## PCA -- In practice

- The basic goal of PCA is to reduce the dimensionality of the data. Thus, one usually chooses:

$$
n \ll q
$$

- But how do we select the number of components $n$ ?


## Determining the number of components

- Plot the eigenvalues - each eigenvalue is related to the amount of variation explained by the corresponding axis (eigenvector);
- If the points on the graph tend to level out (show an "elbow" shape), these eigenvalues are usually close enough to zero that they can be ignored.
- In general: Limit the variance accounted for.


## Critical information lies in Iow dimensional subspaces



A typical eigenvalue spectrum and its division into two orthogonal subspaces


## Determining the number of components

$\boldsymbol{x}_{i} \in \mathfrak{R}^{q}, \quad i=1, \cdots, N$
$\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{q}: q$ eigenvectors (principal component directions)
$\left\|\boldsymbol{w}_{i}\right\|=1$ (the $\boldsymbol{w}_{i} \mathrm{~S}$ are orthonormal vectors)
Representation of $\boldsymbol{x}_{i}$ in eigenvector space:
$\boldsymbol{y}_{i}=\left(\boldsymbol{w}_{1}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{1}+\left(\boldsymbol{w}_{2}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{2}+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{q}$
Suppose we retain the first $k$ principal components:
$\boldsymbol{y}_{i}^{k}=\left(\boldsymbol{w}_{1}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{1}+\left(\boldsymbol{w}_{2}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{2}+\cdots+\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{k}$
Then:
$\boldsymbol{y}_{i}-\boldsymbol{y}_{i}^{k}=\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{k+1}+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{q}$

## Determining the number of components

$\left(y_{i}-\boldsymbol{y}_{i}^{k}\right)^{T}\left(\boldsymbol{y}_{i}-\boldsymbol{y}_{i}^{k}\right)=$
$\left[\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{k+1}+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{q}\right]^{T}\left[\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{k+1}+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right) \boldsymbol{w}_{q}\right]=$
$\boldsymbol{w}_{k+1}^{T}\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right)^{2} \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T}\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right)^{2} \boldsymbol{w}_{q}=$
(note $\boldsymbol{w}_{i}^{T} \boldsymbol{w}_{j}=0 \forall i \neq j$ since $\boldsymbol{w}_{i}$ and $\boldsymbol{w}_{j}$ are orthogonal vectors)
$\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right)^{2} \boldsymbol{w}_{k+1}^{T} \boldsymbol{w}_{k+1}+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right)^{2} \boldsymbol{w}_{q}^{T} \boldsymbol{w}_{q}=$
$\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right)^{2}+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right)^{2}=$
$\left(\boldsymbol{w}_{k+1}^{T} \boldsymbol{x}_{i}\right)\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}_{k+1}\right)+\cdots+\left(\boldsymbol{w}_{q}^{T} \boldsymbol{x}_{i}\right)\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}_{q}\right)=$
$\boldsymbol{w}_{k+1}^{T}\left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T}\left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \boldsymbol{w}_{q}$

## Determining the number of components

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{y}_{i}-\boldsymbol{y}_{i}^{k}\right)^{T}\left(\boldsymbol{y}_{i}-\boldsymbol{y}_{i}^{k}\right)=\quad \text { Mean square error } \\
& \frac{1}{N} \sum_{i=1}^{N}\left[\boldsymbol{w}_{k+1}^{T}\left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T}\left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \boldsymbol{w}_{q}\right]= \\
& \boldsymbol{w}_{k+1}^{T}\left[\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right)\right] \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T}\left[\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right)\right] \boldsymbol{w}_{q}= \\
& \boldsymbol{w}_{k+1}^{T} \Sigma \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T} \Sigma \boldsymbol{w}_{q}
\end{aligned}
$$

We have: $\Sigma \boldsymbol{w}_{k+1}=\boldsymbol{\lambda}_{k+1} \boldsymbol{w}_{k+1}, \cdots, \Sigma \boldsymbol{w}_{q}=\boldsymbol{\lambda}_{q} \boldsymbol{w}_{q}$
Thus:
$\boldsymbol{w}_{k+1}^{T} \Sigma \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T} \Sigma \boldsymbol{w}_{q}=$
$\boldsymbol{w}_{k+1}^{T} \boldsymbol{\lambda}_{k+1} \boldsymbol{w}_{k+1}+\cdots+\boldsymbol{w}_{q}^{T} \lambda_{q} \boldsymbol{w}_{q}=$
$\lambda_{k+1}+\cdots+\lambda_{q}$

Determining the number of components

$$
\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{y}_{i}-\boldsymbol{y}_{i}^{k}\right)^{T}\left(\boldsymbol{y}_{i}-\boldsymbol{y}_{i}^{k}\right)=\lambda_{k+1}+\cdots \lambda_{q}
$$

The mean square error of the truncated representation is equal to the sum of the remaining eigenvalues.

In general: choose $\boldsymbol{k}$ so that 90-95\% of the variance of the data is captured.

