CS-688 Spring 2016 Neural Networks

Outline

> Perceptron: limitations;
$>$ Feedforward networks and Backpropagation:

What is a Neural Network, anyway?

> Often associated with biological devices (brains), electronic devices, or network diagrams;
$>$ But the best conceptualization for this presentation is none of these: think of a neural network as a mathematical function

The pros of Neural Networks

> Successfully used on a variety of domains:
PC games, Business strategy, Buyer prospect selection, Stock market analysis, Consumer price forecasts, Cost analysis, Employee selection, Intelligent software applications, Legal strategies, Managerial decision making, Personnel profiling, Process control, Quality control, Real estate market forecasting, Sales forecasts, Security analysis, Spectral analysis, Stock market analysis, Temperature and weather prediction, Troubleshooting and much more.
$>$ Can provide solutions to very complex and nonlinear problems:
$>$ If provided with sufficient amount of data, can solve classification and forecasting problems accurately and easily
$>$ Once trained, prediction is fast;

Introduction: A Simple Architecture

Representational Power of Perceptrons

> Marvin Minsky and Seymour Papert, "Perceptron" 1969:
"The perceptron can solve only problems with linearly separable classes."
Examples of linearly separable Boolean functions:

Representational Power of Perceptrons

Perceptron that computes the AND function

Perceptron that computes the OR function

Representational Power of Perceptrons

Example of a non linearly separable Boolean function:

The EX-OR function cannot be computed by a perceptron

Adding a Hidden Layer

Multilayer Neural Networks

$>$ Generalization of a perceptron:
> Achieve increased computational power:
$>$ Idea: Introduce layers of units between the input and the output units:

Multilayer Neural Networks

- Allow to learn non linearly separable transformations from input to output;
- A single hidden layer allows to compute any input/output transformation;

Output layer

Hidden layer

Input layer

Example: EX-OR

> Consider first a perceptron:

> Correct answer in three cases:

$$
\begin{array}{ll}
\boldsymbol{x}_{1}=0, \boldsymbol{x}_{2}=0 & H(-0.5)=0 \\
\boldsymbol{x}_{1}=1, \boldsymbol{x}_{2}=0 & H(1-0.5)=1 \\
\boldsymbol{x}_{1}=0, \boldsymbol{x}_{2}=1 & H(1-0.5)=1
\end{array}
$$

$>4^{\text {th }}$ case:

$$
x_{1}=1, x_{2}=1 \quad H(1+1-0.5)=1 \quad \text { Wrong! }
$$

Example: EX-OR (contd.)

> Idea: Introduce one hidden unit with a large enough threshold, so that it is activated only in the $4^{\text {th }}$ case. The hidden unit provides a negative input to the output unit to correct its response in the $4^{\text {th }}$ case

$>$ First three cases: as before. OK
$>4^{\text {th }}$ case: $\boldsymbol{x}_{1}=1, x_{2}=1 \quad H(1+1-2-0.5)=0 \quad$ OK!

Multilayer Neural Networks

\rightarrow Activation function:
Differentiable function g :
$y=g\left(\sum_{k} w_{k} x_{k}\right) \in(0,1)$
> Network's dynamic:
f : target transformation (unknown)

from input to output:
For each configuration x of the input layer, the network computes a configuration y of the output layer:
The network adjusts the weights so that, after a finite number of steps, the network's output $y \sim f(x)$
$>$ Criterion:
Minimize the difference between the network's response and the desired output.

Learning Algorithm: No Hidden Units first

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& y=g(z) \\
& g(z)=\frac{1}{1+e^{-z}}
\end{aligned}
$$

Sigmoid function
g(z)

Learning Algorithm: No Hidden Units first

$$
\begin{aligned}
& J(\boldsymbol{w})=\frac{1}{2}\left(y^{*}-y\right)^{2} \\
& y=g(\boldsymbol{w})=\frac{1}{1+e^{-\boldsymbol{w}^{T} x}} \\
& \frac{\partial y}{\partial w_{i}}=y(1-y) x_{i} \\
& \frac{\partial J}{\partial w_{i}}=-\left(y^{*}-y\right) y(1-y) x_{i}
\end{aligned}
$$

By applying gradient descent:
$\Delta w_{i}=\mu y(1-y)\left(y^{*}-y\right) x_{i}$

$$
\Delta w_{i}=\mu y(1-y)(y-y) x_{i}
$$

DELTA RULE for the Sigmoid
function (no hidden units)

$$
\Delta w_{i}=w_{i}^{t+1}-w_{i}^{t} \quad \mu \text { is the learning rate }
$$

Generalization of Delta Rule for Feedforward Networks

Fixed target function we want to learn: $\boldsymbol{t}_{k}=f\left(\boldsymbol{x}_{k}\right)$
Error over input $\boldsymbol{x}_{k} \quad E_{k}=\frac{1}{2} \sum_{j}\left(t_{k j}-y_{k j}\right)^{2}$
Total error $E=\sum_{k} E_{k}$

Backpropagation algorithm: provides an efficient
procedure to compute derivatives

Backpropagation algorithm

$$
z_{k j}=\sum_{i} w_{j i} o_{k i}
$$

$o_{k j}=g_{j}\left(z_{k j}\right), g_{j}$ differentiable in $z_{k j}$

Goal: learn the weights so that the mean squared error is minimized

Backpropagation

Fixed target function we want to learn: $\boldsymbol{t}_{k}=f\left(\boldsymbol{x}_{k}\right)$
Error over input $\boldsymbol{x}_{k} \quad E_{k}=\frac{1}{2} \sum_{i}\left(t_{k j}-y_{k j}\right)^{2}$
Total error $E=\sum_{k} E_{k}$
We want $\quad \Delta_{k} w_{j i} \propto-\frac{\partial E_{k}}{\partial w_{j i}}$

$$
\left.\begin{array}{rl}
\frac{\partial E_{k}}{\partial w_{j i}} & =\frac{\partial E_{k}}{\partial\left(z_{k j}\right)} \frac{\partial\left(z_{k j}\right)}{\partial w_{j i}} \\
z_{k j} & =\sum_{i} w_{j i} o_{k i}
\end{array} \frac{\partial\left(z_{k j}\right)}{\partial w_{j i}}=\frac{\partial}{\partial w_{j i}} \sum_{t} w_{j t} o_{k t}=o_{k i}\right)
$$

Lets define $\frac{\partial E_{k}}{\partial\left(z_{k j}\right)}=-\delta_{k j} \Rightarrow \frac{\partial E_{k}}{\partial w_{j i}}=-\delta_{k j} o_{k i}$
Thus: to perform a gradient descent on the surface of E we need to modify

$$
\Delta_{k} w_{j i}=\mu \delta_{k j} o_{k i}
$$ the weights as:

Backpropagation

We need to compute the values $\delta_{k j}$: $\quad \frac{\partial E_{k}}{\partial\left(z_{k j}\right)}=-\delta_{k j}$
$\delta_{k j}=-\frac{\partial E_{k}}{\partial\left(z_{k j}\right)}=-\frac{\partial E_{k}}{\partial o_{k j}} \frac{\partial o_{k j}}{\partial\left(z_{k j}\right)}$

From $o_{k j}=g_{j}\left(z_{k j}\right) \quad \frac{\partial o_{k j}}{\partial\left(z_{k j}\right)}=g_{j}^{\prime}\left(z_{k j}\right)$
To compute $\frac{\partial E_{k}}{\partial o_{k j}}$ we distinguish two cases:

$>1^{\text {st }}$ case: u_{j} is an output unit
$>2^{\text {nd }}$ case: u_{j} is a hidden unit

Backpropagation

$>1^{\text {st }}$ case: u_{j} is a output unit

$$
\begin{aligned}
& \text { because } E_{k}=\frac{1}{2} \sum_{j}\left(t_{k j}-y_{k j}\right)^{2} \\
& \frac{\partial E_{k}}{\partial o_{k j}}=-\left(t_{k j}-y_{k j}\right)=-\left(t_{k j}-o_{k j}\right) \\
& \Rightarrow \delta_{k j}=\left(t_{k j}-o_{k j}\right) g_{j}^{\prime}\left(z_{k j}\right)
\end{aligned}
$$

Backpropagation

$2^{\text {nd }}$ case: u_{j} is a hidden unit

$$
\frac{\partial E_{k}}{\partial o_{k j}}=\sum_{t} \frac{\partial E_{k}}{\partial z_{k t}} \frac{\partial z_{k t}}{\partial o_{k j}}=\sum_{t} \frac{\partial E_{k}}{\partial z_{k t}} \frac{\partial}{\partial o_{k j}}\left(\sum_{T} w_{t l} o_{k l}\right)=
$$

$\sum_{t} \frac{\partial E_{k}}{\partial z_{k t}} w_{t j}=-\sum_{t} \delta_{k t} w_{t j}$
$\Rightarrow \delta_{k j}=g_{j}^{\prime}\left(z_{k j}\right) \sum_{t} \delta_{k t} w_{t j} u_{i}$

Recursive procedure to compute δ for all the units of the network!

$$
\Delta_{k} w_{j i}=\mu \delta_{k j} o_{k i}
$$

Wrapping up the Backpropagation Algorithm

Three key equations:
> Generalized Delta rule:

$$
\Delta_{k} w_{j i}=\mu \delta_{k j} o_{k i}
$$

$>$ For output units the error signal is:

$$
\delta_{k j}=\left(t_{k j}-O_{k j}\right) g_{j}^{\prime}\left(z_{k j}\right)
$$

$>$ For hidden units, the error signal is:

$$
\delta_{k j}=g_{j}^{\prime}\left(z_{k j}\right) \sum_{t} \delta_{k t} w_{t j}
$$

Backpropagation: Summary

$>$ Activation: each input unit u_{j} is given the state $x_{k j}$
>Signal propagation: For each hidden and output unit, compute

$$
o_{k j}=g_{j}\left(\sum_{j i} w_{j i} o_{k i}\right)
$$

> Comparison: For each output unit ${ }^{i} u_{j}$ compute:

$$
\delta_{k j}=\left(t_{k j}-o_{k j}\right) g_{j}^{\prime}\left(\sum_{i} w_{j i} o_{k i}\right)
$$

> Backpropagation: (the computed δ become the input of the reversed network) For each hidden unit u_{j} compute:
> Weight Update:

$$
\delta_{k j}=f_{j}^{\prime}\left(\sum_{i} w_{j i} o_{k i}\right) \sum_{t} \delta_{k t} w_{t j}^{k-1}
$$

$$
w_{j i}^{k}=w_{j i}^{k-1}+\mu \delta_{k j} o_{k i}
$$

Learning Rate and Momentum

$>\mu$ too small \Longrightarrow very slow learning rate
$>\mu$ too large \Longrightarrow oscillating behavior

- We want to set μ as large as possible avoiding oscillations
> Solution: introduce momentum in the learning rule. The momentum includes the direction of the previous update:

$$
\begin{gathered}
\Delta w_{j i}(n+1)=\mu \delta_{k j} o_{k i}+\alpha \Delta w_{j i}(n) \\
\alpha=0.9
\end{gathered}
$$

Backpropagation: applications

$>$ Perhaps the most successful and widely used learning algorithm for NNs;
> Used in a variety of domains:

- clinical diagnosis.
- predicting protein structure,
- character recognition,
- fingerprint recognition,
- modeling residual chlorine decay in water,
- weather forecast,
- waveform recognition,
- backgammon, etc.

References

> Original paper on backpropagation:

- Rumelhart, Hinton, Williams, Learning internal representations by error propagation, 1986. In Parallel Distributed Processing, Vol1.

