Bayes’ Theorem

p(X=x|Y=y)p(Y=y)
X =x)

p(Y=yIX=x)=

> p(Y = y) is the prior probability. it expresses the
probability before we observe any data

> p(Y =ylX= X) is the posterior probability: it
expresses the probability after we observed the data

» The effect of the observed data is captured through the
conditional probability p(X =x|Y = y)

Curve fitting re-visited

» We can adopt a Bayesian approach when estimating the
parameters w for polynomial curve fitting.

> p(w) captures our assumptions about y before
observing the data.

» The effect of the observed data D is captured by the
conditional probability p(D | w)

> Bayes’ theorem allows to evaluate the uncertainty in w
after we have observed the data D (in the form of

osterior probability):
P P y) D p(D1w)p(w)
i o)

> p(Dw)is the likelihood function

» Maximum likelihood approach: set w to the value that
maximizes p(D|w)
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Curve fitting re-visited: ML approach

> Training data: x = (xl,-'-,xN)T,t a (tl""tN)T

» We can express our uncertainty over the value of the
target variable using a probability distribution

» Assumption: Given a value of x, the corresponding value
of ¢t has a Gaussian distribution with a mean GQLIJWa| to

= 2 gl L Gmre J
y(.x,W)—W0+W1X+W2x + +WMX —EWJ.X
=0

> Thus:  p(r1x,w,B) =N(f | y(xaw)’ﬁ'l)

Curve fitting re-visited: ML approach

A
t ) *

p(tlzo, w, 3)

v

Zo X




Curve fitting re-visited: ML approach

> We use the training data {x,t} to estimate w,f3
by maximum likelihood

» Assuming data are drawn independently, the likelihood
function can be written as the product of the marginal

distributions: 3

p(t1x,w,B) = HN(fn |)’(xn’w)’/3_l)

n=1

Curve fitting re-visited: ML approach

(x-n)

eZO‘

» Gaussian distribution: N(x Iu,oz) = -
2no

u= y(x’w)’OZ 5 /5—1
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Curve fitting re-visited: ML approach

» Maximum likelihood solution for the polynomial

coefficients: maximize log likelihood with respectto w
N

Inp(t | x,w,B) = —gz(tn —y(x, ) + %m B- %ln(Zn)

n=1

> It is equivalent to minimize the negative log likelihood:

N

Wy = arginin{%E(tn - y(xn,W))z}

n=1

» Thus: The sum-of-squares error function results from
maximizing the likelihood under the assumption of a
Gaussian noise distribution

Curve fitting re-visited: ML approach

» Maximum likelihood solution for the parameter p:
maximize log likelihood with respect to 3

Inp(zlx,w,B)= —gi(tn — y(xn,w))2 + %ln[} -~ %ln(Zn)

LS -y
B R
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Curve fitting re-visited: ML approach

» We now have the maximum likelihood solutions for the
parameters: w,, .03,

» We can now make predictions for new values of x by
using the resulting probability distribution over ¢
(predictive distribution)

p(t Lx,wy, ’ﬁML) = N(t ly(wiML)’ﬁ;/IlL)

Maximum a Posteriori (MAP) approach

» Let us introduce a prior distribution over the polynomial
coefficients w
> Recall: Gaussian distribution of a D-dimensional vector x
1 1 (36w =)
e
(2.7'[)[)/2 ‘2|l/2

N(x,u,Z) =

» Prior distribution:
35 (M+1)/2 (_ngw)
p(w|a)=N(w|O,a‘II)=(—) e
27

> Using Bayes’ theorem:

plw|x,t.a,B)= plt| x,w, B)pw| )
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MAP approach

» Maximum a Posteriori solution for the parameters W
maximize the posterior distribution

pw|x,t,a,B)= plt| x,w, B)pw| )

» It is equivalent to minimize the negative log posterior
distribution:

N
Wy = argmin é;(tn W) + D whw

» Thus: maximizing the posterior distribution is equivalent
to minimizing the reqularized sum-of-squares error
function

Curse of Dimensionality

» Real world applications deal with spaces with high
dimensionality

» High dimensionality poses serious challenges for the
design of pattern recognition techniques

Oil flaw data in two
dimensions

Red = homogeneous

Green = annular

Blue = laminar
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Curse of Dimensionality

» A simple classification approach

2

1.5

0.5

Curse of Dimensionality

» Going higher in dimensionality...

iy A7
d
V' z1
L 1 1 1 -
I T T Ly ! 4
D=1 D=2 D=3
3! 3? 33

The number of regions of a regular grid grows
exponentially with the dimensionality p of the
space
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Curse of Dimensionality

\DM DMAX/DMIN
AX

Sample of size N=500 uniformly distributed in [0, 1]’

Curse of Dimensionality

DMAX/DMIN

5 100 200

The distribution of the ratio DMAX/DMIN
converges to 1 as the dimensionality increases

9/2/13



Curse of Dimensionality
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Curse of Dimensionality
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. edim . .
The variance of distances from a given point
converges to 0 as the dimensionality increases
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median radius
1

dimension

median radius of a nearest neighborhood

uniform distribution in the unit cube [- .5,.5]q

Curse-of-Dimensionality

As dimensionality increases, the distance from the
closest point increases faster

* Random sample of size N ~ uniform distribution in the
g-dimensional unit hypercube

* Diameter of a K =1 neighborhood using Euclidean
distance: d(g,N)=O(N"*)

4 4 6 6 10 10 20 20 20
N 100 1000 100 1000 1000 10000 10000 10° 10"
d(g,N) 042 023 0.71 048 0.91 0.72 151 1.20 0.76

Large d(g,N)= Highly biased estimations

9/2/13
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Curse-of-Dimensionality

» In high dimensional spaces data become
extremely sparse and are far apart from each
other

> The curse of dimensionality affects
any estimation problem with high
dimensionality

Curse-of-Dimensionality

> Itis a serious problem in many
real-world applications

» Microarray data: 3,000-4,000 genes;

» Documents: 10,000-20,000 words in
dictionary;

» Images, face recognition, etc.

9/2/13
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Microarray Data Analysis

Problem: Which samples are most similar to each other,

in terms of their expression profiles across genes

Document Classification

Of all the sensory |mpressmns proceeding to
the brain, the visual.ga aas are the
dominant oneg

around us i

message, . . (€S
Foralo visual, perceptio 1I
image

retinal, cerebral cog

following the V|sual impon
to the various cell layers of the optl
Hubel and Wiesel have been able to
demonstrate that the message about i
image falling on the retina undergoes a 3
wise analysis in a system of nerve cells
stored in columns. In this system each cell
has its specific function and is responsible foi
a specific detail in the pattern of the retinal
image.

Bag-of-words
representation of a
document
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13



9/2/113

o
£
°
2
g
s
g
a
s
2
8.
|3
E
2
2
4
5
A
£
T
&

ictionary

d

‘wl \wZ

(WZ ,d ) Term Frequency

What’ s the size of the dictionary?

9 il

J_. ::

difi 1 i

it i:: %\3\‘ Gt \ %m.
iy

\ _N w i il

i i _% _31 N
a

Y7
«\\\e\ ‘s\\s \

il

s~
...n..

.fﬁ .S e

C:L
3
:3

14



How can we deal with
the curse of dimensionality?

Curse-of-Dimensionality

> Effective techniques applicable to high
dimensional spaces exist.

> The reasons are twofold:

v Real data are often confined to regions of
lower dimensionality

v Real data typically exhibit smoothness
properties (at least locally). Local
interpolation techniques can be used to
make predictions

9/2/13
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Weight (pounds)

380
360
340
320
300
280
260
240
220
200

180
68 70 72 74 76

Height (inches)

7.68 92.2
922 19125

78

x| ) 1<
X = u= i A 75
(xz) (/“‘2) N;

2 x 2 covariance matrix:

E|(x-u)(x-n) |-

gasEs
E( i )(xl_l-‘l’xz_.uz) =
X, =W,
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Dimensionality Reduction
« Many dimensions are often interdependent
(correlated);
We can:
* Reduce the dimensionality of problems;

» Transform interdependent coordinates into
significant and independent ones;

Decision Theory

» Decision theory, when combined with probability
theory, allows to make optimal decisions in
situations involving uncertainty

« Training data: input vector x,target vector ¢

« Inference: joint probability distribution p(x,t)

» Decision step: make optimal decision

9/2/13
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Decision Theory

Classification example: medical diagnosis problem

+ Xx set of pixel intensities in an image

* Two classes:
- C1 = () absence of cancer

— C, =1 presence of cancer

* Inference step: estimate p(x,Ck)

- Decision step: given X predict C, so thata
measure of error is minimized according to the
given probabilities

Decision Theory
How probabilities play a role in decision making?

» Decision step: given x predict Ck

Thus, we are interested in p(Ck |x)

L P(x |G )p(ck)
plx)

p(Ck | x)

Intuitively: we want to minimize the chance of
assigning x to the wrong class. Thus, choose
the class that gives the higher posterior
probability

9/2/13
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Minimizing the misclassification rate
+ Goal: Minimize the number of misclassifications

We need to find a rule that assigns each input
vector to one of the possible classes C

Such rule divides the input space into regions R
so that all points in R, are assigned to C,

Boundaries between regions are called decision
boundaries

Minimizing the misclassification rate
+ Goal: Minimize the number of misclassifications
p(mistake) = p(x € R,,C,) + p(x ER,.C))
= fp(x,Cz)dx+ fp(x,Cl)dx
R, R,

+ Assign x to the class that gives the smaller value
of the integrand:

— Choose Cl D x,C1)>p x,C2
— Choose C2 jEsEsy i) x,C2)>p x,C1

9/2/13
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Minimizing the misclassification rate

- choose C, it plx,C )> plx,C,
- Choose C, if plx,C, >p(x, C,

p(x, C, ) = p(Ck | x)p(x)

Thus:

— Choose C| if pC1|x >pC2|x
—ChooseC’2 if pC2|x >pC1|x

Minimizing the misclassification rate

A N
Zo T

p(xa Cl)

p(w,(/'z)

R1 Ra

Optimal decision boundary: X = X,

21



Minimizing the misclassification rate

General case of K classes:

plcorrect) Zp xER,,C,) pr x,C,)
1

Ry

Thus:

Choose (', thatgives the largest p(Ck |x)

Minimizing the expected loss

» Some mistakes are more costly than others.

» Loss function (cost function): overall measure of
loss incurred in taking any of the available decisions

LJ loss incurred when we assign x to class C
and the true class is C

cancer normal

cancer O 1000 The optimal solution is the
one that minimizes the loss

normal 1 O function

9/2/13
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Minimizing the expected loss

» The loss function depends on the true class, which is
unknown.

» The uncertainty of the true class is expressed through
the joint probability p(x, Ck)

» We minimize the expected loss:

= Z Ekaip(x,Ck )x

> For each x we should minimize

ZLIg'p(x’ C, ) = Zngp(Ck | x)p(x)

Minimizing the expected loss

» For each x we should minimize

Z . Plx.C,) Z L, p(C, | x)p(x)

» Thus, to minimize the expected loss: Assign each x to
the class j that minimizes

Zijp(Ck | x)

9/2/13
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The Reject Option

reject region
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