
9/9/13 

1 

Inference and Decision 

Ø   Inference stage:  use the training data to learn a 

model for    

  

Ø Decision stage: use the given posterior probabilities to 

make optimal class assignments 

( )x|kCp

Generative Methods 
Ø   Solve the inference problem of estimating the class-
conditional densities                 for each class  

Ø    Infer the prior class probabilities 

Ø    Use Bayes’ theorem to find the class posterior 
probabilities: 

 

where 

 

Ø    Use decision theory to determine class membership 
for each new input x       
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Discriminative Methods 
Ø   Solve directly the inference problem of estimating the 
class posterior probabilities 

 

Ø    Use decision theory to determine class membership 
for each new input x       

  

( )x|kCp

Discriminant Functions 
Ø   Find a function            which maps each input      
directly onto a class label. Probabilities play no role here. 

 

Ø    Use decision theory to determine class membership 
for each new input x       

  

( )xf
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Example 

Linear Models for Classification 
Ø  Classification: Given an input vector x, assign it to 
one of K classes        where k = 1,…, K 

 

Ø   The input space is divided in decision regions whose 
boundaries are called decision boundaries or decision 
surfaces    

  

Ø   Linear models: decision surfaces are linear functions 
of the input vector x. They are defined by (D -1)-
dimensional hyperplanes within the D -dimensional input 
space  
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Linear Models for Classification 
Ø  For regression:  

 

Ø   For classification, we want to predict class labels, or 
more generally class posterior probabilities. 

  

Ø   We transform the linear function of w using a nonlinear 
function  f () so that  

( ) 0wy T += xwx

f wTx +w0( )

Generalized Linear Models 

Linear Discriminant Functions 
Two classes: 

 

 

 

Decision boundary:  
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Linear Discriminant Functions 
Geometrical properties: 

Decision boundary:  

Let           be two points which lie on the decision boundary 
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Linear Discriminant Functions 
Multiple classes 

one-versus-the-rest: K-1 classifiers each of which solves 
a two-class problem of separating points of         from 
points not in that class 

 

 

  

 

  

 

kC

Linear Discriminant Functions 
Multiple classes 

one-versus-one: K(K-1)/2 binary discriminant functions, 
one for every possible pair of classes.  
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Linear Discriminant Functions 
Multiple classes 

Solution: consider a single K-class  discriminant 
comprising K linear functions of the form 

 

Assign a point x to class        if   
The decision boundary between 
class       and class       is given by 
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Linear Discriminant Functions 
 

Two approaches: 

 

Ø   Fisher’s linear discriminant 

  

Ø   Perceptron algorithm 
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Fisher’s Linear Discriminant 
One way to view a linear classification model is in terms of 
dimensionality reduction. 

Two class case: 

Suppose we project x onto one dimension: 

 

Set a threshold  t 
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Example 

Example 
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Example 

Confused mixture of samples from both classes 

How about the horizontal dimension? 
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How about the horizontal dimension? 

Projected samples are well separated now 

Fisher’s Linear Discriminant 

•  Find an orientation along which the projected 
samples are well separated; 

•  This is exactly the goal of linear discriminant 
analysis (LDA); 

•  In other words: we are after the linear 
projection that best separates the data, i.e. 
best discriminates data of different classes. 

            
How can we find such discriminant direction? 
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LDA 

•       samples of class 

•       samples of class 

•  Consider              with 

•  Then:         is the projection of      along the 
direction of    

•  We want the projections         where         
separated from the projections          where 
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LDA 
•  A measure of the separation between the 

projected points is the difference of the 
sample means: 
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# = wT mi
Sample mean for the 
projected points 
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m1 "m2 = wT (m1 "m2)

We wish to make the above difference as large as 
we can. In addition… 
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LDA 
•  To obtain good separation of the projected data we 

really want  the difference between the means to be 
large relative to some measure of the standard 
deviation of each class: 
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analysis 

LDA 



9/9/13 

14 

LDA 
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LDA 
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LDA 

Projection onto the line joining the class means 

LDA 

Solution of LDA 
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LDA 

 

 

   

 

            

( )21
1 mmw != !

WS

•  Gives the linear function with the maximum ratio of    
between-class scatter to within-class scatter. 

•  The problem, e.g. classification, has been reduced 
from a q-dimensional problem to a more 
manageable one-dimensional problem.   

•  Optimal for multivariate normal class conditional 
densities. 

LDA 

 

 

   

 

            

•  The analysis can be extended to multiple classes. 

•  LDA is a linear  technique for dimensionality 
reduction: it projects the data along directions that 
can be expressed as linear combination of the 
input features.   

•  Non-linear extensions of LDA exist (e.g., generalized 
LDA).  

•  The “appropriate” transformation depends on the 
data and on the task we want to perform on the data. 
Note that LDA uses class labels.   
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The Perceptron Algorithm 

Perceptron (Frank Rosenblatt, 1957) 

•  First learning algorithm for neural 
networks; 

• Originally introduced for character 
classification, where each 
character is represented as an 
image; 
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Perceptron (contd.) 
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Perceptron: Learning Algorithm 

 
 

•  Goal: we want to define a learning algorithm for the 
weights in order to compute a mapping from the 
inputs to the outputs; 

•  Example: two class character recognition problem. 

–  Training set: set of images representing either the 
character ‘a’ or the character ‘b’ (supervised learning); 

–  Learning Task: Learn the weights so that when a new 
unlabelled image comes in, the network can predict its label. 

–  Settings: 
  Class ‘a’  è 1  (class C1) 
  Class ‘b’  è 0 (class C2) 
  n input units (intensity level of a pixel) 
  1 output unit 

 
 

The perceptron 
needs to learn  

{ }1,0: →ℜnf
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Perceptron: Learning Algorithm 

 
 

The algorithm proceeds as follows: 

•  Initial random setting of weights; 
•  The input is a random sequence  
•  For each element of class C1, if output = 1 

(correct) do nothing, otherwise update 
weights; 

•  For each element of class C2, if output = 0 
(correct) do nothing, otherwise update 
weights.               

 
 

{ } ℵ∈kkx

Perceptron: Learning Algorithm 

 
 

A bit more formally: 
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Perceptron: Learning Algorithm 

 
 

•  We want to learn values of the weights so 
that the perceptron correctly discriminate 
elements of C1 from elements of C2: 

•  Given x in input, if x is classified correctly, 
weights are unchanged, otherwise: 

 
 

      

! 

w ' =
w + x     if an element of class C1 (1)  was classified as in C2

w " x     if an element of class C2 (0) was classified as in  C1

# 
$ 
% 

Perceptron: Learning Algorithm 

 
 

•  1st case:  
The correct answer is 1, which corresponds to: 
We have instead:  

We want to get closer to the correct answer:  
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! 
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" 0, the condition is verified
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w ' =
w + x     if an element of class C1 (1)  was classified as in C2

w " x     if an element of class C2 (0) was classified as in  C1
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$ 
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Perceptron: Learning Algorithm 

 
 

•  2nd case:  
The correct answer is 0, which corresponds to: 
We have instead:  

We want to get closer to the correct answer:  
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x " C2 and was classified in C1
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0ˆˆ ≥Txw

TT xwwx '>
( ) TT xxwwx −>TT xwwx '>

( ) 2xwxxxwxxxw −=−=− TTTT

iff 

    

! 

because x 2
" 0, the condition is verified

The previous rule allows the network to get closer to the correct answer 
when it performs an error. 

      

! 

w ' =
w + x     if an element of class C1 (1)  was classified as in C2

w " x     if an element of class C2 (0) was classified as in  C1

# 
$ 
% 

Perceptron: Learning Algorithm 
•  In summary: 

1.  A random sequence                               is generated 
such that 

2.  If       is correctly classified, then                      
otherwise  
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Perceptron: Learning Algorithm 
Does the learning algorithm converge? 

 
Convergence theorem: Regardless of the initial choice 

of weights, if the two classes are linearly separable, 
i.e. there exist       s.t. 

 
 
 
 
then the learning rule will find such solution after a 

finite number of steps. 
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Representational Power of Perceptrons 

 
 

•  Marvin Minsky and Seymour Papert, 
“Perceptrons” 1969:  
“The perceptron can solve only problems with 

linearly separable classes.” 
•  Examples of linearly separable Boolean functions: 

 
 

AND OR 
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Representational Power of Perceptrons 

 
 

 
 

Perceptron that computes the 
AND function 

1 1
1 1

-1.5 -0.5 

Perceptron that computes the 
OR function 

Representational Power of Perceptrons 

 
 

•  Example of a non linearly separable Boolean 
function: 

 
 

EX-OR 

The EX-OR function cannot be computed by a perceptron 


