$
K(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}+4(\mathbf{x} \cdot \mathbf{y})^{2}
$$

where the vectors \mathbf{x} and \mathbf{y} are two-dimensional vectors. This kernel is equal to an inner product $\phi(\mathbf{x}) \cdot \phi(\mathbf{y})$ for some definition of ϕ. What is the function ϕ ?

Problem 3 Prove that the parity function of $n>2$ binary inputs $x_{1}, x_{2}, \ldots, x_{n}$ cannot be computed by a perceptron. A parity function is a Boolean function whose value is 1 if and only if the input vector has an odd number of ones.

Problem 4 Consider the logistic regression classifier and the following quantity, called the log-odds of success:

$$
\ln \frac{P(Y=1 \mid x)}{P(Y=0 \mid x)}
$$

Show that the log-odds of success is a linear function of x.

Instructions This homework is due on March 28, before the beginning of class. Turn in a hardcopy before the beginning of class.

