CS 688 – Spring 2016 Homework 3 – Due March 28

Professor: Carlotta Domeniconi

Problem 1 Consider the following kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2$. Verify that for each of the following two mappings ϕ , it holds $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$. Show your calculations.

1.
$$\phi : \Re^2 \to \Re^3, \ \phi(\mathbf{x}) = \frac{1}{\sqrt{2}} \begin{pmatrix} x_1^2 - x_2^2 \\ 2x_1 x_2 \\ x_1^2 + x_2^2 \end{pmatrix}$$

2. $\phi : \Re^2 \to \Re^4, \ \phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$

Problem 2 Consider the kernel function:

$$K(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} + 4(\mathbf{x} \cdot \mathbf{y})^2$$

where the vectors \mathbf{x} and \mathbf{y} are two-dimensional vectors. This kernel is equal to an inner product $\phi(\mathbf{x}) \cdot \phi(\mathbf{y})$ for some definition of ϕ . What is the function ϕ ?

Problem 3 Prove that the parity function of n > 2 binary inputs x_1, x_2, \ldots, x_n cannot be computed by a perceptron. A parity function is a Boolean function whose value is 1 if and only if the input vector has an odd number of ones.

Problem 4 Consider the logistic regression classifier and the following quantity, called the *log-odds of success*:

$$\ln \frac{P(Y=1|x)}{P(Y=0|x)}$$

Show that the log-odds of success is a linear function of x.

Instructions This homework is due on March 28, before the beginning of class. **Turn in** a hardcopy before the beginning of class.