Inference and Decision

$>$ Inference stage: use the training data to learn a model for $p\left(C_{k} \mid \boldsymbol{x}\right)$
$>$ Decision stage: use the given posterior probabilities to make optimal class assignments

Generative Methods

$>$ Solve the inference problem of estimating the classconditional densities $p\left(\boldsymbol{x} \mid C_{k}\right)$ for each class C_{k}
$>$ Infer the prior class probabilities $p\left(C_{k}\right)$
> Use Bayes' theorem to find the class posterior probabilities:

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{p\left(\boldsymbol{x} \mid C_{k}\right) p\left(C_{k}\right)}{p(\boldsymbol{x})}
$$

where

$$
p(\boldsymbol{x})=\sum_{k} p\left(\boldsymbol{x} \mid C_{k}\right) p\left(C_{k}\right)
$$

$>$ Use decision theory to determine class membership for each new input \boldsymbol{x}

Discriminative Methods

Solve directly the inference problem of estimating the class posterior probabilities $p\left(C_{k} \mid \boldsymbol{x}\right)$
$>$ Use decision theory to determine class membership for each new input \boldsymbol{x}

Discriminant Functions

$>$ Find a function $f(\boldsymbol{x})$ which maps each input directly onto a class label. Probabilities play no role here.
$>$ Use decision theory to determine class membership for each new input \boldsymbol{x}

Example

Linear Models for Classification

Classification: Given an input vector \boldsymbol{x}, assign it to one of K classes C_{k} where $k=1, \ldots, K$
$>$ The input space is divided in decision regions whose boundaries are called decision boundaries or decision surfaces
> Linear models: decision surfaces are linear functions of the input vector \boldsymbol{x}. They are defined by $(D-1)$ dimensional hyperplanes within the D-dimensional input space

Linear Models for Classification

\rightarrow For regression: $y(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
> For classification, we want to predict class labels, or more generally class posterior probabilities.
$>$ We transform the linear function of \boldsymbol{w} using a nonlinear function $f()$ so that

$$
f\left(\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}\right)
$$

Generalized Linear Models

Linear Discriminant Functions

Two classes:

$$
\begin{aligned}
& \qquad y(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} \\
& \text { if } y(\boldsymbol{x}) \geq 0 \\
& \text { assign } \boldsymbol{x} \text { to } C_{1} \\
& \text { otherwise }
\end{aligned} \text { assign } \boldsymbol{x} \text { to } C_{2} .
$$

Decision boundary: $\quad y(x)=0$

Linear Discriminant Functions

Geometrical properties:

Decision boundary: $y(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0$
Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ be two points which lie on the decision boundary

$$
\begin{aligned}
& y\left(\boldsymbol{x}_{1}\right)=\boldsymbol{w}^{T} \boldsymbol{x}_{1}+w_{0}=0, y\left(\boldsymbol{x}_{2}\right)=\boldsymbol{w}^{T} \boldsymbol{x}_{2}+w_{0}=0 \\
& \Rightarrow \boldsymbol{w}^{T}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)=0
\end{aligned}
$$

w represents the orthogonal direction to the decision boundary

Geometrical properties (con't)

$$
\boldsymbol{w}^{{ }^{*} T}=\frac{\boldsymbol{w}^{T}}{\|\boldsymbol{w}\|}
$$

when $\boldsymbol{x}=0, \quad \frac{y(\boldsymbol{x})}{\|\boldsymbol{w}\|}=\frac{w_{0}}{\|\boldsymbol{w}\|}$
Signed orthogonal distance of the origin from the decision surface

Linear Discriminant Functions

Multiple classes

one-versus-the-rest: K - 1 classifiers each of which solves a two-class problem of separating points of C_{k} from points not in that class

Linear Discriminant Functions

Multiple classes

one-versus-one: $K(K-1) / 2$ binary discriminant functions, one for every possible pair of classes.

Linear Discriminant Functions
 Multiple classes

Solution: consider a single K-class discriminant comprising K linear functions of the form

$$
y_{k}(\boldsymbol{x})=\boldsymbol{w}_{k}^{T} \boldsymbol{x}+w_{k 0}
$$

Assign a point \boldsymbol{x} to class C_{k} if $y_{k}(x)>y_{j}(x) \forall j \neq k$
The decision boundary between class C_{k} and class C_{j} is given by $y_{k}(\boldsymbol{x})=y_{j}(\boldsymbol{x})$
$\Rightarrow\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{j}\right)^{T} \boldsymbol{x}+\left(w_{k 0}-w_{j 0}\right)=0$

Linear Discriminant Functions

Two approaches:
>Fisher's linear discriminant
> Perceptron algorithm

Fisher's Linear Discriminant

One way to view a linear classification model is in terms of dimensionality reduction.

Two class case:

Suppose we project \boldsymbol{x} onto one dimension:

$$
y=\boldsymbol{w}^{T} \boldsymbol{x}
$$

Set a threshold t

$$
\begin{aligned}
& \text { if } y \geq t \quad \text { assign } x \text { to } C_{1} \\
& \text { otherwise } \quad \text { assign } x \text { to } C_{2}
\end{aligned}
$$

Example

How about the horizontal dimension?

How about the horizontal dimension?

Fisher's Linear Discriminant

- Find an orientation along which the projected samples are well separated;
- This is exactly the goal of linear discriminant analysis (LDA);
- In other words: we are after the linear projection that best separates the data, i.e. best discriminates data of different classes.

How can we find such discriminant direction?

LDA

$$
\left\{\left(\boldsymbol{x}_{n}, C_{i}\right)\right\}_{i=1}^{N} \quad \boldsymbol{x}_{n} \in \Re^{q} \quad C_{i} \in\left\{C_{1}, C_{2}\right\}
$$

- N_{1} samples of class C_{1}
- N_{2} samples of class C_{2}
- Consider $\boldsymbol{w} \in \Re^{q}$ with $\|\boldsymbol{w}\|=1$
- Then: $\boldsymbol{w}^{T} \boldsymbol{x}$ is the projection of \boldsymbol{x} along the direction of w
- We want the projections $\boldsymbol{w}^{T} \boldsymbol{x}$ where $\boldsymbol{x} \in C_{1}$ separated from the projections $\boldsymbol{w}^{T} \boldsymbol{x}$ where $x \in C_{2}$

LDA

- A measure of the separation between the projected points is the difference of the sample means:

$$
\begin{aligned}
& \boldsymbol{m}_{i}=\frac{1}{N_{i}} \sum_{x \in C_{i}} \boldsymbol{x} \quad \text { Sample mean of class } C_{i} \\
& m_{i}=\frac{1}{N_{i}} \sum_{x \in C_{i}} \boldsymbol{w}^{T} \boldsymbol{x}=\boldsymbol{w}^{T} \boldsymbol{m}_{i} \\
& \quad \begin{array}{l}
\text { Sample mean for the } \\
\text { projected points }
\end{array} \\
& \Rightarrow\left|m_{1}-m_{2}\right|=\left|\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right|
\end{aligned}
$$

We wish to make the above difference as large as we can. In addition...

LDA

- To obtain good separation of the projected data we really want the difference between the means to be large relative to some measure of the standard deviation of each class:

$$
\begin{array}{ll}
s_{i}^{2}=\sum_{\boldsymbol{x} \in C_{i}}\left(\boldsymbol{w}^{T} \boldsymbol{x}-m_{i}\right)^{2} & \begin{array}{l}
\text { Scatter for the projected } \\
\text { samples of class } C_{i}
\end{array} \\
s_{1}^{2}+s_{2}^{2} & \begin{array}{l}
\text { Total within-class } \\
\text { scatter of the projected } \\
\text { samples }
\end{array}
\end{array}
$$

$$
\underset{w}{\arg \max } \frac{\left|m_{1}-m_{2}\right|^{2}}{s_{1}^{2}+s_{2}^{2}} \quad \begin{aligned}
& \text { Fisher linear discriminant } \\
& \text { analysis }
\end{aligned}
$$

LDA

$J(\boldsymbol{w})=\frac{\left|m_{1}-m_{2}\right|^{2}}{s_{1}^{2}+s_{2}^{2}}$
To obtain $J(\boldsymbol{w})$ as an explicit function of \boldsymbol{w} we define the following matrices :
$S_{i}=\sum_{x \in C_{i}}\left(\boldsymbol{x}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}-\boldsymbol{m}_{i}\right)^{T}$
$S_{W}=S_{1}+S_{2} \quad$ Within-class scatter matrix
Then:
$s_{i}^{2}=\sum_{\mathrm{x} \in C_{i}}\left(\boldsymbol{w}^{T} \boldsymbol{x}-m_{i}\right)^{2}=\sum_{x \in C_{i}}\left(\boldsymbol{w}^{T} \boldsymbol{x}-\boldsymbol{w}^{T} \boldsymbol{m}_{i}\right)^{2}$
$=\sum_{x \in C_{i}} \boldsymbol{w}^{T}\left(\boldsymbol{x}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}-\boldsymbol{m}_{i}\right)^{T} \boldsymbol{w}=\boldsymbol{w}^{T} S_{i} \boldsymbol{w}$

LDA

$$
J(\boldsymbol{w})=\frac{\left|m_{1}-m_{2}\right|^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

So: $\quad s_{1}^{2}=\boldsymbol{w}^{T} S_{1} \boldsymbol{w}$ and $s_{2}^{2}=\boldsymbol{w}^{T} S_{2} \boldsymbol{w}$
Thus: $s_{1}^{2}+s_{2}^{2}=\boldsymbol{w}^{T} S_{1} \boldsymbol{w}+\boldsymbol{w}^{T} S_{2} \boldsymbol{w}=$

$$
\boldsymbol{w}^{T}\left(S_{1}+S_{2}\right) \boldsymbol{w}=\boldsymbol{w}^{T} S_{W} \boldsymbol{w}
$$

Similarly:

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2}= & \left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2}= \\
& \boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}= \\
& \boldsymbol{w}^{T} S_{B} \boldsymbol{w}
\end{aligned}
$$

where $S_{B}=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \quad$ Between-class scatter matrix

LD

We have obtained :

$$
\begin{aligned}
& s_{1}^{2}+s_{2}^{2}=\boldsymbol{w}^{T} S_{W} \boldsymbol{w} \\
& \left(m_{1}-m_{2}\right)^{2}=\boldsymbol{w}^{T} S_{B} \boldsymbol{w} \\
& \Longrightarrow J(\boldsymbol{w})=\frac{\left|m_{1}-m_{2}\right|^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{T} S_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} S_{W} \boldsymbol{w}} \\
& \arg \max _{\boldsymbol{w}} \frac{\boldsymbol{w}^{T} S_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} S_{W} \boldsymbol{w}}
\end{aligned}
$$

LDA

$J(\boldsymbol{w})=\frac{\boldsymbol{w}^{T} S_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} S_{W} \boldsymbol{w}}$
$J(\boldsymbol{w})$ is maximized when $\left(\boldsymbol{w}^{T} S_{B} \boldsymbol{w}\right) S_{W} \boldsymbol{w}=\left(\boldsymbol{w}^{T} S_{W} \boldsymbol{w}\right) S_{B} \boldsymbol{w}$

We observe that:
$S_{B} \boldsymbol{w}=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \quad$ Always in the direction of $\stackrel{\text { scalar }}{ } \quad\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$
$\Longrightarrow \quad \boldsymbol{w}=S_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$

Projection onto the line joining the class means

$$
\boldsymbol{w}=\frac{S_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)}{}
$$

- Gives the linear function with the maximum ratio of between-class scatter to within-class scatter.
- The problem, e.g. classification, has been reduced from a q-dimensional problem to a more manageable one-dimensional problem.
- Optimal for multivariate normal class conditional densities.

LDA

- The analysis can be extended to multiple classes.
- LDA is a linear technique for dimensionality reduction: it projects the data along directions that can be expressed as linear combination of the input features.
- The "appropriate" transformation depends on the data and on the task we want to perform on the data. Note that LDA uses class labels.
- Non-linear extensions of LDA exist (e.g., generalized LDA).

The Perceptron Algorithm

Perceptron (Frank Rosenblatt, 1957)

- First learning algorithm for neural networks;
- Originally introduced for character classification, where each character is represented as an image:

Perceptron (contd.)

Total input to output node: $\sum_{j=1}^{n} w_{j} x_{j}$
Output unit performs the function: (activation function):

$$
H(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Perceptron: Learning Algorithm

- Goal: we want to define a learning algorithm for the weights in order to compute a mapping from the inputs to the outputs;
- Example: two class character recognition problem.
- Training set: set of images representing either the character ' a ' or the character 'b' (supervised learning);
- Learning Task: Learn the weights so that when a new unlabelled image comes in, the network can predict its label.
- Settings:

Class 'a' $\rightarrow 1$ (class C 1)
Class 'b' $\rightarrow 0$ (class C2)
n input units (intensity level of a pixel) 1 output unit

The perceptron needs to learn

$$
f: \mathfrak{R}^{n} \rightarrow\{0,1\}
$$

Perceptron: Learning Algorithm

The algorithm proceeds as follows:

- Initial random setting of weights;
- The input is a random sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathrm{~N}}$
- For each element of class C1, if output = 1 (correct) do nothing, otherwise update weights;
- For each element of class C2, if output $=0$ (correct) do nothing, otherwise update weights.

Perceptron: Learning Algorithm

A bit more formally:

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

θ : Threshold of the output unit

$$
\boldsymbol{w} \boldsymbol{x}^{T}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}
$$

Output is 1 if $\boldsymbol{w} \boldsymbol{x}^{T}-\theta \geq 0$
To eliminate the explicit dependence on $\boldsymbol{\theta}$:

Output is 1 if :
$\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T}=\sum_{i=1}^{n+1} w_{i} x_{i} \geq 0$

Perceptron: Learning Algorithm

- We want to learn values of the weights so that the perceptron correctly discriminate elements of C 1 from elements of C2:
- Given x in input, if x is classified correctly, weights are unchanged, otherwise:
$\boldsymbol{w}^{\prime}= \begin{cases}\boldsymbol{w}+\boldsymbol{x} & \text { if an element of class } C_{1}(1) \text { was classified as in } C_{2} \\ \boldsymbol{w}-\boldsymbol{x} & \text { if an element of class } C_{2}(0) \text { was classified as in } C_{1}\end{cases}$

Perceptron: Learning Algorithm

$\boldsymbol{w}^{\prime}= \begin{cases}\boldsymbol{w}+\boldsymbol{x} & \text { if an element of class } C_{1}(1) \text { was classified as in } C_{2} \\ \boldsymbol{w}-\boldsymbol{x} & \text { if an element of class } C_{2}(0) \text { was classified as in } C_{1}\end{cases}$

- $1^{\text {st }}$ case: $x \in C_{1}$ and was classified in C_{2}

The correct answer is 1 , which corresponds to: $\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T} \geq 0$
We have instead: $\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T}<0$
We want to get closer to the correct answer: $\boldsymbol{w} \boldsymbol{x}^{T}<\boldsymbol{w}^{\prime} \boldsymbol{x}^{T}$

$$
\begin{aligned}
& \boldsymbol{w} \boldsymbol{x}^{T}<\boldsymbol{w}^{\prime} \boldsymbol{x}^{T} \quad \text { iff } \quad \boldsymbol{w} \boldsymbol{x}^{T}<(\boldsymbol{w}+\boldsymbol{x}) \boldsymbol{x}^{T} \\
& (\boldsymbol{w}+\boldsymbol{x}) \boldsymbol{x}^{T}=\boldsymbol{w} \boldsymbol{x}^{T}+\boldsymbol{x} \boldsymbol{x}^{T}=\boldsymbol{w} \boldsymbol{x}^{T}+\|\boldsymbol{x}\|^{2} \\
& \text { because }\|\boldsymbol{x}\|^{2} \geq 0, \text { the condition is verified }
\end{aligned}
$$

Perceptron: Learning Algorithm

$$
\boldsymbol{w}^{\prime}= \begin{cases}\boldsymbol{w}+\boldsymbol{x} & \text { if an element of class } C_{1}(1) \text { was classified as in } C_{2} \\ \boldsymbol{w}-\boldsymbol{x} & \text { if an element of class } C_{2}(0) \text { was classified as in } C_{1}\end{cases}
$$

- $2^{\text {nd }}$ case: $x \in C_{2}$ and was classified in C_{1}

The correct answer is 0 , which corresponds to: $\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T}<0$ We have instead: $\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T} \geq 0$

We want to get closer to the correct answer: $\boldsymbol{w} \boldsymbol{x}^{T}>\boldsymbol{w}^{\prime} \boldsymbol{x}^{T}$

$$
\boldsymbol{w} \boldsymbol{x}^{T}>\boldsymbol{w}^{\prime} \boldsymbol{x}^{T} \quad \text { iff } \quad \boldsymbol{w} \boldsymbol{x}^{T}>(\boldsymbol{w}-\boldsymbol{x}) \boldsymbol{x}^{T}
$$

$$
(\boldsymbol{w}-\boldsymbol{x}) \boldsymbol{x}^{T}=\boldsymbol{w} \boldsymbol{x}^{T}-\boldsymbol{x} \boldsymbol{x}^{T}=\boldsymbol{w} \boldsymbol{x}^{T}-\|\boldsymbol{x}\|^{2}
$$

because $\|x\|^{2} \geq 0$, the condition is verified
The previous rule allows the network to get closer to the correct answer when it performs an error.

Perceptron: Learning Algorithm

- In summary:

1. A random sequence $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{k}, \cdots$ is generated such that $\boldsymbol{x}_{i} \in C_{1} \cup C_{2}$
2. If \boldsymbol{x}_{k} is correctly classified, then $\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}$ otherwise

$$
\boldsymbol{w}_{k+1}= \begin{cases}\boldsymbol{w}_{k}+\boldsymbol{x}_{k} & \text { if } \boldsymbol{x}_{k} \in C_{1} \\ \boldsymbol{w}_{k}-\boldsymbol{x}_{k} & \text { if } \boldsymbol{x}_{k} \in C_{2}\end{cases}
$$

Perceptron: Learning Algorithm

Does the learning algorithm converge?

Convergence theorem: Regardless of the initial choice of weights, if the two classes are linearly separable, i.e. there exist \boldsymbol{w} s.t.

$$
\left\{\begin{array}{l}
\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T} \geq 0 \text { if } \boldsymbol{x} \in C_{1} \\
\hat{\boldsymbol{w}} \hat{\boldsymbol{x}}^{T}<0 \text { if } \boldsymbol{x} \in C_{2}
\end{array}\right.
$$

then the learning rule will find such solution after a finite number of steps.

Representational Power of Perceptrons

- Marvin Minsky and Seymour Papert, "Perceptrons" 1969:
"The perceptron can solve only problems with linearly separable classes."
- Examples of linearly separable Boolean functions:

Representational Power of Perceptrons

Perceptron that computes the AND function

Perceptron that computes the OR function

Representational Power of Perceptrons

- Example of a non linearly separable Boolean function:

The EX-OR function cannot be computed by a perceptron

