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Example:  

Suppose we want to build a classifier that 
recognizes WebPages of graduate students. 

How can we find training data? 

We can browse the web and collect a sample 
of WebPages of graduate students of various 
universities. 

Now we have a collection of positive examples. 

How about negative examples ? 

The negative examples are… the rest of the web 
that is not “a graduate student webpage”.   

So: the negatives examples come from an 
unknown number of different “negatives” 
classes. 

Thus: It is hopeless, and wrong, to trying to 
characterize the distribution of the negatives; 
they can belong to any class.  (“Each negative 
examples is negative in its own way.”) 
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We just cannot formulate this problem as a two 
class classification problem. 

It can be seen as a (1+x)-class learning problem: 

There are an unknown number (x) of classes, but 
the user is interested in one class, i.e. the user is 
biased toward one class. 

Similarly: in content-based image retrieval, and 
document retrieval  in general. 

How do we approach this problem then? 

It is reasonable to assume that positive examples 
cluster in a certain way. (“All positive example are 
alike.”) 

Thus: We can attempt to capture the distribution 
of the positive examples. 

One-class SVMs offer a solution to the  (1+x)-
class problem. 
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Undesirable result reached by a two-class 
SVM 
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The Proposed Approach 

Try to fit a tight hyper-sphere (in a transformed 
space) to include most positive training examples.  

Such hyper-sphere tries to capture the support 
within which the positive examples are clustered, 
in an effort to separate them from “the rest of 
the world”.  

The hyper-sphere will include most, but not 
all, training data to avoid overfitting. 

One class SVM 



5 

One class SVM 

radius 

center 

One class SVM 



6 

One class SVM 
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By substituting (1), (2), (3) in L, we obtain: 
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Which we want to maximize with respect to the 
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One class SVM 

Thus: the dual objective function can be 
written using a kernel function: 

The solution of this optimization 
problem gives the optimal      values 

One class SVM 
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One class SVM 
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To use the one - class SVM to rank images :
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The closer the image is to the center of the 
hyper-sphere, the higher is the score, and 
more likely the image is to be a target 
image. 

Two nice toy examples 
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Linear One class SVM 

In practice we cannot assume that real data 
are clustered in spherical shapes as in the 
previous example. Real data (e.g. images) can 
have multi-mode distributions.  

The use of a kernel allows to handle the more 
general case. We look for spherical shapes in 
the transformed space. 
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Non-linear One class SVM 

Real data 
•  Fully labeled image database; 
•  5 classes with 100 images each; 
•  Classes: airplanes, cars, horses, eagles, 

stained glasses; 
•  Each image is a vector of 37 dimensions: 

statistical moments, edge-based structure 
features, etc;  
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Experiment with real data 
•  For each class, 10 images are randomly 

chosen as training examples;  

•  The learned decision function is used to 
rank all the 500 images in the database; 

•  The hit rates in the top ranked 20 and 100 
images are used as performance measures; 

•  For each class, the experiment is repeated 
100 times, and average error rates are 
reported. 

Experimental Results 
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Conclusions 
•  Effective training was performed with a 

small number of examples; 
•  A Gaussian kernel was used: how does it 

compare with using different kernels? 
•  The method requires the tuning of two 

parameters: the spread of the Gaussian 
kernel, and the regularization term for 
errors. 


