
1

CS-688 Spring 2016
Neural Networks

2

Ø  Perceptron: limitations;

Ø  Feedforward networks and Backpropagation;

Outline

2

3

Ø Often associated with biological devices (brains),
electronic devices, or network diagrams;

Ø  But the best conceptualization for this presentation
is none of these: think of a neural network as a
mathematical function

What is a Neural Network, anyway?

4

The pros of Neural Networks

Ø Successfully used on a variety of domains:
 PC games, Business strategy, Buyer prospect selection, Stock

market analysis, Consumer price forecasts, Cost analysis,
Employee selection, Intelligent software applications, Legal
strategies, Managerial decision making, Personnel profiling, Process
control, Quality control, Real estate market forecasting, Sales
forecasts, Security analysis, Spectral analysis, Stock market
analysis, Temperature and weather prediction, Troubleshooting and
much more.

Ø  Can provide solutions to very complex and nonlinear
problems;

Ø  If provided with sufficient amount of data, can solve
classification and forecasting problems accurately
and easily

Ø Once trained, prediction is fast;

3

5

Introduction: A Simple Architecture

weights

∑
=

n

j
jj xw

1

x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj xwg

1

1x 2x 3x nx

6

Representational Power of Perceptrons

Ø Marvin Minsky and Seymour Papert, “Perceptron”
1969:

“The perceptron can solve only problems with linearly
separable classes.”

Ø  Examples of linearly separable Boolean functions:

AND OR

4

7

Representational Power of Perceptrons

Perceptron that computes the
AND function

1 1
1 1

-1.5 -0.5

Perceptron that computes the
OR function

8

Representational Power of Perceptrons

Ø  Example of a non linearly separable Boolean function:

EX-OR

The EX-OR function cannot be computed by a perceptron

5

9

Adding a Hidden Layer

weights

weights

Output layer

Hidden layer

Input layer

10

Multilayer Neural Networks

Ø  Generalization of a perceptron;
Ø  Achieve increased computational power;
Ø  Idea: Introduce layers of units between the input and the

output units:

Output layer

Hidden layer

Input layer

6

11

Multilayer Neural Networks

Ø  Allow to learn non linearly separable transformations from input
to output;

Ø  A single hidden layer allows to compute any input/output
transformation;

Output layer

Hidden layer

Input layer

12

Example: EX-OR

Ø  Consider first a perceptron:

Ø  Correct answer in three cases:

Ø  4th case:

0.5

()
()
() 15.0110

15.0101
05.000

21

21

21

=−==

=−==

=−==

H
H
H

 x,x
 x,x
 x,x

() 15.01111 21 =−+== H x,x Wrong!

7

13

Example: EX-OR (contd.)

Ø  Idea: Introduce one hidden unit with a large enough
threshold, so that it is activated only in the 4th case.
The hidden unit provides a negative input to the
output unit to correct its response in the 4th case

Ø  First three cases: as before. OK
Ø  4th case: OK!

() 05.021111 21 =−−+== H x,x

1.5 0.5

14

Multilayer Neural Networks

Ø  Activation function:
Differentiable function g:

Ø  Network’s dynamic:
f: target transformation (unknown)
from input to output;
For each configuration x of the input layer, the network computes a

configuration y of the output layer;
The network adjusts the weights so that, after a finite number of

steps, the network’s output y ~ f(x)
Ø  Criterion:
Minimize the difference between the network’s response and the

desired output.

()1,0∈⎟
⎠

⎞
⎜
⎝

⎛
= ∑

k
kk xwgy

8

15

Learning Algorithm: No Hidden Units first

xwTz =

()zgy =

() ze
zg

−+
=
1
1

Sigmoid function

g(z)

16

Learning Algorithm: No Hidden Units first

By applying gradient descent:

() ()2*

2
1 yyJ −=w

()
xw

w T

e
gy

−+
==
1
1

i
i

xyy
w
y)1(−=

∂
∂

i
i

xyyyy
w
J)1()(* −−−=

∂
∂

ii xyyyyw))(1(* −−=Δ µ

t
i

t
ii www −=Δ +1 ratelearning the is µ

DELTA RULE for the Sigmoid
function (no hidden units)

9

17

Generalization of Delta Rule for Feedforward Networks

Fixed target function we want to learn:

Error over input

Total error

kx
()kk f xt =

()∑ −=
j

kjkjk ytE 2

2
1

∑=
k

kEE

Local minimum
to which the

NN converges

Global
minimum

Backpropagation algorithm: provides an efficient
procedure to compute derivatives

18

Backpropagation algorithm

∑=
i

kijikj owz

() kjjkjjkj zgzgo inable differenti ,=

Goal: learn the weights so that the mean
squared error is minimized

10

19

Backpropagation

Fixed target function we want to learn:

Error over input

Total error

We want

Lets define

kx
()kk f xt =

()∑ −=
j

kjkjk ytE 2

2
1

∑=
k

kEE

ji

k
jik w

E
w

∂
∂

−∝Δ

ji

kj

kj

k

ji

k

w
z

z
E

w
E

∂

∂

∂
∂

∂
∂)(

)(
=

∑=
i

kijikj owz ∑ ==
t

kiktjt
jiji

kj oow
ww

z
∂
∂

∂

∂)(

 ⇒−= kj
kj

k

z
E

δ
∂
∂

)(kikj
ji

k o
w
E

δ
∂
∂

−=

kikjjik ow µδ=ΔThus: to perform a gradient descent
on the surface of E we need to modify

the weights as:

20

Backpropagation

We need to compute the values :

From

To compute we distinguish two cases:

Ø  1st case: is an output unit

Ø  2nd case: is a hidden unit

kj
kj

k

z
E

δ
∂
∂

−=
)(kjδ

)()(kj

kj

kj

k

kj

k
kj z

o
o
E

z
E

∂

∂

∂
∂

∂
∂

δ −=−=

()kjjkj zgo = ()kjj
kj

kj zg
z
o '

)(
=

∂

∂

kj

k

o
E
∂
∂

ju

ju

11

21

Backpropagation

Ø  1st case: is a output unit

ju

()

() ()

() ()kjjkjkjkj

kjkjkjkj
kj

k

j
kjkjk

zgot

otyt
o
E

ytEbecause

'

2

2
1

−=⇒

−−=−−=
∂

∂

−= ∑

δ

22

Backpropagation

2nd case: is a hidden unit

ju

Recursive procedure to
compute for all the

units of the network!
δ

kikjjik ow µδ=Δ
Such are used in: δ

()∑

∑ ∑

∑∑∑

=⇒

−=
∂

∂

=⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

t
tjktkjjkj

t t
tjkttj

kt

k

l
kltl

t kjkt

k

t kj

kt

kt

k

kj

k

wzg

ww
z
E

ow
oz

E
o
z

z
E

o
E

δδ

δ

'

12

23

Wrapping up the Backpropagation Algorithm

Three key equations:
Ø  Generalized Delta rule:

Ø  For output units the error signal is:

Ø  For hidden units, the error signal is:

() ()kjjkjkjkj zgot '−=δ

()∑=
t

tjktkjjkj wzg δδ '

kikjjik ow µδ=Δ

24

Backpropagation: Summary

Ø  Activation: each input unit is given the state

Ø  Signal propagation: For each hidden and output unit, compute

Ø  Comparison: For each output unit compute:

Ø  Backpropagation: (the computed become the input of the
reversed network) For each hidden unit compute:

Ø  Weight Update:

kikj
k
ji

k
ji oww µδ+= −1

ju kjx

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

i
kijijkj owgo

ju

() ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

i
kijijkjkjkj owgot 'δ

ju
δ

∑∑ −⎟
⎠

⎞
⎜
⎝

⎛
=

t

k
tjkt

i
kijijkj wowf 1' δδ

13

25

Learning Rate and Momentum

Ø  too small very slow learning rate

Ø  too large oscillating behavior

Ø  We want to set as large as possible avoiding oscillations
Ø  Solution: introduce momentum in the learning rule. The momentum

includes the direction of the previous update:

µ ⇒
µ ⇒

µ

() ()nwonw jikikjji Δ+=+Δ αµδ1
9.0=α

26

Backpropagation: applications

Ø  Perhaps the most successful and widely used learning
algorithm for NNs;

Ø Used in a variety of domains:
§  clinical diagnosis,
§  predicting protein structure,
§  character recognition,
§  fingerprint recognition,
§  modeling residual chlorine decay in water,
§  weather forecast,
§  waveform recognition,
§  backgammon, etc.

14

27

References

Ø  Original paper on backpropagation:

§  Rumelhart, Hinton, Williams, Learning internal representations
by error propagation, 1986. In Parallel Distributed Processing,
Vol1.

