
9/9/13

1

Inference and Decision

Ø  Inference stage: use the training data to learn a

model for

Ø Decision stage: use the given posterior probabilities to

make optimal class assignments

()x|kCp

Generative Methods
Ø  Solve the inference problem of estimating the class-
conditional densities for each class

Ø  Infer the prior class probabilities

Ø  Use Bayes’ theorem to find the class posterior
probabilities:

where

Ø  Use decision theory to determine class membership
for each new input x

()kCp |x kC

()kCp

() () ()
()x

x
x

p
CpCpCp kk

k
|| =

() () ()!=
k

kk CpCpp |xx

9/9/13

2

Discriminative Methods
Ø  Solve directly the inference problem of estimating the
class posterior probabilities

Ø  Use decision theory to determine class membership
for each new input x

()x|kCp

Discriminant Functions
Ø  Find a function which maps each input
directly onto a class label. Probabilities play no role here.

Ø  Use decision theory to determine class membership
for each new input x

()xf

9/9/13

3

Example

Linear Models for Classification
Ø  Classification: Given an input vector x, assign it to
one of K classes where k = 1,…, K

Ø  The input space is divided in decision regions whose
boundaries are called decision boundaries or decision
surfaces

Ø  Linear models: decision surfaces are linear functions
of the input vector x. They are defined by (D -1)-
dimensional hyperplanes within the D -dimensional input
space

kC

9/9/13

4

Linear Models for Classification
Ø  For regression:

Ø  For classification, we want to predict class labels, or
more generally class posterior probabilities.

Ø  We transform the linear function of w using a nonlinear
function f () so that

() 0wy T += xwx

f wTx +w0()

Generalized Linear Models

Linear Discriminant Functions
Two classes:

Decision boundary:

() 0wy T += xwx

()
2

10
Ctoassignotherwise
Ctoassignyif

 x
 x x !

() 0=xy

9/9/13

5

Linear Discriminant Functions
Geometrical properties:

Decision boundary:

Let be two points which lie on the decision boundary

() 00 =+= wy T xwx

21, xx

() ()
() 0

0,0

21

022011

=!"

=+==+=

xx w

xwxxwx
T

TT wywy

w represents the orthogonal direction
to the decision boundary

Geometrical properties (con’t)

w
ww
T

T =*

0x
()

()

() ()

() ()

()
ww

x
 0x

w
x

wxw
w

xwxw
w

xx
w

w

 xx

 xxw

0

0

00

*
0

0
*

,

1

1

wy
when

y

directionwtheonto

ofprojectiontheis

T

TT
T

T

==

=+=

!=!

!

!

Signed orthogonal distance of
the origin from the decision
surface

9/9/13

6

Linear Discriminant Functions
Multiple classes

one-versus-the-rest: K-1 classifiers each of which solves
a two-class problem of separating points of from
points not in that class

kC

Linear Discriminant Functions
Multiple classes

one-versus-one: K(K-1)/2 binary discriminant functions,
one for every possible pair of classes.

9/9/13

7

Linear Discriminant Functions
Multiple classes

Solution: consider a single K-class discriminant
comprising K linear functions of the form

Assign a point x to class if
The decision boundary between
class and class is given by

() 0k
T
kk wy += xwx

kC () () kjxyxy jk !">

!

yk x() =y j x()

" wk # w j()
T

x + wk 0 # wj0() = 0

kC jC

Linear Discriminant Functions

Two approaches:

Ø  Fisher’s linear discriminant

Ø  Perceptron algorithm

9/9/13

8

Fisher’s Linear Discriminant
One way to view a linear classification model is in terms of
dimensionality reduction.

Two class case:

Suppose we project x onto one dimension:

Set a threshold t

xwTy =

2

1

Ctoassignotherwise
Ctoassigntyif

 x
 x !

Example

9/9/13

9

Example

Example

9/9/13

10

Example

Confused mixture of samples from both classes

How about the horizontal dimension?

9/9/13

11

How about the horizontal dimension?

Projected samples are well separated now

Fisher’s Linear Discriminant

•  Find an orientation along which the projected
samples are well separated;

•  This is exactly the goal of linear discriminant
analysis (LDA);

•  In other words: we are after the linear
projection that best separates the data, i.e.
best discriminates data of different classes.

How can we find such discriminant direction?

9/9/13

12

LDA

•  samples of class

•  samples of class

•  Consider with

•  Then: is the projection of along the
direction of

•  We want the projections where
separated from the projections where

N
iin C 1)},{(=x q

n !"x } ,{ 21 CCCi !

1N 1C

2N 2C
q!"w 1=w

xwT

w
x

xwT 1C!x
xwT

2C!x

LDA
•  A measure of the separation between the

projected points is the difference of the
sample means:

iC

!

mi =
1
N i

x
x"Ci

Sample mean of class

!

mi =
1
N i

wT x
x"Ci

= wT mi
Sample mean for the
projected points

!

m1 "m2 = wT (m1 "m2)

We wish to make the above difference as large as
we can. In addition…

9/9/13

13

LDA
•  To obtain good separation of the projected data we

really want the difference between the means to be
large relative to some measure of the standard
deviation of each class:

iC

!

si
2 = wT x "mi()

2

x#Ci

$ Scatter for the projected
samples of class

Total within-class
scatter of the projected
samples

!

s1
2 + s2

2

!

arg max
w

m1 "m2

2

s1
2 + s2

2
Fisher linear discriminant
analysis

LDA

9/9/13

14

LDA

()
 : matrices following the

 define we of function explicit an as obtain To wwJ

() 2
2

2
1

2
21

ss
mm

J
+

!
=w

!

Si = x "mi() x "mi()T

x#Ci

$

SW = S1 + S2 Within-class scatter matrix
Then:

!

si
2 = wT x "mi()

x#Ci

$
2

= wT x " wT mi()
2

x#Ci

$

= wT x "mi()
x#Ci

$ x "mi()T w = wT Siw

LDA

!

So : s1
2 = wT S1w and s2

2 = wT S2w
Thus : s1

2 + s2
2 = wT S1w + wT S2w =

 wT S1 + S2()w = wT SWw

!

Similarly :

m1 "m2()2
= wT m1 " wT m2()2

=

 wT m1 "m2() m1 "m2()T w =

 wT SB w

where SB = m1 "m2() m1 "m2()T Between-class scatter
matrix

() 2
2

2
1

2
21

ss
mm

J
+

!
=w

9/9/13

15

LDA

ww W
T Sss =+ 2

2
2
1

: obtained have We

() ww B
T Smm =! 2

21

()
ww
www

W
T

B
T

S
S

ss
mm

J =
+

!
= 2

2
2
1

2
21

ww
ww

w
W

T
B

T

S
S

maxarg

LDA

!

We observe that :

SB w = m1 "m2() m1 "m2()T w

scalar
Always in the direction of
()21 mm !

()21
1 mmw != !

WS

()
ww
www

W
T

B
T

S
SJ =

!

J w() is maximized when wT SB w()SWw = wT SWw()SB w

9/9/13

16

LDA

Projection onto the line joining the class means

LDA

Solution of LDA

9/9/13

17

LDA

()21
1 mmw != !

WS

•  Gives the linear function with the maximum ratio of
between-class scatter to within-class scatter.

•  The problem, e.g. classification, has been reduced
from a q-dimensional problem to a more
manageable one-dimensional problem.

•  Optimal for multivariate normal class conditional
densities.

LDA

•  The analysis can be extended to multiple classes.

•  LDA is a linear technique for dimensionality
reduction: it projects the data along directions that
can be expressed as linear combination of the
input features.

•  Non-linear extensions of LDA exist (e.g., generalized
LDA).

•  The “appropriate” transformation depends on the
data and on the task we want to perform on the data.
Note that LDA uses class labels.

9/9/13

18

The Perceptron Algorithm

Perceptron (Frank Rosenblatt, 1957)

•  First learning algorithm for neural
networks;

• Originally introduced for character
classification, where each
character is represented as an
image;

9/9/13

19

Perceptron (contd.)

 ()

⎩
⎨
⎧

<

≥
=

00
01

x
x

xH
 if
 if

∑
=

n

j
jj xw

1
Total input to output node:

Output unit performs the
function: (activation function):

Perceptron: Learning Algorithm

•  Goal: we want to define a learning algorithm for the
weights in order to compute a mapping from the
inputs to the outputs;

•  Example: two class character recognition problem.

–  Training set: set of images representing either the
character ‘a’ or the character ‘b’ (supervised learning);

–  Learning Task: Learn the weights so that when a new
unlabelled image comes in, the network can predict its label.

–  Settings:
 Class ‘a’ è 1 (class C1)
 Class ‘b’ è 0 (class C2)
 n input units (intensity level of a pixel)
 1 output unit

The perceptron
needs to learn

{ }1,0: →ℜnf

9/9/13

20

Perceptron: Learning Algorithm

The algorithm proceeds as follows:

•  Initial random setting of weights;
•  The input is a random sequence
•  For each element of class C1, if output = 1

(correct) do nothing, otherwise update
weights;

•  For each element of class C2, if output = 0
(correct) do nothing, otherwise update
weights.

{ } ℵ∈kkx

Perceptron: Learning Algorithm

A bit more formally:

()nxxx ,...,, 21=x ()nwww ,...,, 21=w
:θ

nn
T xwxwxw +++= ...2211wx

0≥−θTwx

∑
+

=

≥=
1

1

0ˆˆ
n

i
ii

T xwxw

Threshold of the output unit

Output is 1 if

To eliminate the explicit
dependence on :θ

Output is 1 if:

9/9/13

21

Perceptron: Learning Algorithm

•  We want to learn values of the weights so
that the perceptron correctly discriminate
elements of C1 from elements of C2:

•  Given x in input, if x is classified correctly,
weights are unchanged, otherwise:

!

w ' =
w + x if an element of class C1 (1) was classified as in C2

w " x if an element of class C2 (0) was classified as in C1

$
%

Perceptron: Learning Algorithm

•  1st case:
The correct answer is 1, which corresponds to:
We have instead:

We want to get closer to the correct answer:

!

x " C1 and was classified in C2

0ˆˆ ≥Txw
0ˆˆ <Txw

TT xwwx '<

() TT xxwwx +<TT xwwx '<

() 2xwxxxwxxxw +=+=+ TTTT

iff

!

because x 2
" 0, the condition is verified

!

w ' =
w + x if an element of class C1 (1) was classified as in C2

w " x if an element of class C2 (0) was classified as in C1

$
%

9/9/13

22

Perceptron: Learning Algorithm

•  2nd case:
The correct answer is 0, which corresponds to:
We have instead:

We want to get closer to the correct answer:

!

x " C2 and was classified in C1

0ˆˆ <Txw
0ˆˆ ≥Txw

TT xwwx '>
() TT xxwwx −>TT xwwx '>

() 2xwxxxwxxxw −=−=− TTTT

iff

!

because x 2
" 0, the condition is verified

The previous rule allows the network to get closer to the correct answer
when it performs an error.

!

w ' =
w + x if an element of class C1 (1) was classified as in C2

w " x if an element of class C2 (0) was classified as in C1

$
%

Perceptron: Learning Algorithm
•  In summary:

1.  A random sequence is generated
such that

2.  If is correctly classified, then
otherwise

 ,x,,x,x k21

21 CCi ∪∈x

kx kk ww =+1

⎩
⎨
⎧

∈−

∈+
=+

2

1
1 Cif

Cif

kkk

kkk
k x xw

x xw
w

9/9/13

23

Perceptron: Learning Algorithm
Does the learning algorithm converge?

Convergence theorem: Regardless of the initial choice

of weights, if the two classes are linearly separable,
i.e. there exist s.t.

then the learning rule will find such solution after a

finite number of steps.

⎪⎩

⎪
⎨
⎧

∈<

∈≥

2

1

0ˆˆ

0ˆˆ

C

C
T

T

x if xw

x if xw

w

Representational Power of Perceptrons

•  Marvin Minsky and Seymour Papert,
“Perceptrons” 1969:
“The perceptron can solve only problems with

linearly separable classes.”
•  Examples of linearly separable Boolean functions:

AND OR

9/9/13

24

Representational Power of Perceptrons

Perceptron that computes the
AND function

1 1
1 1

-1.5 -0.5

Perceptron that computes the
OR function

Representational Power of Perceptrons

•  Example of a non linearly separable Boolean
function:

EX-OR

The EX-OR function cannot be computed by a perceptron

