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The Perceptron Algorithm 

Perceptron (Frank Rosenblatt, 1957) 

•  First learning algorithm for neural 
networks; 

• Originally introduced for character 
classification, where each 
character is represented as an 
image; 
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Perceptron (contd.) 
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Total input to output node: 

Output unit performs the 
function: (activation function): 

Perceptron: Learning Algorithm 
•  Goal: we want to define a learning algorithm for the 

weights in order to compute a mapping from the 
inputs to the outputs; 

•  Example: two class character recognition problem. 

–  Training set: set of images representing either the 
character ‘a’ or the character ‘b’ (supervised learning); 

–  Learning Task: Learn the weights so that when a new 
unlabelled image comes in, the network can predict its label. 

–  Settings: 
  Class ‘a’   1  (class C1) 
  Class ‘b’   0 (class C2) 
  n input units (intensity level of a pixel) 
  1 output unit 

The perceptron 
needs to learn  

{ }1,0: →ℜnf



9/14/10 

3 

Perceptron: Learning Algorithm 
The algorithm proceeds as follows: 

•  Initial random setting of weights; 
•  The input is a random sequence  
•  For each element of class C1, if output = 1 

(correct) do nothing, otherwise update 
weights; 

•  For each element of class C2, if output = 0 
(correct) do nothing, otherwise update 
weights.               

{ } ℵ∈kkx

Perceptron: Learning Algorithm 
A bit more formally: 
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Output is 1 if 

To eliminate the explicit 
dependence on  :θ

Output is 1 if: 
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Perceptron: Learning Algorithm 
•  We want to learn values of the weights so 

that the perceptron correctly discriminate 
elements of C1 from elements of C2: 

•  Given x in input, if x is classified correctly, 
weights are unchanged, otherwise: 
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Perceptron: Learning Algorithm 

•  1st case:  
The correct answer is 1, which corresponds to: 
We have instead:  

We want to get closer to the correct answer:  
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Perceptron: Learning Algorithm 

•  2nd case:  
The correct answer is 0, which corresponds to: 
We have instead:  

We want to get closer to the correct answer:  
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x ∈ C2 and was classified in C1
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The previous rule allows the network to get closer to the correct answer 
when it performs an error. 
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Perceptron: Learning Algorithm 
•  In summary: 

1.  A random sequence                               is generated 
such that 

2.  If       is correctly classified, then                      
otherwise  
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Perceptron: Learning Algorithm 
Does the learning algorithm converge? 

Convergence theorem: Regardless of the initial choice 
of weights, if the two classes are linearly separable, 
i.e. there exist       s.t. 

then the learning rule will find such solution after a 
finite number of steps. 
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Representational Power of Perceptrons 
•  Marvin Minsky and Seymour Papert, 

“Perceptrons” 1969:  
“The perceptron can solve only problems with 

linearly separable classes.” 
•  Examples of linearly separable Boolean functions: 

AND OR 
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Representational Power of Perceptrons 

Perceptron that computes the 
AND function 

1 1
1 1

-1.5 -0.5 

Perceptron that computes the 
OR function 

Representational Power of Perceptrons 
•  Example of a non linearly separable Boolean 

function: 

EX-OR 

The EX-OR function cannot be computed by a perceptron 


