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CS-688 Spring 2016 
Neural Networks 
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Ø  Perceptron: limitations; 

Ø  Feedforward networks and Backpropagation; 

 
 

Outline 
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Ø Often associated with biological devices (brains), 
electronic devices, or network diagrams; 

Ø  But the best conceptualization for this presentation 
is none of these: think of a neural network as a 
mathematical function  

What is a Neural Network, anyway? 
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The pros of Neural Networks 

 
 

Ø Successfully used on a variety of domains: 
     PC games, Business strategy, Buyer prospect selection, Stock 

market analysis, Consumer price forecasts, Cost analysis, 
Employee selection, Intelligent software applications, Legal 
strategies, Managerial decision making, Personnel profiling, Process 
control, Quality control, Real estate market forecasting, Sales 
forecasts, Security analysis, Spectral analysis, Stock market 
analysis, Temperature and weather prediction, Troubleshooting and 
much more. 

Ø  Can provide solutions to very complex and nonlinear 
problems; 

Ø  If provided with sufficient amount of data, can solve 
classification and forecasting problems accurately 
and easily 

Ø Once trained, prediction is fast; 
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Introduction: A Simple Architecture 
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Representational Power of Perceptrons 

 
 

Ø Marvin Minsky and Seymour Papert, “Perceptron” 
1969:  

“The perceptron can solve only problems with linearly 
separable classes.” 

Ø  Examples of linearly separable Boolean functions: 

 
 

AND OR 
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Representational Power of Perceptrons 
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Perceptron that computes the 
OR function 
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Representational Power of Perceptrons 

 
 

Ø  Example of a non linearly separable Boolean function: 

 
 

EX-OR 

The EX-OR function cannot be computed by a perceptron 



5 

9 

Adding a Hidden Layer 
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Multilayer Neural Networks 

 
 

Ø  Generalization of a perceptron; 
Ø  Achieve increased computational power; 
Ø  Idea: Introduce layers of units between the input and the 

output units: 

 
 

Output layer 

Hidden layer 

Input layer 
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Multilayer Neural Networks 

 
 

Ø  Allow to learn non linearly separable transformations from input 
to output; 

Ø  A single hidden layer allows to compute any input/output 
transformation; 
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Hidden layer 
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Example: EX-OR 

 
 

Ø  Consider first a perceptron: 

Ø  Correct answer in three cases: 

Ø  4th case: 
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Example: EX-OR (contd.) 

 
 

Ø  Idea: Introduce one hidden unit with a large enough 
threshold, so that it is activated only in the 4th case. 
The hidden unit provides a negative input to the 
output unit to correct its response in the 4th case 

Ø  First three cases: as before.  OK 
Ø  4th case:                                                        OK!  
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Multilayer Neural Networks 

 
 

Ø  Activation function: 
Differentiable function g: 
 
 

Ø  Network’s dynamic: 
f: target transformation (unknown)  
from input to output; 
For each configuration x of the input layer, the network computes a 

configuration y of the output layer; 
The network adjusts the weights so that, after a finite number of 

steps, the network’s output y ~ f(x) 
Ø  Criterion: 
Minimize the difference between the network’s response and the 

desired output. 
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Learning Algorithm: No Hidden Units first 

 
 

 
 

 
 

xwTz =

( )zgy =

( ) ze
zg

−+
=
1
1

Sigmoid function 

g(z) 

16 

Learning Algorithm: No Hidden Units first 

 
 

 
 

By applying gradient descent: 
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Generalization of Delta Rule for Feedforward Networks 

 
 

Fixed target function we want to learn: 
 

Error over input 
 

Total error 
 

 
 

kx
( )kk f xt =

( )∑ −=
j

kjkjk ytE 2

2
1

∑=
k

kEE

Local minimum 
to which the 

NN converges 

Global 
minimum 

Backpropagation algorithm: provides an efficient 
procedure to compute derivatives 
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Backpropagation algorithm 
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Backpropagation 

 
 

Fixed target function we want to learn: 
 

Error over input 
 

Total error 
 

We want 
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Backpropagation 

 
 

We need to compute the values     : 
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To compute             we distinguish two cases: 
 
Ø  1st case:        is an output unit 

Ø  2nd case:       is a hidden unit 
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Backpropagation 

 
 

 
Ø  1st case:        is a output unit 
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Backpropagation 

 
 

2nd case:       is a hidden unit 
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Wrapping up the Backpropagation Algorithm 

 
 

Three key equations: 
Ø  Generalized Delta rule: 

Ø  For output units the error signal is: 

Ø  For hidden units, the error signal is: 
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Backpropagation: Summary 

 
 

Ø  Activation: each input unit        is given the state 

Ø  Signal propagation: For each hidden and output unit, compute 

Ø  Comparison: For each output unit       compute: 

Ø  Backpropagation: (the computed      become the input of the 
reversed network) For each hidden unit        compute: 

Ø  Weight Update: 
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Learning Rate and Momentum 

 
 

Ø          too small             very slow learning rate  

Ø          too large           oscillating behavior 

Ø  We want to set      as large as possible avoiding oscillations 
Ø  Solution: introduce momentum in the learning rule. The momentum 

includes the direction of the previous update: 
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Backpropagation: applications 

 
 

Ø  Perhaps the most successful and widely used learning 
algorithm for NNs; 

Ø Used in a variety of domains:  
§    clinical diagnosis,  
§   predicting protein structure,  
§   character recognition,  
§   fingerprint recognition,  
§   modeling residual chlorine decay in water,  
§   weather forecast,  
§   waveform recognition,  
§   backgammon, etc. 
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