
Pattern Recognition 
Pattern recognition is concerned with the automatic finding of 
regularities in data and with the use of these regularities to 
take actions, such as classifying images or documents into 
different categories. 



Pattern Recognition 
and            

Machine Learning 

Given a collection of data, a machine learner 
explains the underlying process that generated 
the data in a general and simple fashion. 

Different learning paradigms: 
 supervised learning 
 unsupervised learning 
 semi-supervised learning 
 reinforcement learning 



Supervised Learning 
•  Sample data comprises input vectors 

along with the corresponding target values 
(labeled data) 

•  Supervised learning uses the given 
labeled data to find a model (hypothesis) 
that predicts the target values for 
previously unseen data 



Supervised Learning: Classification 

•  Each element in the sample is labeled as 
belonging to some class (e.g., apple or orange).   

•  The learner builds a model to predict classes for 
all input data.   

•  There is no order among classes. 



Classification Example: 
Handwriting Recognition 

•  You've been given a set of 
N pictures of digits.  For 
each picture, you're told 
the digit number 

•  Discover a set of rules 
which, when applied to 
pictures you've never 
seen, correctly identifies 
the digits in those pictures 



Supervised Learning - Classifying Coins
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Supervised Learning: Regression 

•  Each element in the sample is associated with 
one or more continuous variables   

•  The learner builds a model to predict the value(s) 
for all input data 

•  Unlike classes, values have an order among them 



Regression Example: 
Automated Steering 

•  A CMU team trained a neural network to drive a car 
by feeding in many pictures of roads, plus the value 
according to which the graduate student was turning 
the steering wheel at the time. 

•  Eventually the neural network learned to predict the 
correct value for previously unseen pictures of roads. 



Supervised Learning 
•  Data can be presented in a variety of ways 

to the learning process: 

– Active learning: data is acquired through 
queries that we make 

– Online learning: data is given to the learner 
one example at the time  



Unsupervised Learning 
•  The given data consists of input vectors 

without any corresponding target values 

•  The goal is to discover groups of similar 
examples within the data (clustering), or 
to determine the distribution of data within 
the input space (density estimation) 



Unsupervised Learning: 
Clustering 

•  The goal is to discover groups of similar 
examples within the data 

⇒



Unsupervised Learning - Categorizing Coins
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Semi-supervised Learning 
•  Unlabeled data may be easily available, while labeled 

ones may be expensive to obtain because they require 
human effort.  

•  Semi-supervised learning is a recent learning paradigm: it 
exploits unlabeled examples, in addition to labeled ones, 
to improve the generalization ability of the resulting 
classifier 

⇒



Semi-supervised Clustering 
•  Constraints (must-link; cannot-link) on pairs of 

points are available 

 



Reinforcement Learning 
•  The problem here is to find suitable actions to 

take in a given situation in order to maximize a 
reward 

•  Trial and error: no examples of optimal outputs 
are given 

•  Trade-off between exploration (try new actions to 
see how effective they are) and exploitation (use 
actions that are known to give high reward) 



A Classification 
Example 

(from Pattern Classification by  
Duda & Hart & Stork – Second Edition, 2001) 



•  A fish-packing plant wants to automate 
the process of sorting incoming fish 
according to species 

•  As a pilot project, it is decided to try to 
separate sea bass from salmon using 
optical sensing 



To solve this problem, we adopt a 
machine learning approach:  
 

We use a training set  to tune 
the parameters of an adaptive 

model 
 



•  Length 

•  Lightness 

•  Width 

•  Position of the mouth 

•  … 

Features to explore for use in 
our classifier 



•  Preprocessing: Images of 
different fish are isolated from 
one another and from 
background; 

•  Feature extraction: The 
information of a single fish is 
then sent to a feature extractor, 
that measure certain “features” 
or “properties”; 

•  Classification: The values of 
these features are passed to a 
classifier that evaluates the 
evidence presented, and build a 
model to discriminate between 
the two species 



•  Domain knowledge:  
   a sea bass is generally longer than a salmon 

•  Feature: Length 

•  Model:  
    Sea bass have some typical length, and this is 

greater than the length of a salmon 



•  Classification rule: 

If Length >= l*   then sea bass 

                          otherwise salmon 

•  How to choose l* ? 

•  Use length values of sample data (training data) 



Histograms of the length feature for the two categories 

Leads to the smallest number of errors on average 

We cannot reliably separate sea bass from salmon by length alone! 



 

•  New Feature:  
Average lightness of the fish scales 

 



Histograms of the lightness feature for the two categories 

Leads to the smallest number of errors on average 

The two classes are much better separated! 



Histograms of the lightness feature for the two categories 

Our actions are equally costly 
Classifying a sea bass as salmon 
costs more. Thus we reduce the 
number of sea bass classified as 
salmon. 



•  In Summary: 
 

The overall task is to come up with a 
decision rule (i.e., a decision boundary) 
so as to minimize the cost (which is 
equal to the average number of 
mistakes for equally costly actions). 
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•  No single feature gives satisfactory results 
•  We must rely on using more than one feature 
•  We observe that:  

sea bass usually are wider than salmon 
•  Two features: Lightness and Width 

•  Resulting fish representation: 



Decision rule: Classify the fish as a sea bass if its feature 
vector falls above the decision boundary shown, and as 
salmon otherwise 

Should we be satisfied with this result? 



Options we have: 
•  Consider additional features: 

– Which ones? 
– Some features may be redundant (e.g., if eye 

color perfectly correlates with width, then we 
gain no information by adding eye color as 
feature.) 

–  It may be costly to attain more features 
– Too many features may hurt the performance! 

•  Use a more complex model 



All training data are perfectly separated 

Should we be satisfied now?? 

•  We must consider: Which decisions will the classifier take on 
novel patterns, i.e. fish not yet seen? Will the classifier 
suggest the correct actions? 

This is the issue of GENERALIZATION 



Generalization 

•  A good classifier should be able to generalize, i.e. 
perform well on unseen data 

•  The classifier should capture the underlying 
characteristics of the categories 

•  The classifier should NOT be tuned to the specific 
(accidental) characteristics of the training data 

•  Training data in practice contain some noise 



•  As a consequence: 

We are better off with a slightly 
poorer performance on the training 
examples if this means that our 
classifier will have better 
performance on novel patterns. 



The decision boundary shown may represent the optimal tradeoff 
between accuracy on the training set and on new patterns 

How can we determine automatically when the optimal 
tradeoff has been reached? 



Generalization 

Ø  The idea is to use a model with an intermediate 
complexity, which gets most of the points right, without 
putting too much trust in any individual point. 

Ø  The goal of statistical learning theory is to formalize 
these arguments by studying mathematical properties of 
learning machines, i.e. properties of the class of 
functions that the learning machine can implement 
(formalization of the complexity of the model). 



error 

Generalization error 

Error on training data 

Complexity of the model Optimal  

complexity 

Tradeoff between performance on training 
and novel examples 

Evaluation of the classifier on novel data is 
important to avoid over-fitting 



Example: Regression Estimation 
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Polynomial Curve Fitting 

•   We fit the data using a polynomial function of the form: 
  

  

•   It is linear in the unknown parameters: linear model 

   

•   Fit the polynomial to the training data so that a given error 
function is minimized: 
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Polynomial Curve Fitting 

Geometrical interpretation of the sum-of-squares error function 
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Polynomial Curve Fitting 
Model selection: We need to choose the order M of the 
polynomial: 
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Polynomial Curve Fitting 
Model selection: we can investigate the dependence of the 
generalization performance on the order M 
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ERMS = 2E w*( ) /N Root-mean-square error 



Polynomial Curve Fitting 
We can also examine the behavior of a given model as the 
size of the data set changes 
  

For a given model, the over-fitting problem 
becomes less severe as the number of training 
data increases 

9=M



How to dodge the over-fitting problem? 

Assumption: we have a limited number of training data 
available, and we wish to use relatively complex and flexible 
models. 

One possible solution: add a penalty term to the error 
function to discourage the coefficients from reaching large 
values, e.g.: 

This is an example of a regularization technique.  

[shrinkage methods, ridge regression, weight decay] 
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The impact of Regularization 
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The impact of Regularization 
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      controls the effective complexity of the model 
and hence determines the degree of over-fitting 
λ



Model selection 

Partition available data into a training set used to 
determine the coefficients    , and into a separate 
validation set (also called hold-out) used to optimize the 
model complexity (                )  

If the model design is iterated several times using a limited 
number of data, some over-fitting to the validation data can 
occur. 

Solution: Set aside a third test set on which performance of 
the selected model is finally evaluated.               

λ or M

w



Model selection 

Often we have limited data available, and we wish to use 
as much of the available data as possible for training to 
build good models. 

 

However, if we use a small set for validation, we obtain 
noisy estimates of predictive performance. 

 

One solution to this problem is cross-validation. 



Cross-validation: Example 

4-fold cross-validation 

It allows to use ¾ of the available data 
for training, while making use of all of 

the data to assess performance 



k-fold Cross-validation 

Ø  In general: we perform k runs. Each run uses (k-1)/k of 
the available data for training. 

Ø  If the number of data is very limited, we can set k=N 
(total number of data points). This gives the leave-one-
out cross-validation technique. 

 
  



k-fold Cross-validation: Drawbacks 

Ø Computationally expensive: number of training runs is 
increased by a factor of k. 

Ø A single models may have multiple complexity 
parameters: exploring combinations of settings could 
require a number of training runs that is exponential in 
the number of parameters. 

 
  



Bayesian Probabilities 

Ø A key issue in pattern recognition is uncertainty. It is 
due to incomplete and/or ambiguous information, i.e. 
finite and noisy data. 

Ø Probability theory and decision theory provide the 
tools to make optimal predictions given the limited 
available information. 

Ø  In particular, the Bayesian interpretation of probability 
allows to quantify uncertainty, and make precise 
revisions of uncertainty in light of new evidence. 

 
  



Bayes’ Theorem 

 
Ø                      is the prior probability: it expresses the 

probability before we observe any data 

Ø                                  is the posterior probability: it 
expresses the probability after  we observed the data 

Ø  The effect of the observed data is captured through the 
conditional probability 

  

! 

p Y = y | X = x( ) =
p X = x |Y = y( )p Y = y( )

p X = x( )

! 

p Y = y( )

! 

p Y = y | X = x( )

! 

p X = x |Y = y( )



Curve fitting re-visited 

Ø We can adopt a Bayesian approach when estimating the 
parameters      for polynomial curve fitting.                     

Ø             captures our assumptions about         before 
observing the data.      

Ø  The effect of the observed data D is captured by the 
conditional probability                   

Ø Bayes’ theorem allows to evaluate the uncertainty in       
after we have observed the data D (in the form of 
posterior probability): 

Ø                  is the likelihood function 
Ø Maximum likelihood approach: set        to the value that 

maximizes  
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Curve fitting re-visited: ML approach 

Ø  Training data:                     
            

Ø We can express our uncertainty over the value of the 
target variable using a probability distribution 

Ø Assumption: Given a value of x, the corresponding value 
of t has a Gaussian distribution with a mean equal to 

Ø  Thus:  
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Curve fitting re-visited: ML approach 



Curve fitting re-visited: ML approach 

Ø We use the training data             to estimate                   
by maximum likelihood 

            

Ø Assuming data are drawn independently, the likelihood 
function can be written as the product of the marginal 
distributions: 
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Curve fitting re-visited: ML approach 

Ø Gaussian distribution:  
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Curve fitting re-visited: ML approach 

Ø Maximum likelihood solution for the polynomial 
coefficients: maximize log likelihood with respect to 

Ø  It is equivalent to minimize the negative log likelihood:  

Ø  Thus: The sum-of-squares error function results from 
maximizing the likelihood under the assumption of a 
Gaussian noise distribution  
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Curve fitting re-visited: ML approach 

Ø Maximum likelihood solution for the parameter     : 
maximize log likelihood with respect to 
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Curve fitting re-visited: ML approach 

Ø We now have the maximum likelihood solutions for the 
parameters: 

Ø We can now make predictions for new values of x  by 
using the resulting probability distribution over t 
(predictive distribution) 
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Ø  Let us introduce a prior distribution over the polynomial 
coefficients 

Ø Recall: Gaussian distribution of a D-dimensional vector x 

Ø Prior distribution: 

Ø Using Bayes’ theorem:  
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MAP approach 

Ø Maximum a Posteriori solution for the parameters      
maximize the posterior distribution  

Ø  It is equivalent to minimize the negative log posterior 
distribution: 

Ø  Thus: maximizing the posterior distribution is equivalent 
to minimizing the regularized sum-of-squares error 
function 
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Curse of Dimensionality 

Ø Real world applications deal with spaces with high 
dimensionality 

Ø High dimensionality poses serious challenges for the 
design of pattern recognition techniques 

 

 
            

            

Oil flaw data in two 
dimensions 

Red = homogeneous 

Green = annular 

Blue = laminar 



Curse of Dimensionality 

Ø A simple classification approach 

 

 
            

            



Curse of Dimensionality 

Ø Going higher in dimensionality… 

 

 
            

            

                                                             321 333

The number of regions of a regular grid grows 
exponentially with the dimensionality        of the 
space 

D



DMAX/DMIN 

Sample of size N=500 uniformly distributed in    q]1 ,0[

Curse of Dimensionality       
 



Curse of Dimensionality       
 

The distribution of the ratio DMAX/DMIN 
converges to 1 as the dimensionality increases 



Curse of Dimensionality       
 

Variance of distances from a given point 



Curse of Dimensionality       
 

The variance of distances from a given point 
converges to 0 as the dimensionality increases 



Curse of Dimensionality       
 

Distance values from a given point 

Values flatten out as dimensionality increases 



Computing radii of nearest neighborhoods 



median radius of a nearest neighborhood 

! 

uniform distribution in the unit cube -.5,.5[ ]q



Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

   q   4   4   6   6  10   10  20  20  20

  N  100 1000  100 1000 1000 10000 10000

d(q,N)  0.42  0.23  0.71 0.48  0.91  0.72   1.51 1.20 0.76

610 1010

~N•   Random sample of size        uniform distribution in the 
q -dimensional unit hypercube 

•   Diameter of a          neighborhood using Euclidean 

! 

K =1

! 

d(q,N) =O(N"1/ q )distance:    

As dimensionality increases, the distance from the 
closest point increases faster 

Large                   Highly biased estimations 

! 

d(q,N)"



Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Ø   In high dimensional spaces data become 
extremely sparse and are far apart from  each 
other 

Ø  The curse of dimensionality affects 
any estimation problem with high 
dimensionality 



Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Ø   It is a serious problem in many 
real-world applications 

Ø   Microarray data: 3,000-4,000 genes; 

Ø   Documents:  10,000-20,000 words in            
 dictionary; 

Ø   Images, face recognition, etc. 



Microarray Data Analysis 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

 

Problem: Which samples are most similar to each other, 
in terms of their expression profiles across genes 



Document Classification 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Of all the sensory impressions proceeding to 
the brain, the visual experiences are the 
dominant ones. Our perception of the world 
around us is based essentially on the 
messages that reach the brain from our eyes. 
For a long time it was thought that the retinal 
image was transmitted point by point to visual 
centers in the brain; the cerebral cortex was a 
movie screen, so to speak, upon which the 
image in the eye was projected. Through the 
discoveries of Hubel and Wiesel we now 
know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By 
following the visual impulses along their path 
to the various cell layers of the optical cortex, 
Hubel and Wiesel have been able to 
demonstrate that the message about the 
image falling on the retina undergoes a step-
wise analysis in a system of nerve cells 
stored in columns. In this system each cell 
has its specific function and is responsible for 
a specific detail in the pattern of the retinal 
image. 

sensory, brain,  
visual, perception,  
retinal, cerebral cortex, 
eye, cell, optical  
nerve, image 
Hubel, Wiesel 

visual 
eye 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 

Bag-of-words 
representation of a 
document 
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visual 
eye 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 
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dictionary 



What’s the size of the dictionary? 



     How can we deal with 
 the curse of dimensionality? 



Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Ø   Effective techniques applicable to high 
dimensional spaces exist. 

Ø The reasons are twofold: 
ü  Real data are often confined to regions of 
lower dimensionality 

ü  Real data typically exhibit smoothness 
properties (at least locally). Local 
interpolation techniques can be used to 
make predictions 
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Dimensionality Reduction 

•  Many dimensions are often interdependent 
(correlated); 

We can: 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates into 
significant and independent ones; 



Decision Theory 
•  Decision theory, when combined with probability 

theory, allows to make optimal decisions in 
situations involving uncertainty 

•  Training data: 

•  Inference: joint probability distribution 

•  Decision step: make optimal decision  

tx  vector targetvector input , 

( )tx,p



Decision Theory 
Classification example: medical diagnosis problem 

•       set of pixel intensities in an image 

•  Two classes:  
–              absence of cancer 

–              presence of cancer 

•  Inference step: estimate 

•  Decision step: given      predict        so that a 
measure of error is minimized according to the 
given probabilities 

x

01 =C
12 =C

( )kCp ,x

x kC



Decision Theory 
How probabilities play a role in decision making? 

•  Decision step: given      predict 

Thus, we are interested in 

 

 

Intuitively: we want to minimize the chance of 
assigning       to the wrong class. Thus, choose 
the class that gives the higher posterior 
probability  

( )x|kCp
x kC

( ) ( ) ( )
( )x
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Minimizing the misclassification rate 
•  Goal: Minimize the number of misclassifications 

We need to find a rule that assigns each input 
vector to one of the possible classes 

Such rule divides the input space into regions          
so that all points in        are assigned to 

Boundaries between regions are called decision 
boundaries 

kC

kR
kR kC



Minimizing the misclassification rate 
•  Goal: Minimize the number of misclassifications 

•  Assign x to the class that gives the smaller value 
of the integrand: 
–  Choose          if      

–  Choose          if 

 

! 

p mistake( ) = p x " R1,C2( ) + p x " R2,C1( )
                  = p x,C2( )
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Minimizing the misclassification rate 
–  Choose          if      

–  Choose          if 

Thus: 

–  Choose          if   

–  Choose          if 
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Minimizing the misclassification rate 

0ˆ xx =Optimal decision boundary: 



Minimizing the misclassification rate 

Thus: 

General case of K classes: 
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Minimizing the expected loss 

jCkjL
kC

Ø   Some mistakes are more costly than others. 
Ø   Loss function (cost function): overall measure of 
loss incurred in taking any of the available decisions 

        :  loss incurred when we assign      to class         
and the true class is 

x
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01
10000cancer 

cancer normal 

normal 

The optimal solution is the 
one that minimizes the loss 
function 



Minimizing the expected loss 
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Ø   The loss function depends on the true class, which is 
unknown. 
Ø  The uncertainty of the true class is expressed through 
the joint probability 

Ø   We minimize the expected loss:  

Ø   For each x we should minimize 
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Minimizing the expected loss 
Ø   For each x we should minimize 

Ø   Thus, to minimize the expected loss: Assign each x to 
the class j that minimizes 
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The Reject Option 



Inference and Decision 

Ø   Inference stage:  use the training data to learn a 

model for    

  

Ø Decision stage: use the given posterior probabilities to 

make optimal class assignments 

( )x|kCp



Generative Methods 
Ø   Solve the inference problem of estimating the class-
conditional densities                 for each class  

Ø    Infer the prior class probabilities 

Ø    Use Bayes’ theorem to find the class posterior 
probabilities: 

 

where 

 

Ø    Use decision theory to determine class membership 
for each new input x       
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Discriminative Methods 
Ø   Solve directly the inference problem of estimating the 
class posterior probabilities 

 

Ø    Use decision theory to determine class membership 
for each new input x       

  

( )x|kCp



Discriminant Functions 
Ø   Find a function            which maps each input      
directly onto a class label. Probabilities play no role here. 

 

Ø    Use decision theory to determine class membership 
for each new input x       
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Example 


