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Bayes’ Theorem 

 
Ø                      is the prior probability: it expresses the 

probability before we observe any data 

Ø                                  is the posterior probability: it 
expresses the probability after  we observed the data 

Ø  The effect of the observed data is captured through the 
conditional probability 
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Curve fitting re-visited 

Ø We can adopt a Bayesian approach when estimating the 
parameters      for polynomial curve fitting.                     

Ø             captures our assumptions about         before 
observing the data.      

Ø  The effect of the observed data D is captured by the 
conditional probability                   

Ø Bayes’ theorem allows to evaluate the uncertainty in       
after we have observed the data D (in the form of 
posterior probability): 

Ø                  is the likelihood function 
Ø Maximum likelihood approach: set        to the value that 

maximizes  
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Curve fitting re-visited: ML approach 

Ø  Training data:                     
            

Ø We can express our uncertainty over the value of the 
target variable using a probability distribution 

Ø Assumption: Given a value of x, the corresponding value 
of t has a Gaussian distribution with a mean equal to 

Ø  Thus:  
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p t | x,w,"( ) = # t | y x,w( ),"$1( )

Curve fitting re-visited: ML approach 
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Curve fitting re-visited: ML approach 

Ø We use the training data             to estimate                   
by maximum likelihood 

            

Ø Assuming data are drawn independently, the likelihood 
function can be written as the product of the marginal 
distributions: 
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Curve fitting re-visited: ML approach 

Ø Gaussian distribution:  
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Curve fitting re-visited: ML approach 

Ø Maximum likelihood solution for the polynomial 
coefficients: maximize log likelihood with respect to 

Ø  It is equivalent to minimize the negative log likelihood:  

Ø  Thus: The sum-of-squares error function results from 
maximizing the likelihood under the assumption of a 
Gaussian noise distribution  
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Curve fitting re-visited: ML approach 

Ø Maximum likelihood solution for the parameter     : 
maximize log likelihood with respect to 
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Curve fitting re-visited: ML approach 

Ø We now have the maximum likelihood solutions for the 
parameters: 

Ø We can now make predictions for new values of x  by 
using the resulting probability distribution over t 
(predictive distribution) 
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wML ,"ML
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p t | x,wML ,"ML( ) = # t | y x,wML( ),"ML
$1( )

Ø  Let us introduce a prior distribution over the polynomial 
coefficients 

Ø Recall: Gaussian distribution of a D-dimensional vector x 

Ø Prior distribution: 

Ø Using Bayes’ theorem:  
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Maximum a Posteriori (MAP) approach 
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MAP approach 

Ø Maximum a Posteriori solution for the parameters      
maximize the posterior distribution  

Ø  It is equivalent to minimize the negative log posterior 
distribution: 

Ø  Thus: maximizing the posterior distribution is equivalent 
to minimizing the regularized sum-of-squares error 
function 
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Curse of Dimensionality 

Ø Real world applications deal with spaces with high 
dimensionality 

Ø High dimensionality poses serious challenges for the 
design of pattern recognition techniques 

 

 
            

            

Oil flaw data in two 
dimensions 

Red = homogeneous 

Green = annular 

Blue = laminar 
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Curse of Dimensionality 

Ø A simple classification approach 

 

 
            

            
Curse of Dimensionality 

Ø Going higher in dimensionality… 

 

 
            

            

                                                             321 333

The number of regions of a regular grid grows 
exponentially with the dimensionality        of the 
space 

D
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DMAX/DMIN 

Sample of size N=500 uniformly distributed in    q]1 ,0[

Curse of Dimensionality       
 

Curse of Dimensionality       
 

The distribution of the ratio DMAX/DMIN 
converges to 1 as the dimensionality increases 
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Curse of Dimensionality       
 

Variance of distances from a given point 

Curse of Dimensionality       
 

The variance of distances from a given point 
converges to 0 as the dimensionality increases 
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Curse of Dimensionality       
 

Distance values from a given point 

Values flatten out as dimensionality increases 

Computing radii of nearest neighborhoods 
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median radius of a nearest neighborhood 

! 

uniform distribution in the unit cube -.5,.5[ ]q

Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

   q   4   4   6   6  10   10  20  20  20

  N  100 1000  100 1000 1000 10000 10000

d(q,N)  0.42  0.23  0.71 0.48  0.91  0.72   1.51 1.20 0.76

610 1010

~N•   Random sample of size        uniform distribution in the 
q -dimensional unit hypercube 

•   Diameter of a          neighborhood using Euclidean 

! 

K =1

! 

d(q,N) =O(N"1/ q )distance:    

As dimensionality increases, the distance from the 
closest point increases faster 

Large                   Highly biased estimations 

! 

d(q,N)"
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Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Ø   In high dimensional spaces data become 
extremely sparse and are far apart from  each 
other 

Ø  The curse of dimensionality affects 
any estimation problem with high 
dimensionality 

Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Ø   It is a serious problem in many 
real-world applications 

Ø   Microarray data: 3,000-4,000 genes; 

Ø   Documents:  10,000-20,000 words in            
 dictionary; 

Ø   Images, face recognition, etc. 
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Microarray Data Analysis 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

 

Problem: Which samples are most similar to each other, 
in terms of their expression profiles across genes 

Document Classification 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Of all the sensory impressions proceeding to 
the brain, the visual experiences are the 
dominant ones. Our perception of the world 
around us is based essentially on the 
messages that reach the brain from our eyes. 
For a long time it was thought that the retinal 
image was transmitted point by point to visual 
centers in the brain; the cerebral cortex was a 
movie screen, so to speak, upon which the 
image in the eye was projected. Through the 
discoveries of Hubel and Wiesel we now 
know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By 
following the visual impulses along their path 
to the various cell layers of the optical cortex, 
Hubel and Wiesel have been able to 
demonstrate that the message about the 
image falling on the retina undergoes a step-
wise analysis in a system of nerve cells 
stored in columns. In this system each cell 
has its specific function and is responsible for 
a specific detail in the pattern of the retinal 
image. 

sensory, brain,  
visual, perception,  
retinal, cerebral cortex, 
eye, cell, optical  
nerve, image 
Hubel, Wiesel 

brain 
visual 

eye 

cell 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 

Bag-of-words 
representation of a 
document 



9/2/13 

14 

 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

w1    w2                                 ….                                       wq 

( )qddd ,,, 21 =d

( )d,2wTF Term Frequency 

brain 
visual 

eye 

cell 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 

Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant 
ones. Our perception of the world around us is 
based essentially on the messages that reach the 
brain from our eyes. For a long time it was 
thought that the retinal image was transmitted 
point by point to visual centers in the brain; the 
cerebral cortex was a movie screen, so to speak, 
upon which the image in the eye was projected. 
Through the discoveries of Hubel and Wiesel we 

Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant 
ones. Our perception of the world around us is 
based essentially on the messages that reach the 
brain from our eyes. For a long time it was 
thought that the retinal image was transmitted 
point by point to visual centers in the brain; the 
cerebral cortex was a movie screen, so to speak, 
upon which the image in the eye was projected. 
Through the discoveries of Hubel and Wiesel we 

Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant 
ones. Our perception of the world around us is 
based essentially on the messages that reach the 
brain from our eyes. For a long time it was 
thought that the retinal image was transmitted 
point by point to visual centers in the brain; the 
cerebral cortex was a movie screen, so to speak, 
upon which the image in the eye was projected. 
Through the discoveries of Hubel and Wiesel we 

Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant 
ones. Our perception of the world around us is 
based essentially on the messages that reach the 
brain from our eyes. For a long time it was 
thought that the retinal image was transmitted 
point by point to visual centers in the brain; the 
cerebral cortex was a movie screen, so to speak, 
upon which the image in the eye was projected. 
Through the discoveries of Hubel and Wiesel we 

dictionary 

What’s the size of the dictionary? 
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     How can we deal with 
 the curse of dimensionality? 

Curse-of-Dimensionality 
 
 

  

  

    

                                                   

                                    

 
   
                                                                                      

Ø   Effective techniques applicable to high 
dimensional spaces exist. 

Ø The reasons are twofold: 
ü  Real data are often confined to regions of 
lower dimensionality 

ü  Real data typically exhibit smoothness 
properties (at least locally). Local 
interpolation techniques can be used to 
make predictions 
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Dimensionality Reduction 

•  Many dimensions are often interdependent 
(correlated); 

We can: 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates into 
significant and independent ones; 

Decision Theory 
•  Decision theory, when combined with probability 

theory, allows to make optimal decisions in 
situations involving uncertainty 

•  Training data: 

•  Inference: joint probability distribution 

•  Decision step: make optimal decision  

tx  vector targetvector input , 

( )tx,p
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Decision Theory 
Classification example: medical diagnosis problem 

•       set of pixel intensities in an image 

•  Two classes:  
–              absence of cancer 

–              presence of cancer 

•  Inference step: estimate 

•  Decision step: given      predict        so that a 
measure of error is minimized according to the 
given probabilities 

x

01 =C
12 =C

( )kCp ,x

x kC

Decision Theory 
How probabilities play a role in decision making? 

•  Decision step: given      predict 

Thus, we are interested in 

 

 

Intuitively: we want to minimize the chance of 
assigning       to the wrong class. Thus, choose 
the class that gives the higher posterior 
probability  
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Minimizing the misclassification rate 
•  Goal: Minimize the number of misclassifications 

We need to find a rule that assigns each input 
vector to one of the possible classes 

Such rule divides the input space into regions          
so that all points in        are assigned to 

Boundaries between regions are called decision 
boundaries 

kC

kR
kR kC

Minimizing the misclassification rate 
•  Goal: Minimize the number of misclassifications 

•  Assign x to the class that gives the smaller value 
of the integrand: 
–  Choose          if      

–  Choose          if 

 

! 

p mistake( ) = p x " R1,C2( ) + p x " R2,C1( )
                  = p x,C2( )

R1

# dx + p x,C1( )
R2

# dx

1C

2C
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Minimizing the misclassification rate 
–  Choose          if      

–  Choose          if 

Thus: 

–  Choose          if   

–  Choose          if 

 

1C
2C

( ) ( )21 ,, CpCp xx >

( ) ( )xx || 12 CpCp >

( ) ( ) ( )xxx pCpCp kk |, =

1C

2C

( ) ( )12 ,, CpCp xx >

( ) ( )xx || 21 CpCp >

Minimizing the misclassification rate 

0ˆ xx =Optimal decision boundary: 
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Minimizing the misclassification rate 

Thus: 

General case of K classes: 

 

( )xCp k |Choose          that gives the largest   kC
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Minimizing the expected loss 

jCkjL
kC

Ø   Some mistakes are more costly than others. 
Ø   Loss function (cost function): overall measure of 
loss incurred in taking any of the available decisions 

        :  loss incurred when we assign      to class         
and the true class is 

x
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01
10000cancer 

cancer normal 
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The optimal solution is the 
one that minimizes the loss 
function 
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Minimizing the expected loss 
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k j R

kkj
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Ø   The loss function depends on the true class, which is 
unknown. 
Ø  The uncertainty of the true class is expressed through 
the joint probability 

Ø   We minimize the expected loss:  

Ø   For each x we should minimize 
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Minimizing the expected loss 
Ø   For each x we should minimize 

Ø   Thus, to minimize the expected loss: Assign each x to 
the class j that minimizes 
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The Reject Option 


